Modeling neonatal lung disease ex vivo to elucidate disease pathogenesis is particularly challenging. We hypothesized that airway organoids derived from bronchoalveolar lavage (BAL) samples obtained from intubated preterm infants with bronchopulmonary dysplasia (BPD) will recapitulate the epithelial heterogeneity seen in human airways and can be used to study lung injury and therapeutic responses. Here, we demonstrate that BAL sample-derived airway organoids from ventilator-dependent patients with established BPD exhibited cellular heterogeneity consistent with that observed in the human airway. Developed organoids contain basal cell progenitors and a spectrum of differentiated epithelial subtypes, including secretory, ciliated, PNECs, and hillock cells. Hyperoxia exposure and treatment with dexamethasone caused significant cellular transcriptional changes and highlighted biological pathways, both known and novel, with distinct findings based on sex as a biological variable. Findings were validated in an independent dataset from human BPD lung samples. Infant BAL-derived human lung organoids represent a cutting-edge model that bridges a critical gap in BPD research. They combine the advantages of being patient-specific and capturing developmental lung biology, with the experimental flexibility of an in vitro system.
扫码关注我们
求助内容:
应助结果提醒方式:
