首页 > 最新文献

Microbial Biotechnology最新文献

英文 中文
Assessing the transcriptional landscape of Pseudomonas phage 201ϕ2-1: Uncovering the small regulatory details of a giant phage 评估假单胞菌噬菌体 201j2-1的转录景观:揭示巨型噬菌体的微小调控细节。
IF 5.7 2区 生物学 Pub Date : 2024-10-26 DOI: 10.1111/1751-7915.70037
Jorien Poppeliers, Mathijs Focquet, Maarten Boon, Marjan De Mey, Julie Thomas, Rob Lavigne

The transcriptional architecture of phages can deepen our understanding of the phage-host infection process and can be of key importance for phage engineering and biotechnological applications. Here, we applied ONT-cappable-sequencing, a long-read RNA-sequencing technique, to study the regulatory mechanisms of Pseudomonas infecting giant phage 201ϕ2-1. We identified 67 promoters and 132 terminators that together represent 92 transcriptional units. A full comparison of these data to the transcriptome of model Pseudomonas phage ϕKZ confirmed that the transcriptional programs of these prototypes of the Serwervirus and Phikzvirus genera are largely conserved, despite some subtle regulatory differences. Evidence supporting these shared mechanisms include the identification of highly similar sequence motifs for regulatory elements in both phages and the conservation of regulatory elements loci relative to homologous genes in each phage. Moreover, we discovered a sRNA in 201ϕ2-1 that is highly conserved among prototype members of different giant phage genera. Sequencing of the 201ϕ2-1 host genome resulted in its reclassification as Pseudomonas atacamensis, a close relative of the important agricultural biocontrol agent Pseudomonas chlororaphis. Finally, we conducted in vivo assays of eight 201ϕ2-1 terminators and found them to strongly terminate transcription in P. chlororaphis. Control elements from phage transcriptional programs have a rich history for applications in biotechnology. In these studies, we demonstrate new insight into the transcriptional program of 201ϕ2-1 and demonstrate the potential of its regulatory elements for novel and useful tools for synthetic biology circuitry.

噬菌体的转录结构可以加深我们对噬菌体-宿主感染过程的理解,对噬菌体工程和生物技术应用具有重要意义。在这里,我们应用 ONT-cappable-测序(一种长读 RNA 测序技术)研究了假单胞菌感染巨噬噬菌体 201j2-1 的调控机制。我们确定了 67 个启动子和 132 个终止子,它们共代表 92 个转录单元。将这些数据与模型假单胞菌噬菌体ϕKZ的转录组进行全面比较后证实,尽管存在一些微妙的调控差异,但 Serwervirus 和 Phikzvirus 属这些原型的转录程序在很大程度上是一致的。支持这些共享机制的证据包括:在这两种噬菌体中都发现了高度相似的调控元件序列基序,而且相对于每种噬菌体中的同源基因来说,调控元件位点都是保留的。此外,我们还在 201j2-1 中发现了一种在不同巨噬菌属原型成员中高度保守的 sRNA。通过对 201ϕ2-1 宿主基因组的测序,我们将其重新归类为阿塔卡马假单胞菌,它是重要的农业生物控制剂氯蚜假单胞菌的近亲。最后,我们对 8 个 201ϕ2-1 终止子进行了体内试验,发现它们能强烈终止氯拟杆菌的转录。来自噬菌体转录程序的控制元件在生物技术领域有着丰富的应用历史。在这些研究中,我们对 201ϕ2-1 的转录程序有了新的认识,并证明其调控元件有可能成为合成生物学电路的新型有用工具。
{"title":"Assessing the transcriptional landscape of Pseudomonas phage 201ϕ2-1: Uncovering the small regulatory details of a giant phage","authors":"Jorien Poppeliers,&nbsp;Mathijs Focquet,&nbsp;Maarten Boon,&nbsp;Marjan De Mey,&nbsp;Julie Thomas,&nbsp;Rob Lavigne","doi":"10.1111/1751-7915.70037","DOIUrl":"10.1111/1751-7915.70037","url":null,"abstract":"<p>The transcriptional architecture of phages can deepen our understanding of the phage-host infection process and can be of key importance for phage engineering and biotechnological applications. Here, we applied ONT-cappable-sequencing, a long-read RNA-sequencing technique, to study the regulatory mechanisms of <i>Pseudomonas</i> infecting giant phage 201ϕ2-1. We identified 67 promoters and 132 terminators that together represent 92 transcriptional units. A full comparison of these data to the transcriptome of model <i>Pseudomonas</i> phage ϕKZ confirmed that the transcriptional programs of these prototypes of the <i>Serwervirus</i> and <i>Phikzvirus</i> genera are largely conserved, despite some subtle regulatory differences. Evidence supporting these shared mechanisms include the identification of highly similar sequence motifs for regulatory elements in both phages and the conservation of regulatory elements loci relative to homologous genes in each phage. Moreover, we discovered a sRNA in 201ϕ2-1 that is highly conserved among prototype members of different giant phage genera. Sequencing of the 201ϕ2-1 host genome resulted in its reclassification as <i>Pseudomonas atacamensis</i>, a close relative of the important agricultural biocontrol agent <i>Pseudomonas chlororaphis.</i> Finally, we conducted in vivo assays of eight 201ϕ2-1 terminators and found them to strongly terminate transcription in <i>P. chlororaphis.</i> Control elements from phage transcriptional programs have a rich history for applications in biotechnology. In these studies, we demonstrate new insight into the transcriptional program of 201ϕ2-1 and demonstrate the potential of its regulatory elements for novel and useful tools for synthetic biology circuitry.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512511/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Serum antibodies against mimotopes of Merkel cell polyomavirus oncoproteins detected by a novel immunoassay in healthy individuals and Merkel cell carcinoma patients 用新型免疫测定法检测健康人和梅克尔细胞癌患者血清中针对梅克尔细胞多瘤病毒肿瘤蛋白拟态的抗体。
IF 5.7 2区 生物学 Pub Date : 2024-10-25 DOI: 10.1111/1751-7915.14536
Chiara Mazziotta, Giada Badiale, Christian Felice Cervellera, Giulia Tonnini, Milena Oimo, Antoine Touzé, Françoise Arnold, Stefania Zanussi, Ornella Schioppa, Giuseppe Fanetti, Mauro Tognon, Fernanda Martini, John Charles Rotondo

Merkel cell polyomavirus (MCPyV) is the foremost causative factor of Merkel cell carcinoma (MCC), a rare yet highly aggressive skin cancer. Although the evaluation of circulating IgG antibodies against Merkel cell polyomavirus (MCPyV) LT/sT oncoproteins is clinically useful for MCC diagnosis/prognosis, a limited number of assays for identifying such antibodies have been developed. Herein, a novel indirect immunoassay with synthetic epitopes/mimotopes of MCPyV oncoproteins was computationally designed and experimentally validated on control sera and sera from healthy individuals and MCC patients. Upon computational design of five synthetic peptides, the performance of the immunoassay in detecting anti-oncoprotein IgGs in MCPyV-positive and -negative control sera was evaluated. The immunoassay was afterwards extended on sera from healthy individuals, and, for longitudinal analysis, MCC patients. Performance properties such as sensitivity and specificity and positive/negative predictive values were adequate. Receiver-operating characteristic (ROC) curves indicated that the areas under the curves (AUCs) were within the low/moderately accurate ranges. Immunoassay was repeatable, reproducible and accurate. As expected, the serum anti-oncoprotein IgG prevalence in healthy individuals was low (2%–5%). Anti-oncoprotein IgGs slightly increased when MCC patients experienced partial tumour remission and/or stable disease, compared to baseline. Our data indicate that the newly developed immunoassay is reliable for detecting circulating anti-oncoprotein IgGs both in healthy individuals and MCC patients.

梅克尔细胞多瘤病毒(MCPyV)是梅克尔细胞癌(MCC)的主要致病因素,MCC是一种罕见但侵袭性极强的皮肤癌。尽管评估针对梅克尔细胞多瘤病毒(MCPyV)LT/ST肿瘤蛋白的循环IgG抗体对梅克尔细胞癌的诊断/预后有临床帮助,但目前用于鉴定此类抗体的检测方法数量有限。在此,我们通过计算设计了一种新型间接免疫测定,该方法使用了 MCPyV 肿瘤蛋白的合成表位/同位体,并在对照血清、健康人血清和 MCC 患者血清上进行了实验验证。在计算设计了五种合成肽后,对免疫测定在检测 MCPyV 阳性和阴性对照血清中抗肿瘤蛋白 IgG 的性能进行了评估。免疫测定随后扩展到健康人的血清,并对 MCC 患者的血清进行纵向分析。灵敏度和特异性以及阳性/阴性预测值等性能指标均符合要求。接收者工作特征曲线(ROC)显示,曲线下面积(AUC)在低/中准确范围内。免疫测定具有可重复性、再现性和准确性。正如预期的那样,健康人血清中抗球蛋白 IgG 的流行率较低(2%-5%)。与基线相比,当MCC患者肿瘤部分缓解和/或病情稳定时,抗球蛋白IgG略有增加。我们的数据表明,新开发的免疫测定能可靠地检测健康人和MCC患者的循环抗oncoprotein IgG。
{"title":"Serum antibodies against mimotopes of Merkel cell polyomavirus oncoproteins detected by a novel immunoassay in healthy individuals and Merkel cell carcinoma patients","authors":"Chiara Mazziotta,&nbsp;Giada Badiale,&nbsp;Christian Felice Cervellera,&nbsp;Giulia Tonnini,&nbsp;Milena Oimo,&nbsp;Antoine Touzé,&nbsp;Françoise Arnold,&nbsp;Stefania Zanussi,&nbsp;Ornella Schioppa,&nbsp;Giuseppe Fanetti,&nbsp;Mauro Tognon,&nbsp;Fernanda Martini,&nbsp;John Charles Rotondo","doi":"10.1111/1751-7915.14536","DOIUrl":"10.1111/1751-7915.14536","url":null,"abstract":"<p>Merkel cell polyomavirus (MCPyV) is the foremost causative factor of Merkel cell carcinoma (MCC), a rare yet highly aggressive skin cancer. Although the evaluation of circulating IgG antibodies against Merkel cell polyomavirus (MCPyV) LT/sT oncoproteins is clinically useful for MCC diagnosis/prognosis, a limited number of assays for identifying such antibodies have been developed. Herein, a novel indirect immunoassay with synthetic epitopes/mimotopes of MCPyV oncoproteins was computationally designed and experimentally validated on control sera and sera from healthy individuals and MCC patients. Upon computational design of five synthetic peptides, the performance of the immunoassay in detecting anti-oncoprotein IgGs in MCPyV-positive and -negative control sera was evaluated. The immunoassay was afterwards extended on sera from healthy individuals, and, for longitudinal analysis, MCC patients. Performance properties such as sensitivity and specificity and positive/negative predictive values were adequate. Receiver-operating characteristic (ROC) curves indicated that the areas under the curves (AUCs) were within the low/moderately accurate ranges. Immunoassay was repeatable, reproducible and accurate. As expected, the serum anti-oncoprotein IgG prevalence in healthy individuals was low (2%–5%). Anti-oncoprotein IgGs slightly increased when MCC patients experienced partial tumour remission and/or stable disease, compared to baseline. Our data indicate that the newly developed immunoassay is reliable for detecting circulating anti-oncoprotein IgGs both in healthy individuals and MCC patients.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511775/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cultivating complexity: Advancements in establishing in vitro models for the mucus-adhering gut microbiota 培养复杂性:建立粘液粘附肠道微生物群体外模型的进展。
IF 5.7 2区 生物学 Pub Date : 2024-10-22 DOI: 10.1111/1751-7915.70036
Marco Calvigioni, Diletta Mazzantini, Francesco Celandroni, Giovanni Vozzi, Emilia Ghelardi

A healthy mucus is essential for maintaining intestinal homeostasis and overall well-being. In recent years, extensive research focused on understanding the intricate interactions between mucus and the gut microbiota. Mucus-adhering bacteria play crucial roles in preserving barrier integrity, epithelial permeability and mucus architecture, as well as in the colonization resistance against pathogens. Unravelling the significance of these microorganisms in human health and disease is challenging, primarily because most of the studies on the human gut microbiota rely on faecal samples, which do not fully represent the microecological complexity found in the intestinal mucosa. This review discusses novel strategies to specifically target and evaluate the mucosal microbiota, such as culturomics applied to mucosal biopsies or brushings, intestinal organoids and artificial in vitro models incorporating mucus.

健康的粘液对维持肠道平衡和整体健康至关重要。近年来,大量研究集中于了解粘液与肠道微生物群之间错综复杂的相互作用。粘液附着细菌在维护屏障完整性、上皮通透性和粘液结构以及抵御病原体定植方面发挥着至关重要的作用。揭示这些微生物在人类健康和疾病中的重要性具有挑战性,这主要是因为对人类肠道微生物群的研究大多依赖于粪便样本,而粪便样本并不能完全代表肠道粘膜中的微生态复杂性。本综述讨论了专门针对和评估粘膜微生物群的新策略,如应用于粘膜活检或刷洗的培养组学、肠道有机体和结合粘液的人工体外模型。
{"title":"Cultivating complexity: Advancements in establishing in vitro models for the mucus-adhering gut microbiota","authors":"Marco Calvigioni,&nbsp;Diletta Mazzantini,&nbsp;Francesco Celandroni,&nbsp;Giovanni Vozzi,&nbsp;Emilia Ghelardi","doi":"10.1111/1751-7915.70036","DOIUrl":"10.1111/1751-7915.70036","url":null,"abstract":"<p>A healthy mucus is essential for maintaining intestinal homeostasis and overall well-being. In recent years, extensive research focused on understanding the intricate interactions between mucus and the gut microbiota. Mucus-adhering bacteria play crucial roles in preserving barrier integrity, epithelial permeability and mucus architecture, as well as in the colonization resistance against pathogens. Unravelling the significance of these microorganisms in human health and disease is challenging, primarily because most of the studies on the human gut microbiota rely on faecal samples, which do not fully represent the microecological complexity found in the intestinal mucosa. This review discusses novel strategies to specifically target and evaluate the mucosal microbiota, such as culturomics applied to mucosal biopsies or brushings, intestinal organoids and artificial <i>in vitro</i> models incorporating mucus.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494453/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging strategies for treating medical device and wound-associated biofilm infections 治疗医疗器械和伤口相关生物膜感染的新策略。
IF 5.7 2区 生物学 Pub Date : 2024-10-21 DOI: 10.1111/1751-7915.70035
Chenlong Wang, Yajuan Su, S. M. Shatil Shahriar, Yu Li, Jingwei Xie

Bacterial infections represent a significant global threat to human health, leading to considerable economic losses through increased healthcare costs and reduced productivity. One major challenge in treating these infections is the presence of biofilms - structured bacterial communities that form protective barriers, making traditional treatments less effective. Additionally, the rise of antibiotic-resistant bacteria has exacerbated treatment difficulties. To address these challenges, researchers are developing and exploring innovative approaches to combat biofilm-related infections. This mini-review highlights recent advancements in the following key areas: surface anti-adhesion technologies, electricity, photo/acoustic-active materials, endogenous mimicking agents, and innovative drug delivery systems. These strategies aim to prevent biofilm formation, disrupt existing biofilms, and enhance the efficacy of antimicrobial treatments. Currently, these approaches show great potential for applications in medical fields such as medical device and wound – associated biofilm infections. By summarizing these developments, this mini-review provides a comprehensive resource for researchers seeking to advance the management and treatment of biofilm-associated infections.

细菌感染是对人类健康的重大全球性威胁,由于医疗成本增加和生产率降低,导致了可观的经济损失。治疗这些感染的一个主要挑战是生物膜的存在--结构化的细菌群落会形成保护屏障,使传统治疗方法的效果大打折扣。此外,抗生素耐药细菌的增多也加剧了治疗难度。为了应对这些挑战,研究人员正在开发和探索创新方法来对抗生物膜相关感染。本微型综述重点介绍以下关键领域的最新进展:表面防粘附技术、电、光/声活性材料、内源性模拟剂和创新给药系统。这些策略旨在防止生物膜的形成、破坏现有的生物膜并提高抗菌治疗的效果。目前,这些方法在医疗器械和伤口相关生物膜感染等医疗领域显示出巨大的应用潜力。通过总结这些发展,本微型综述为寻求推进生物膜相关感染的管理和治疗的研究人员提供了全面的资源。
{"title":"Emerging strategies for treating medical device and wound-associated biofilm infections","authors":"Chenlong Wang,&nbsp;Yajuan Su,&nbsp;S. M. Shatil Shahriar,&nbsp;Yu Li,&nbsp;Jingwei Xie","doi":"10.1111/1751-7915.70035","DOIUrl":"10.1111/1751-7915.70035","url":null,"abstract":"<p>Bacterial infections represent a significant global threat to human health, leading to considerable economic losses through increased healthcare costs and reduced productivity. One major challenge in treating these infections is the presence of biofilms - structured bacterial communities that form protective barriers, making traditional treatments less effective. Additionally, the rise of antibiotic-resistant bacteria has exacerbated treatment difficulties. To address these challenges, researchers are developing and exploring innovative approaches to combat biofilm-related infections. This mini-review highlights recent advancements in the following key areas: surface anti-adhesion technologies, electricity, photo/acoustic-active materials, endogenous mimicking agents, and innovative drug delivery systems. These strategies aim to prevent biofilm formation, disrupt existing biofilms, and enhance the efficacy of antimicrobial treatments. Currently, these approaches show great potential for applications in medical fields such as medical device and wound – associated biofilm infections. By summarizing these developments, this mini-review provides a comprehensive resource for researchers seeking to advance the management and treatment of biofilm-associated infections.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492805/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lactobacillus helveticus attenuates alcoholic liver injury via regulation of gut microecology in mice 螺旋乳杆菌通过调节小鼠肠道微生态减轻酒精性肝损伤
IF 5.7 2区 生物学 Pub Date : 2024-10-21 DOI: 10.1111/1751-7915.70016
Jiawen Lv, Guanjing Lang, Qiangqiang Wang, Wenlong Zhao, Ding Shi, Ziyuan Zhou, Yangfan Shen, He Xia, Shengyi Han, Lanjuan Li

Previous reports have demonstrated that alcohol consumption significantly reduces the abundance of Lactobacillus in the gut. In this study, we selected five species of the genus Lactobacillus, commonly found in fermented foods, and acknowledged them as safe, edible, and effective in preventing or treating certain diseases, to evaluate their effects on alcoholic liver disease (ALD). By comparing the liver damage indices in each group, we found that the type strain of Lactobacillus helveticus (LH, ATCC 15009) had the most marked alleviating effect on ALD-induced liver injury. Furthermore, experiments combining microbiomics and metabolomics were conducted to explore the mechanisms underlying the hepatoprotective effects of LH. Finally, we discovered that LH mitigated ethanol-induced liver steatosis and inflammation in ALD mice by altering the structure and function of the gut microbiome, increasing intestinal levels of short-chain fatty acids (SCFAs), and enhancing gut barrier integrity. These findings suggest a potential strategy for the clinical management of patients with ALD.

以往的报告表明,饮酒会大大减少肠道中乳酸杆菌的数量。在这项研究中,我们选择了发酵食品中常见的乳酸杆菌属的五个菌种,并确认它们安全、可食用且能有效预防或治疗某些疾病,以评估它们对酒精性肝病(ALD)的影响。通过比较各组肝损伤指数,我们发现螺旋乳杆菌(LH,ATCC 15009)对 ALD 引起的肝损伤有最明显的缓解作用。此外,我们还结合微生物组学和代谢组学进行了实验,以探索 LH 的保肝作用机制。最后,我们发现 LH 可通过改变肠道微生物组的结构和功能、增加肠道短链脂肪酸(SCFAs)水平以及增强肠道屏障完整性来减轻乙醇诱导的 ALD 小鼠肝脏脂肪变性和炎症。这些发现为ALD患者的临床治疗提供了一种潜在的策略。
{"title":"Lactobacillus helveticus attenuates alcoholic liver injury via regulation of gut microecology in mice","authors":"Jiawen Lv,&nbsp;Guanjing Lang,&nbsp;Qiangqiang Wang,&nbsp;Wenlong Zhao,&nbsp;Ding Shi,&nbsp;Ziyuan Zhou,&nbsp;Yangfan Shen,&nbsp;He Xia,&nbsp;Shengyi Han,&nbsp;Lanjuan Li","doi":"10.1111/1751-7915.70016","DOIUrl":"10.1111/1751-7915.70016","url":null,"abstract":"<p>Previous reports have demonstrated that alcohol consumption significantly reduces the abundance of <i>Lactobacillus</i> in the gut. In this study, we selected five species of the genus <i>Lactobacillus</i>, commonly found in fermented foods, and acknowledged them as safe, edible, and effective in preventing or treating certain diseases, to evaluate their effects on alcoholic liver disease (ALD). By comparing the liver damage indices in each group, we found that the type strain of <i>Lactobacillus helveticus</i> (LH, ATCC 15009) had the most marked alleviating effect on ALD-induced liver injury. Furthermore, experiments combining microbiomics and metabolomics were conducted to explore the mechanisms underlying the hepatoprotective effects of LH. Finally, we discovered that LH mitigated ethanol-induced liver steatosis and inflammation in ALD mice by altering the structure and function of the gut microbiome, increasing intestinal levels of short-chain fatty acids (SCFAs), and enhancing gut barrier integrity. These findings suggest a potential strategy for the clinical management of patients with ALD.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB-12 promote infected wound healing via regulation of the wound microenvironment 鼠李糖乳杆菌 GG 和动物双歧杆菌亚种 BB-12 通过调节伤口微环境促进感染伤口愈合
IF 5.7 2区 生物学 Pub Date : 2024-10-18 DOI: 10.1111/1751-7915.70031
Zhe Yin, Yilin Wang, Xiaojuan Feng, Changqing Liu, Xiaoyang Guan, Shuyan Liu, Zhanyi Long, Zhonghua Miao, Fang He, Ruyue Cheng, Yanting Han, Ka Li

Infected wounds can result in complex clinical complications and delayed healing, presenting a significant global public health challenge. This study explored the effects of topical application of two probiotics, Lactobacillus rhamnosus GG (LGG) and Bifidobacterium animalis subsp. lactis BB-12, on the microenvironment of infected wounds and their impact on wound healing. LGG and BB-12 were applied separately and topically on the Staphylococcus aureus (S. aureus)-infected skin wounds of the rat model on a daily basis. Both probiotics significantly accelerated wound healing, demonstrated by enhanced granulation tissue formation and increased collagen deposition, with BB-12 showing superior efficacy. LGG and BB-12 both effectively inhibited neutrophil infiltration and decreased the expression of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Notably, BB-12 markedly reduced IL-6 levels, while LGG significantly lowered TNF-α, transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF). Additionally, both probiotics promoted macrophage polarization towards the anti-inflammatory M2 phenotype. Microbiota analysis revealed that LGG and BB-12 significantly decreased the abundance of pathogenic bacteria (e.g. Staphylococcus and Proteus) and increased the proportion of beneficial bacteria (e.g. Corynebacterium). Particularly, BB-12 was more effective in reducing Staphylococcus abundance, whereas LGG excelled in promoting Corynebacterium growth. These findings suggest the ability of LGG and BB-12 to modulate the wound microenvironment, enhance wound healing and provide valuable insights for the management of infected wounds.

感染性伤口可导致复杂的临床并发症和延迟愈合,对全球公共卫生构成重大挑战。本研究探讨了局部应用鼠李糖乳杆菌 GG(LGG)和动物双歧杆菌亚种 BB-12 这两种益生菌对感染伤口微环境的影响及其对伤口愈合的影响。每天将 LGG 和 BB-12 分别局部涂抹在大鼠模型被金黄色葡萄球菌(S. aureus)感染的皮肤伤口上。两种益生菌都能明显加速伤口愈合,表现为肉芽组织形成和胶原沉积增加,其中 BB-12 的疗效更佳。LGG 和 BB-12 都能有效抑制中性粒细胞的浸润,降低促炎细胞因子肿瘤坏死因子-α(TNF-α)和白细胞介素-6(IL-6)的表达。值得注意的是,BB-12 显著降低了 IL-6 水平,而 LGG 则显著降低了 TNF-α、转化生长因子-β (TGF-β) 和血管内皮生长因子 (VEGF)。此外,两种益生菌都能促进巨噬细胞向抗炎 M2 表型极化。微生物群分析表明,LGG 和 BB-12 能显著减少致病菌(如葡萄球菌和变形杆菌)的数量,增加有益菌(如棒状杆菌)的比例。特别是,BB-12 能更有效地减少葡萄球菌的数量,而 LGG 则能更好地促进棒状杆菌的生长。这些研究结果表明,LGG 和 BB-12 能够调节伤口微环境,促进伤口愈合,并为感染伤口的管理提供了宝贵的见解。
{"title":"Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB-12 promote infected wound healing via regulation of the wound microenvironment","authors":"Zhe Yin,&nbsp;Yilin Wang,&nbsp;Xiaojuan Feng,&nbsp;Changqing Liu,&nbsp;Xiaoyang Guan,&nbsp;Shuyan Liu,&nbsp;Zhanyi Long,&nbsp;Zhonghua Miao,&nbsp;Fang He,&nbsp;Ruyue Cheng,&nbsp;Yanting Han,&nbsp;Ka Li","doi":"10.1111/1751-7915.70031","DOIUrl":"10.1111/1751-7915.70031","url":null,"abstract":"<p>Infected wounds can result in complex clinical complications and delayed healing, presenting a significant global public health challenge. This study explored the effects of topical application of two probiotics, <i>Lactobacillus rhamnosus</i> GG (LGG) and <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> BB-12, on the microenvironment of infected wounds and their impact on wound healing. LGG and BB-12 were applied separately and topically on the <i>Staphylococcus aureus (S. aureus)</i>-infected skin wounds of the rat model on a daily basis. Both probiotics significantly accelerated wound healing, demonstrated by enhanced granulation tissue formation and increased collagen deposition, with BB-12 showing superior efficacy. LGG and BB-12 both effectively inhibited neutrophil infiltration and decreased the expression of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Notably, BB-12 markedly reduced IL-6 levels, while LGG significantly lowered TNF-α, transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF). Additionally, both probiotics promoted macrophage polarization towards the anti-inflammatory M2 phenotype. Microbiota analysis revealed that LGG and BB-12 significantly decreased the abundance of pathogenic bacteria (e.g. <i>Staphylococcus</i> and <i>Proteus</i>) and increased the proportion of beneficial bacteria (e.g. <i>Corynebacterium</i>). Particularly, BB-12 was more effective in reducing <i>Staphylococcus</i> abundance, whereas LGG excelled in promoting <i>Corynebacterium</i> growth. These findings suggest the ability of LGG and BB-12 to modulate the wound microenvironment, enhance wound healing and provide valuable insights for the management of infected wounds.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flagellate bacteria-mediated tumour antigen delivery: A novel approach to enhance dendritic cell activation for in situ cancer vaccination 鞭毛细菌介导的肿瘤抗原递送:增强树突状细胞活化以进行原位癌症疫苗接种的新方法
IF 5.7 2区 生物学 Pub Date : 2024-10-18 DOI: 10.1111/1751-7915.70028
Wen Xia, Jinhui Wu

In situ vaccination is a therapeutic approach aimed at exploiting tumour antigens available at a tumour site to induce tumour-specific adaptive immune responses. Antigens released from dying tumour cells are assumed to be taken up by activated dendritic cells and presented to T cells that seek out and destroy tumour cells. This process is significantly impeded in the immunosuppressive microenvironment of tumours. There is a growing trend in in situ vaccine strategies that utilize bacteria as natural adjuvants or as factories for cytokines, aiming to enhance the presentation of in situ antigens by antigen-presenting cells. Recently, a novel approach using flagellate bacteria-mediated antigen delivery to activate dendritic cells has been proposed. This method actively facilitates the delivery of intratumoral antigens, improving their presentation for in situ cancer vaccination. Here, we highlight how flagellate bacteria-mediated antigen delivery enhances the immune activation capabilities of in situ vaccines. Meanwhile, we provide perspectives and outlooks on these promising antigen delivery technologies.

原位疫苗接种是一种治疗方法,旨在利用肿瘤部位的肿瘤抗原诱导肿瘤特异性适应性免疫反应。据推测,垂死肿瘤细胞释放的抗原会被活化的树突状细胞吸收,并呈现给T细胞,T细胞会寻找并消灭肿瘤细胞。在肿瘤的免疫抑制微环境中,这一过程会受到严重阻碍。利用细菌作为天然佐剂或细胞因子工厂的原位疫苗策略呈增长趋势,旨在增强抗原递呈细胞对原位抗原的递呈。最近,有人提出了一种利用鞭毛细菌介导的抗原递送来激活树突状细胞的新方法。这种方法积极促进了肿瘤内抗原的递送,改善了肿瘤原位疫苗接种的抗原呈递。在此,我们重点介绍鞭毛菌介导的抗原递送如何增强原位疫苗的免疫激活能力。同时,我们还对这些前景广阔的抗原递送技术进行了展望和展望。
{"title":"Flagellate bacteria-mediated tumour antigen delivery: A novel approach to enhance dendritic cell activation for in situ cancer vaccination","authors":"Wen Xia,&nbsp;Jinhui Wu","doi":"10.1111/1751-7915.70028","DOIUrl":"https://doi.org/10.1111/1751-7915.70028","url":null,"abstract":"<p>In situ vaccination is a therapeutic approach aimed at exploiting tumour antigens available at a tumour site to induce tumour-specific adaptive immune responses. Antigens released from dying tumour cells are assumed to be taken up by activated dendritic cells and presented to T cells that seek out and destroy tumour cells. This process is significantly impeded in the immunosuppressive microenvironment of tumours. There is a growing trend in in situ vaccine strategies that utilize bacteria as natural adjuvants or as factories for cytokines, aiming to enhance the presentation of in situ antigens by antigen-presenting cells. Recently, a novel approach using flagellate bacteria-mediated antigen delivery to activate dendritic cells has been proposed. This method actively facilitates the delivery of intratumoral antigens, improving their presentation for in situ cancer vaccination. Here, we highlight how flagellate bacteria-mediated antigen delivery enhances the immune activation capabilities of in situ vaccines. Meanwhile, we provide perspectives and outlooks on these promising antigen delivery technologies.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production-optimized fermentation of antifungal compounds by bacillus velezensis LZN01 and transcriptome analysis velezensis LZN01 杆菌抗真菌化合物的生产优化发酵及转录组分析
IF 5.7 2区 生物学 Pub Date : 2024-10-17 DOI: 10.1111/1751-7915.70026
Jiale Hu, Zhigang Wang, Weihui Xu

