Data regarding plant extracts with antiaging properties, particularly through the biological process involving telomeres and telomerase, are limited. Thus, this study aimed to investigate the effects of Acanthopanax senticosus extract (ASE) supplementation on leukocyte telomere length (LTL), telomerase, and inflammatory and metabolic markers in adult animal models. A freeze-dried product of ethanol extracts was prepared using a mixture product of stem and root ASE. In a 24-week experiment that included 24-week-old Sprague Dawley male rats, experimental rats (n = 10) were administrated with 7 mg/day of ASE dissolved in saline and control rats (n = 10) with saline. All rats had access to chow and tap water ad libitum. Their LTL and plasma levels of telomerase and inflammatory and metabolic markers were assayed and compared between the two groups. The experimental rats showed significantly longer LTL (p < 0.05) and lower plasma levels of alanine aminotransferase (p < 0.05) and aspartate aminotransferase (p = 0.08) compared with the control. In addition, LTL was correlated with the aforementioned biochemical parameters of liver function test among experimental rats only. No significant differences in plasma levels of telomerase and inflammatory and metabolic markers were observed. These findings indicate that ASE supplementation may attenuate LTL shortening and reduce liver biochemical parameters, indicating its potential antiaging and hepatoprotective effects without any adverse metabolic response.
Increasing age is the single largest risk factor for a variety of chronic illnesses. As a result, improving the capability to target the aging process leads to an increased health span. A lack of appropriate glucoregulatory control is a recurring issue associated with aging and chronic illness, even though many longevity therapies result in the preservation of glucoregulatory control. In this study, we suggest that targeting glucose metabolism to improve regulatory control can help slow the aging process. Male Wistar rats, both young (age 4 months) and old (age 24 months), were given acarbose (ACA) (30 mg/kg b.w.) for 6 weeks. An array of oxidative stress indicators was assessed after the treatment period, including plasma antioxidant capacity as determined by the ferric reducing ability of plasma (FRAP), reactive oxygen species (ROS), lipid peroxidation (malondialdehyde [MDA]), reduced glutathione (GSH), total plasma thiol (sulfhydryl [SH]), plasma membrane redox system (PMRS), protein carbonyl (PCO), advanced oxidation protein products (AOPPs), advanced glycation end products (AGEs), and sialic acid (SA) in control and treated groups. When compared with controls, ACA administration increased FRAP, GSH, SH, and PMRS activities in both age groups. The treated groups, on the contrary, showed substantial decreases in ROS, MDA, PCO, AOPP, AGE, and SA levels. The effect of ACA on almost all parameters was more evident in old-age rats. ACA significantly increased PMRS activity in young rats; here the effect was less prominent in old rats. Our data support the restoration of antioxidant levels in older rats after short-term ACA treatment. The findings corroborate the potential role of ACA as a putative calorie restriction mimetic.
Chronic senescence, such as aging, contributes to age-related tissue dysfunction and disease development. The accumulation of senescent fibroblasts and the senescence-associated secretory phenotype is particularly implicated in this process. Removal of senescent cells has been reported to prevent tissue dysfunction and to extend the life span during aging. ABT-263 (navitoclax), which inhibits antiapoptotic proteins, is a leading antiaging drug; however, its role in human skin aging is unclear. This study aimed to determine the rejuvenating effects of ABT-263 on aging skin using a human skin graft mouse model. We assessed the viability of ABT-263-treated skin fibroblasts after inducing senescence. Aged human skin was transplanted under the back skin of nude mice and injected intraperitoneally with the drug or control. Analysis of the skin specimens revealed that ABT-263 induced selective elimination of senescent dermal fibroblasts. Senescent human skin treated with ABT-263 exhibited a decrease in the number of senescent cells and in the expression of aging-related secretory phenotype molecules, such as matrix metalloproteinases and interleukins and an increase in collagen density. Our results indicate that selective removal of senescent skin cells with ABT-263 can improve the aging phenotype of human skin without side effects. ABT-263 is, thus, a novel potential therapeutic agent for skin aging.
Acute pulmonary thromboembolism (APTE) has become a non-negligible clinical concern due to its high mortality and complex symptoms. Early diagnosis and prognostic assessment of APTE are of great significance for the long-term benefits of patients, especially elderly patients. Elderly patients with pulmonary embolism (n = 250) who presented to our hospital from January 2018 to July 2021 were recruited into this study. In addition, 50 healthy elderly people with no history of allergies were selected as the control group. An enzyme-linked immunosorbent assay (ELISA) method was used to determine concentrations of D-dimer and signal peptide-CUB-EGF domain-containing protein-1 (SCUBE1) in their plasma. Right ventricular volume contraction time (ICT), ejection time (ET), and isovolumic relaxation time (IRT) were determined by Doppler ultrasound. Right ventricular Tei index was calculated as (ICT + IRT)/ET. High plasma D-dimer, plasma SCUBE1, and right ventricular Tei index are risk factors for poor prognosis in APTE patients after treatment. Plasma D-dimer, plasma SCUBE1, and right ventricular Tei index have predictive value for poor prognosis in APTE patients. Their combined detection (0.256*DD +0.04*SCUBE1 + 10.188*Tei) can improve the sensitivity and specificity of prediction. There is a predictive value of combined plasma D-dimer, SCUBE1, and right ventricular Tei index for the prognosis of elderly patients with APTE.
This work investigated effects of plant polyphenolic compounds (PPs) on responses of cultured human HaCaT keratinocytes to ultraviolet radiation in the C range (UV-C). The experimental data obtained indicate a cytoprotective effect of PPs added immediately after UV-C exposure. The efficiency of PPs was lowered in the following order: acacetin ≥ silybin > quercetin. The influence of PPs on phosphorylation of histone H2AX and the number of single-strand DNA breaks in the nuclei of keratinocytes were also studied. Using the comet assay and γH2AX staining, followed by fluorescence microscopy, it has been established that PPs can reduce DNA damage in the nuclei of keratinocytes exposed to UV-C. It is concluded that PPs can diminish the destructive effect of UV radiation on skin cells, activating the process of repairing genetic damage.
Considering that telomere length can be determined not only by issues related to cell biology but also by aspects related to social factors and environmental exposures, studies on the relationship between social aspects and telomere length can help to better understand the still scarcely known aspects of the human aging process. Thus, this research seeks to verify whether social support networks are associated with telomere length in older adults. This is a cross-sectional study conducted with 448 individuals aged at least 60 years living in the urban area of an inland Brazilian municipality. Relative quantification of telomere length was obtained through real-time qPCR. Social support was assessed through the Medical Outcomes Study Social Support Scale. Descriptive statistics and multiple logistic regression were used in data analysis. The evaluated social support networks for older adults consist in a mean of 16.4 people, and the percentage of older adults who reported up to five members in their network was 27.75%. Shorter telomere length was identified in 25% of the participants, and the older adults who reported having up to five members in their support network were more likely to have a shorter telomere length than those who reported more numerous networks (odds ratio: 1.89, p = 0.011) regardless of gender, age, household arrangement, cognitive decline, and dependence for basic and instrumental activities of daily living, which suggests that measures that stimulate the creation and maintenance of social support networks should be implemented to improve older adults' health.
Oncogene-induced senescence (OIS), characterized by irreversible cell cycle arrest by oncogene activation, plays an important role in the pathogenesis of aging and age-related diseases. Recent research indicates that OIS is driven by activation of mitogen-activated protein kinase (MAPK). However, it is not apparent whether MAPK inhibition helps to recover senescence. In our previous study, we uncovered p38 MAPK inhibitor, SB203580, as an effective agent to reduce reactive oxygen species and increase proliferation in premature senescent cells. In this study, we evaluated whether SB203580 could ameliorate senescence in normal senescent cells. The senescence-improving effect was observed in the results that SB203580 treatment restored lysosomal function, as evidenced by a decrease in lysosomal mass and an increase in autophagic vacuoles. Then, SB203580-mediated lysosomal function restoration triggered the clearance of damaged mitochondria, leading to metabolic reprogramming necessary for amelioration of senescence. Indeed, p38 MAPK inhibition by SB203580 improved key senescent phenotypes. Our findings suggest a novel mechanism by which modulation of p38 MAPK activity leads to senescence improvement through functional restoration of lysosome and mitochondria.