Yingkun Wan, Jiaqi Zheng, Edward Wai-Chi Chan, Sheng Chen
Bacterial antibiotic tolerance is a decades-old phenomenon in which a bacterial sub-population, commonly known as persisters, does not respond to antibiotics and remains viable upon prolonged antimicrobial treatment. Persisters are detectable in populations of bacterial strains that are not antibiotic-resistant and are known to be responsible for treatment failure and the occurrence of chronic and recurrent infection. The clinical significance of antibiotic tolerance is increasingly being recognized and comparable to antibiotic resistance. To eradicate persisters, it is necessary to understand the cellular mechanisms underlying tolerance development. Previous works showed that bacterial antibiotic tolerance was attributed to the reduction in metabolic activities and activation of the stringent response, SOS response and the toxin–antitoxin system which down-regulates transcription functions. The latest research findings, however, showed that decreased metabolic activities alone do not confer a long-lasting tolerance phenotype in persisters, and that active defence mechanisms such as efflux and DNA repair are required for the long-term maintenance of phenotypic tolerance. As such active tolerance-maintenance mechanisms are energy-demanding, persisters need to generate and maintain the transmembrane proton motive force (PMF) for oxidative phosphorylation. This minireview summarizes the current understanding of cellular mechanisms essential for prolonged expression of phenotypic antibiotic tolerance in bacteria, with an emphasis on the importance of generation and maintenance of PMF in enabling proper functioning of the active tolerance mechanisms in persisters. How such mechanisms can be utilized as targets for the development of anti-persister strategies will be discussed.
细菌对抗生素耐受是一种已有几十年历史的现象,在这种现象中,细菌亚群(通常称为持久菌)对抗生素没有反应,并且在长期抗菌治疗后仍能存活。在不耐受抗生素的细菌菌株群中也能检测到持久菌,众所周知,持久菌是导致治疗失败以及慢性和复发性感染的原因。人们越来越认识到抗生素耐受性的临床意义,并将其与抗生素耐药性相提并论。要根除耐药菌,就必须了解耐药性产生的细胞机制。以前的研究表明,细菌对抗生素耐受的原因是新陈代谢活动减少,严格反应、SOS 反应和毒素-抗毒素系统激活,从而下调转录功能。然而,最新的研究结果表明,仅凭代谢活动的减少并不能使持久性细菌产生持久的耐受表型,还需要外排和 DNA 修复等主动防御机制来长期维持耐受表型。由于这种主动耐受性维持机制需要能量,持久性有机污染物需要产生和维持用于氧化磷酸化的跨膜质子动力(PMF)。本小视图总结了目前对细菌表型抗生素耐受性长期表达所必需的细胞机制的理解,重点是产生和维持质子动力对持久性有机体主动耐受机制正常运作的重要性。将讨论如何利用这些机制作为开发抗持久性细菌策略的目标。
{"title":"Proton motive force and antibiotic tolerance in bacteria","authors":"Yingkun Wan, Jiaqi Zheng, Edward Wai-Chi Chan, Sheng Chen","doi":"10.1111/1751-7915.70042","DOIUrl":"10.1111/1751-7915.70042","url":null,"abstract":"<p>Bacterial antibiotic tolerance is a decades-old phenomenon in which a bacterial sub-population, commonly known as persisters, does not respond to antibiotics and remains viable upon prolonged antimicrobial treatment. Persisters are detectable in populations of bacterial strains that are not antibiotic-resistant and are known to be responsible for treatment failure and the occurrence of chronic and recurrent infection. The clinical significance of antibiotic tolerance is increasingly being recognized and comparable to antibiotic resistance. To eradicate persisters, it is necessary to understand the cellular mechanisms underlying tolerance development. Previous works showed that bacterial antibiotic tolerance was attributed to the reduction in metabolic activities and activation of the stringent response, SOS response and the toxin–antitoxin system which down-regulates transcription functions. The latest research findings, however, showed that decreased metabolic activities alone do not confer a long-lasting tolerance phenotype in persisters, and that active defence mechanisms such as efflux and DNA repair are required for the long-term maintenance of phenotypic tolerance. As such active tolerance-maintenance mechanisms are energy-demanding, persisters need to generate and maintain the transmembrane proton motive force (PMF) for oxidative phosphorylation. This minireview summarizes the current understanding of cellular mechanisms essential for prolonged expression of phenotypic antibiotic tolerance in bacteria, with an emphasis on the importance of generation and maintenance of PMF in enabling proper functioning of the active tolerance mechanisms in persisters. How such mechanisms can be utilized as targets for the development of anti-persister strategies will be discussed.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joy Birkelbach, Carsten E. Seyfert, Sebastian Walesch, Rolf Müller
Natural products have proven themselves as a valuable resource for antibiotics. However, in view of increasing antimicrobial resistance, there is an urgent need for new, structurally diverse agents that have the potential to overcome resistance and treat Gram-negative pathogens in particular. Historically, the search for new antibiotics was strongly focussed on the very successful Actinobacteria. On the other hand, other producer strains have been under-sampled and their potential for the production of bioactive natural products has been underestimated. In this mini-review, we highlight prominent examples of novel anti-Gram negative natural products produced by Gram-negative bacteria that are currently in lead optimisation or preclinical development. Furthermore, we will provide insights into the considerations and strategies behind the discovery of these agents and their putative applications.
{"title":"Harnessing Gram-negative bacteria for novel anti-Gram-negative antibiotics","authors":"Joy Birkelbach, Carsten E. Seyfert, Sebastian Walesch, Rolf Müller","doi":"10.1111/1751-7915.70032","DOIUrl":"10.1111/1751-7915.70032","url":null,"abstract":"<p>Natural products have proven themselves as a valuable resource for antibiotics. However, in view of increasing antimicrobial resistance, there is an urgent need for new, structurally diverse agents that have the potential to overcome resistance and treat Gram-negative pathogens in particular. Historically, the search for new antibiotics was strongly focussed on the very successful Actinobacteria. On the other hand, other producer strains have been under-sampled and their potential for the production of bioactive natural products has been underestimated. In this mini-review, we highlight prominent examples of novel anti-Gram negative natural products produced by Gram-negative bacteria that are currently in lead optimisation or preclinical development. Furthermore, we will provide insights into the considerations and strategies behind the discovery of these agents and their putative applications.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70032","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Niklas Probul, Zihua Huang, Christina Caroline Saak, Jan Baumbach, Markus List
Artificial intelligence (AI) has the potential to transform clinical practice and healthcare. Following impressive advancements in fields such as computer vision and medical imaging, AI is poised to drive changes in microbiome-based healthcare while facing challenges specific to the field. This review describes the state-of-the-art use of AI in microbiome-related healthcare. It points out limitations across topics such as data handling, AI modelling and safeguarding patient privacy. Furthermore, we indicate how these current shortcomings could be overcome in the future and discuss the influence and opportunities of increasingly complex data on microbiome-based healthcare.
{"title":"AI in microbiome-related healthcare","authors":"Niklas Probul, Zihua Huang, Christina Caroline Saak, Jan Baumbach, Markus List","doi":"10.1111/1751-7915.70027","DOIUrl":"10.1111/1751-7915.70027","url":null,"abstract":"<p>Artificial intelligence (AI) has the potential to transform clinical practice and healthcare. Following impressive advancements in fields such as computer vision and medical imaging, AI is poised to drive changes in microbiome-based healthcare while facing challenges specific to the field. This review describes the state-of-the-art use of AI in microbiome-related healthcare. It points out limitations across topics such as data handling, AI modelling and safeguarding patient privacy. Furthermore, we indicate how these current shortcomings could be overcome in the future and discuss the influence and opportunities of increasingly complex data on microbiome-based healthcare.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daptomycin (DAP), a novel cyclic lipopeptide antibiotic produced by Streptomyces roseosporus, is clinically important for treatment of infections caused by multidrug-resistant Gram-positive pathogens, but the low yield hampers its large-scale industrial production. Here, we describe a combination metabolic engineering strategy for constructing a DAP high-yielding strain. Initially, we enhanced aspartate (Asp) precursor supply in S. roseosporus wild-type (WT) strain by separately inhibiting Asp degradation and competitive pathway genes using CRISPRi and overexpressing Asp synthetic pathway genes using strong promoter kasOp*. The resulting strains all showed increased DAP titre. Combined inhibition of acsA4, pta, pyrB, and pyrC increased DAP titre to 167.4 μg/mL (73.5% higher than WT value). Co-overexpression of aspC, gdhA, ppc, and ecaA led to DAP titre 168 μg/mL (75.7% higher than WT value). Concurrently, we constructed a chassis strain favourable for DAP production by abolishing by-product production (i.e., deleting a 21.1 kb region of the red pigment biosynthetic gene cluster (BGC)) and engineering the DAP BGC (i.e., replacing its native dptEp with kasOp*). Titre for the resulting chassis strain reached 185.8 μg/mL. Application of our Asp precursor supply strategies to the chassis strain further increased DAP titre to 302 μg/mL (2.1-fold higher than WT value). Subsequently, we cloned the engineered DAP BGC and duplicated it in the chassis strain, leading to DAP titre 274.6 μg/mL. The above strategies, in combination, resulted in maximal DAP titre 350.7 μg/mL (2.6-fold higher than WT value), representing the highest reported DAP titre in shake-flask fermentation. These findings provide an efficient combination strategy for increasing DAP production and can also be readily applied in the overproduction of other Asp-related antibiotics.
{"title":"Metabolic engineering of Streptomyces roseosporus for increased production of clinically important antibiotic daptomycin","authors":"Xingwang Li, Ziwei Sang, Xuejin Zhao, Ying Wen","doi":"10.1111/1751-7915.70038","DOIUrl":"10.1111/1751-7915.70038","url":null,"abstract":"<p>Daptomycin (DAP), a novel cyclic lipopeptide antibiotic produced by <i>Streptomyces roseosporus</i>, is clinically important for treatment of infections caused by multidrug-resistant Gram-positive pathogens, but the low yield hampers its large-scale industrial production. Here, we describe a combination metabolic engineering strategy for constructing a DAP high-yielding strain. Initially, we enhanced aspartate (Asp) precursor supply in <i>S. roseosporus</i> wild-type (WT) strain by separately inhibiting Asp degradation and competitive pathway genes using CRISPRi and overexpressing Asp synthetic pathway genes using strong promoter <i>kasOp*</i>. The resulting strains all showed increased DAP titre. Combined inhibition of <i>acsA4</i>, <i>pta</i>, <i>pyrB</i>, and <i>pyrC</i> increased DAP titre to 167.4 μg/mL (73.5% higher than WT value). Co-overexpression of <i>aspC</i>, <i>gdhA</i>, <i>ppc</i>, and <i>ecaA</i> led to DAP titre 168 μg/mL (75.7% higher than WT value). Concurrently, we constructed a chassis strain favourable for DAP production by abolishing by-product production (i.e., deleting a 21.1 kb region of the red pigment biosynthetic gene cluster (BGC)) and engineering the DAP BGC (i.e., replacing its native <i>dptEp</i> with <i>kasOp*</i>). Titre for the resulting chassis strain reached 185.8 μg/mL. Application of our Asp precursor supply strategies to the chassis strain further increased DAP titre to 302 μg/mL (2.1-fold higher than WT value). Subsequently, we cloned the engineered DAP BGC and duplicated it in the chassis strain, leading to DAP titre 274.6 μg/mL. The above strategies, in combination, resulted in maximal DAP titre 350.7 μg/mL (2.6-fold higher than WT value), representing the highest reported DAP titre in shake-flask fermentation. These findings provide an efficient combination strategy for increasing DAP production and can also be readily applied in the overproduction of other Asp-related antibiotics.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70038","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily L. Gulliver, Sara K. Di Simone, Michelle Chonwerawong, Samuel C. Forster
Recent years have witnessed major advances and an ever-growing list of healthcare applications for microbiome-based therapeutics. However, these advances have disproportionately targeted diseases common in high-income countries (HICs). Within low- to middle-income countries (LMIC), opportunities for microbiome-based therapeutics include sexual health epidemics, maternal health, early life mortality, malnutrition, vaccine response and infectious diseases. In this review we detail the advances that have been achieved in microbiome-based therapeutics for these areas of healthcare and identify where further work is required. Current efforts to characterise microbiomes from LMICs will aid in targeting and optimisation of therapeutics and preventative strategies specifically suited to the unmet needs within these populations. Once achieved, opportunities from disease treatment and improved treatment efficacy through to disease prevention and vector control can be effectively addressed using probiotics and live biotherapeutics. Together these strategies have the potential to increase individual health, overcome logistical challenges and reduce overall medical, individual, societal and economic costs.
{"title":"Unlocking the potential for microbiome-based therapeutics to address the sustainable development goal of good health and wellbeing","authors":"Emily L. Gulliver, Sara K. Di Simone, Michelle Chonwerawong, Samuel C. Forster","doi":"10.1111/1751-7915.70041","DOIUrl":"10.1111/1751-7915.70041","url":null,"abstract":"<p>Recent years have witnessed major advances and an ever-growing list of healthcare applications for microbiome-based therapeutics. However, these advances have disproportionately targeted diseases common in high-income countries (HICs). Within low- to middle-income countries (LMIC), opportunities for microbiome-based therapeutics include sexual health epidemics, maternal health, early life mortality, malnutrition, vaccine response and infectious diseases. In this review we detail the advances that have been achieved in microbiome-based therapeutics for these areas of healthcare and identify where further work is required. Current efforts to characterise microbiomes from LMICs will aid in targeting and optimisation of therapeutics and preventative strategies specifically suited to the unmet needs within these populations. Once achieved, opportunities from disease treatment and improved treatment efficacy through to disease prevention and vector control can be effectively addressed using probiotics and live biotherapeutics. Together these strategies have the potential to increase individual health, overcome logistical challenges and reduce overall medical, individual, societal and economic costs.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Slavica Janevska, Sophie Weiser, Ying Huang, Jun Lin, Sandra Hoefgen, Katarina Jojić, Amelia E. Barber, Tim Schäfer, Janis Fricke, Dirk Hoffmeister, Lars Regestein, Vito Valiante, Johann E. Kufs
The high therapeutic potential of psilocybin, a prodrug of the psychotropic psilocin, holds great promise for the treatment of mental disorders such as therapy-refractory depression, alcohol use disorder and anorexia nervosa. Psilocybin has been designated a ‘Breakthrough Therapy’ by the US Food and Drug Administration, and therefore a sustainable production process must be established to meet future market demands. Here, we present the development of an in vivo psilocybin production chassis based on repression of l-tryptophan catabolism. We demonstrate the proof of principle in Saccharomyces cerevisiae expressing the psilocybin biosynthetic genes. Deletion of the two aminotransferase genes ARO8/9 and the indoleamine 2,3-dioxygenase gene BNA2 yielded a fivefold increase of psilocybin titre. We transferred this knowledge to the filamentous fungus Aspergillus nidulans and identified functional ARO8/9 orthologs involved in fungal l-tryptophan catabolism by genome mining and cross-complementation. The double deletion mutant of A. nidulans resulted in a 10-fold increased psilocybin production. Process optimization based on respiratory activity measurements led to a final psilocybin titre of 267 mg/L in batch cultures with a space–time-yield of 3.7 mg/L/h. These results demonstrate the suitability of our engineered A. nidulans to serve as a production strain for psilocybin and other tryptamine-derived pharmaceuticals.
{"title":"Optimized psilocybin production in tryptophan catabolism-repressed fungi","authors":"Slavica Janevska, Sophie Weiser, Ying Huang, Jun Lin, Sandra Hoefgen, Katarina Jojić, Amelia E. Barber, Tim Schäfer, Janis Fricke, Dirk Hoffmeister, Lars Regestein, Vito Valiante, Johann E. Kufs","doi":"10.1111/1751-7915.70039","DOIUrl":"10.1111/1751-7915.70039","url":null,"abstract":"<p>The high therapeutic potential of psilocybin, a prodrug of the psychotropic psilocin, holds great promise for the treatment of mental disorders such as therapy-refractory depression, alcohol use disorder and anorexia nervosa. Psilocybin has been designated a ‘Breakthrough Therapy’ by the US Food and Drug Administration, and therefore a sustainable production process must be established to meet future market demands. Here, we present the development of an in vivo psilocybin production chassis based on repression of <span>l</span>-tryptophan catabolism. We demonstrate the proof of principle in <i>Saccharomyces cerevisiae</i> expressing the psilocybin biosynthetic genes. Deletion of the two aminotransferase genes <i>ARO8</i>/<i>9</i> and the indoleamine 2,3-dioxygenase gene <i>BNA2</i> yielded a fivefold increase of psilocybin titre. We transferred this knowledge to the filamentous fungus <i>Aspergillus nidulans</i> and identified functional <i>ARO8</i>/<i>9</i> orthologs involved in fungal <span>l</span>-tryptophan catabolism by genome mining and cross-complementation. The double deletion mutant of <i>A. nidulans</i> resulted in a 10-fold increased psilocybin production. Process optimization based on respiratory activity measurements led to a final psilocybin titre of 267 mg/L in batch cultures with a space–time-yield of 3.7 mg/L/h. These results demonstrate the suitability of our engineered <i>A. nidulans</i> to serve as a production strain for psilocybin and other tryptamine-derived pharmaceuticals.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jorien Poppeliers, Mathijs Focquet, Maarten Boon, Marjan De Mey, Julie Thomas, Rob Lavigne
The transcriptional architecture of phages can deepen our understanding of the phage-host infection process and can be of key importance for phage engineering and biotechnological applications. Here, we applied ONT-cappable-sequencing, a long-read RNA-sequencing technique, to study the regulatory mechanisms of Pseudomonas infecting giant phage 201ϕ2-1. We identified 67 promoters and 132 terminators that together represent 92 transcriptional units. A full comparison of these data to the transcriptome of model Pseudomonas phage ϕKZ confirmed that the transcriptional programs of these prototypes of the Serwervirus and Phikzvirus genera are largely conserved, despite some subtle regulatory differences. Evidence supporting these shared mechanisms include the identification of highly similar sequence motifs for regulatory elements in both phages and the conservation of regulatory elements loci relative to homologous genes in each phage. Moreover, we discovered a sRNA in 201ϕ2-1 that is highly conserved among prototype members of different giant phage genera. Sequencing of the 201ϕ2-1 host genome resulted in its reclassification as Pseudomonas atacamensis, a close relative of the important agricultural biocontrol agent Pseudomonas chlororaphis. Finally, we conducted in vivo assays of eight 201ϕ2-1 terminators and found them to strongly terminate transcription in P. chlororaphis. Control elements from phage transcriptional programs have a rich history for applications in biotechnology. In these studies, we demonstrate new insight into the transcriptional program of 201ϕ2-1 and demonstrate the potential of its regulatory elements for novel and useful tools for synthetic biology circuitry.
{"title":"Assessing the transcriptional landscape of Pseudomonas phage 201ϕ2-1: Uncovering the small regulatory details of a giant phage","authors":"Jorien Poppeliers, Mathijs Focquet, Maarten Boon, Marjan De Mey, Julie Thomas, Rob Lavigne","doi":"10.1111/1751-7915.70037","DOIUrl":"10.1111/1751-7915.70037","url":null,"abstract":"<p>The transcriptional architecture of phages can deepen our understanding of the phage-host infection process and can be of key importance for phage engineering and biotechnological applications. Here, we applied ONT-cappable-sequencing, a long-read RNA-sequencing technique, to study the regulatory mechanisms of <i>Pseudomonas</i> infecting giant phage 201ϕ2-1. We identified 67 promoters and 132 terminators that together represent 92 transcriptional units. A full comparison of these data to the transcriptome of model <i>Pseudomonas</i> phage ϕKZ confirmed that the transcriptional programs of these prototypes of the <i>Serwervirus</i> and <i>Phikzvirus</i> genera are largely conserved, despite some subtle regulatory differences. Evidence supporting these shared mechanisms include the identification of highly similar sequence motifs for regulatory elements in both phages and the conservation of regulatory elements loci relative to homologous genes in each phage. Moreover, we discovered a sRNA in 201ϕ2-1 that is highly conserved among prototype members of different giant phage genera. Sequencing of the 201ϕ2-1 host genome resulted in its reclassification as <i>Pseudomonas atacamensis</i>, a close relative of the important agricultural biocontrol agent <i>Pseudomonas chlororaphis.</i> Finally, we conducted in vivo assays of eight 201ϕ2-1 terminators and found them to strongly terminate transcription in <i>P. chlororaphis.</i> Control elements from phage transcriptional programs have a rich history for applications in biotechnology. In these studies, we demonstrate new insight into the transcriptional program of 201ϕ2-1 and demonstrate the potential of its regulatory elements for novel and useful tools for synthetic biology circuitry.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512511/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chiara Mazziotta, Giada Badiale, Christian Felice Cervellera, Giulia Tonnini, Milena Oimo, Antoine Touzé, Françoise Arnold, Stefania Zanussi, Ornella Schioppa, Giuseppe Fanetti, Mauro Tognon, Fernanda Martini, John Charles Rotondo
Merkel cell polyomavirus (MCPyV) is the foremost causative factor of Merkel cell carcinoma (MCC), a rare yet highly aggressive skin cancer. Although the evaluation of circulating IgG antibodies against Merkel cell polyomavirus (MCPyV) LT/sT oncoproteins is clinically useful for MCC diagnosis/prognosis, a limited number of assays for identifying such antibodies have been developed. Herein, a novel indirect immunoassay with synthetic epitopes/mimotopes of MCPyV oncoproteins was computationally designed and experimentally validated on control sera and sera from healthy individuals and MCC patients. Upon computational design of five synthetic peptides, the performance of the immunoassay in detecting anti-oncoprotein IgGs in MCPyV-positive and -negative control sera was evaluated. The immunoassay was afterwards extended on sera from healthy individuals, and, for longitudinal analysis, MCC patients. Performance properties such as sensitivity and specificity and positive/negative predictive values were adequate. Receiver-operating characteristic (ROC) curves indicated that the areas under the curves (AUCs) were within the low/moderately accurate ranges. Immunoassay was repeatable, reproducible and accurate. As expected, the serum anti-oncoprotein IgG prevalence in healthy individuals was low (2%–5%). Anti-oncoprotein IgGs slightly increased when MCC patients experienced partial tumour remission and/or stable disease, compared to baseline. Our data indicate that the newly developed immunoassay is reliable for detecting circulating anti-oncoprotein IgGs both in healthy individuals and MCC patients.
{"title":"Serum antibodies against mimotopes of Merkel cell polyomavirus oncoproteins detected by a novel immunoassay in healthy individuals and Merkel cell carcinoma patients","authors":"Chiara Mazziotta, Giada Badiale, Christian Felice Cervellera, Giulia Tonnini, Milena Oimo, Antoine Touzé, Françoise Arnold, Stefania Zanussi, Ornella Schioppa, Giuseppe Fanetti, Mauro Tognon, Fernanda Martini, John Charles Rotondo","doi":"10.1111/1751-7915.14536","DOIUrl":"10.1111/1751-7915.14536","url":null,"abstract":"<p>Merkel cell polyomavirus (MCPyV) is the foremost causative factor of Merkel cell carcinoma (MCC), a rare yet highly aggressive skin cancer. Although the evaluation of circulating IgG antibodies against Merkel cell polyomavirus (MCPyV) LT/sT oncoproteins is clinically useful for MCC diagnosis/prognosis, a limited number of assays for identifying such antibodies have been developed. Herein, a novel indirect immunoassay with synthetic epitopes/mimotopes of MCPyV oncoproteins was computationally designed and experimentally validated on control sera and sera from healthy individuals and MCC patients. Upon computational design of five synthetic peptides, the performance of the immunoassay in detecting anti-oncoprotein IgGs in MCPyV-positive and -negative control sera was evaluated. The immunoassay was afterwards extended on sera from healthy individuals, and, for longitudinal analysis, MCC patients. Performance properties such as sensitivity and specificity and positive/negative predictive values were adequate. Receiver-operating characteristic (ROC) curves indicated that the areas under the curves (AUCs) were within the low/moderately accurate ranges. Immunoassay was repeatable, reproducible and accurate. As expected, the serum anti-oncoprotein IgG prevalence in healthy individuals was low (2%–5%). Anti-oncoprotein IgGs slightly increased when MCC patients experienced partial tumour remission and/or stable disease, compared to baseline. Our data indicate that the newly developed immunoassay is reliable for detecting circulating anti-oncoprotein IgGs both in healthy individuals and MCC patients.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511775/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marco Calvigioni, Diletta Mazzantini, Francesco Celandroni, Giovanni Vozzi, Emilia Ghelardi
A healthy mucus is essential for maintaining intestinal homeostasis and overall well-being. In recent years, extensive research focused on understanding the intricate interactions between mucus and the gut microbiota. Mucus-adhering bacteria play crucial roles in preserving barrier integrity, epithelial permeability and mucus architecture, as well as in the colonization resistance against pathogens. Unravelling the significance of these microorganisms in human health and disease is challenging, primarily because most of the studies on the human gut microbiota rely on faecal samples, which do not fully represent the microecological complexity found in the intestinal mucosa. This review discusses novel strategies to specifically target and evaluate the mucosal microbiota, such as culturomics applied to mucosal biopsies or brushings, intestinal organoids and artificial in vitro models incorporating mucus.
{"title":"Cultivating complexity: Advancements in establishing in vitro models for the mucus-adhering gut microbiota","authors":"Marco Calvigioni, Diletta Mazzantini, Francesco Celandroni, Giovanni Vozzi, Emilia Ghelardi","doi":"10.1111/1751-7915.70036","DOIUrl":"10.1111/1751-7915.70036","url":null,"abstract":"<p>A healthy mucus is essential for maintaining intestinal homeostasis and overall well-being. In recent years, extensive research focused on understanding the intricate interactions between mucus and the gut microbiota. Mucus-adhering bacteria play crucial roles in preserving barrier integrity, epithelial permeability and mucus architecture, as well as in the colonization resistance against pathogens. Unravelling the significance of these microorganisms in human health and disease is challenging, primarily because most of the studies on the human gut microbiota rely on faecal samples, which do not fully represent the microecological complexity found in the intestinal mucosa. This review discusses novel strategies to specifically target and evaluate the mucosal microbiota, such as culturomics applied to mucosal biopsies or brushings, intestinal organoids and artificial <i>in vitro</i> models incorporating mucus.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494453/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenlong Wang, Yajuan Su, S. M. Shatil Shahriar, Yu Li, Jingwei Xie
Bacterial infections represent a significant global threat to human health, leading to considerable economic losses through increased healthcare costs and reduced productivity. One major challenge in treating these infections is the presence of biofilms - structured bacterial communities that form protective barriers, making traditional treatments less effective. Additionally, the rise of antibiotic-resistant bacteria has exacerbated treatment difficulties. To address these challenges, researchers are developing and exploring innovative approaches to combat biofilm-related infections. This mini-review highlights recent advancements in the following key areas: surface anti-adhesion technologies, electricity, photo/acoustic-active materials, endogenous mimicking agents, and innovative drug delivery systems. These strategies aim to prevent biofilm formation, disrupt existing biofilms, and enhance the efficacy of antimicrobial treatments. Currently, these approaches show great potential for applications in medical fields such as medical device and wound – associated biofilm infections. By summarizing these developments, this mini-review provides a comprehensive resource for researchers seeking to advance the management and treatment of biofilm-associated infections.
{"title":"Emerging strategies for treating medical device and wound-associated biofilm infections","authors":"Chenlong Wang, Yajuan Su, S. M. Shatil Shahriar, Yu Li, Jingwei Xie","doi":"10.1111/1751-7915.70035","DOIUrl":"10.1111/1751-7915.70035","url":null,"abstract":"<p>Bacterial infections represent a significant global threat to human health, leading to considerable economic losses through increased healthcare costs and reduced productivity. One major challenge in treating these infections is the presence of biofilms - structured bacterial communities that form protective barriers, making traditional treatments less effective. Additionally, the rise of antibiotic-resistant bacteria has exacerbated treatment difficulties. To address these challenges, researchers are developing and exploring innovative approaches to combat biofilm-related infections. This mini-review highlights recent advancements in the following key areas: surface anti-adhesion technologies, electricity, photo/acoustic-active materials, endogenous mimicking agents, and innovative drug delivery systems. These strategies aim to prevent biofilm formation, disrupt existing biofilms, and enhance the efficacy of antimicrobial treatments. Currently, these approaches show great potential for applications in medical fields such as medical device and wound – associated biofilm infections. By summarizing these developments, this mini-review provides a comprehensive resource for researchers seeking to advance the management and treatment of biofilm-associated infections.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492805/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}