Fusarium wilt is one of the major constraints on global watermelon production, and Fusarium oxysporum f. sp. niveum (Fon) is the causative agent of Fusarium wilt in watermelon and results in severe yield and quality losses worldwide. The enhancement of antifungal activity from antagonistic bacteria against Fon is highly practical for managing Fusarium wilt in watermelon. The aim of this study was to maximize the antifungal activity of Bacillus velezensis LZN01 by optimizing fermentation conditions and analysing its regulatory mechanism via transcriptome sequencing. The culture and fermentation conditions for strain LZN01 were optimized by single-factor and response surface experiments. The optimum culture conditions for this strain were as follows: the addition of D-fructose at 35 g/L and NH4Cl at 5 g/L in LB medium, pH 7, and incubation at 30°C for 72 h. The fungal inhibition rate for strain LZN01 reached 71.1%. The improvement of inhibition rate for strain LZN01 in optimization fermentation was supported by transcriptomic analysis; a total of 491 genes were upregulated, while 736 genes were downregulated. Transcriptome analysis revealed that some differentially expressed genes involved in carbon and nitrogen metabolism, oxidation–reduction, fatty acid and secondary metabolism; This optimization process could potentially lead to significant alterations in the production levels and types of antimicrobial compounds by the strain. Metabolomics and UPLC/Q-Exactive Orbitrap MS analysis revealed that the production yields of antimicrobial compounds, such as surfactin, fengycin, shikimic acid, and myriocin, increased or were detected in the cell-free supernatant (CFS) after the fermentation optimization process. Our results indicate that fermentation optimization enhances the antifungal activity of the LZN01 strain by influencing the expression of genes responsible for the synthesis of antimicrobial compounds.

镰刀菌枯萎病是全球西瓜生产的主要制约因素之一,而 Fusarium oxysporum f. sp. niveum(Fon)是西瓜镰刀菌枯萎病的病原菌,在全球造成严重的产量和质量损失。增强拮抗细菌对 Fon 的抗真菌活性对管理西瓜镰刀菌枯萎病非常实用。本研究旨在通过优化发酵条件和转录组测序分析其调控机制,最大限度地提高枯草芽孢杆菌(Bacillus velezensis LZN01)的抗真菌活性。通过单因素实验和响应面实验对菌株 LZN01 的培养和发酵条件进行了优化。该菌株的最佳培养条件为:在LB培养基中加入35 g/L的D-果糖和5 g/L的NH4Cl,pH值为7,30℃培养72 h。转录组分析证实了菌株 LZN01 在优化发酵过程中抑制率的提高,共有 491 个基因上调,736 个基因下调。转录组分析表明,一些差异表达的基因涉及碳氮代谢、氧化还原、脂肪酸和次级代谢。代谢组学和 UPLC/Q-Exactive Orbitrap MS 分析表明,发酵优化过程后,无细胞上清液(CFS)中表面活性素、芬吉霉素、莽草酸和肌球蛋白等抗菌化合物的产量增加或被检测到。我们的结果表明,发酵优化通过影响负责合成抗菌化合物的基因的表达,提高了 LZN01 菌株的抗真菌活性。
{"title":"Production-optimized fermentation of antifungal compounds by bacillus velezensis LZN01 and transcriptome analysis","authors":"Jiale Hu,&nbsp;Zhigang Wang,&nbsp;Weihui Xu","doi":"10.1111/1751-7915.70026","DOIUrl":"https://doi.org/10.1111/1751-7915.70026","url":null,"abstract":"<p>Fusarium wilt is one of the major constraints on global watermelon production, and <i>Fusarium oxysporum</i> f. sp. <i>niveum</i> (Fon) is the causative agent of Fusarium wilt in watermelon and results in severe yield and quality losses worldwide. The enhancement of antifungal activity from antagonistic bacteria against Fon is highly practical for managing Fusarium wilt in watermelon. The aim of this study was to maximize the antifungal activity of <i>Bacillus velezensis</i> LZN01 by optimizing fermentation conditions and analysing its regulatory mechanism via transcriptome sequencing. The culture and fermentation conditions for strain LZN01 were optimized by single-factor and response surface experiments. The optimum culture conditions for this strain were as follows: the addition of D-fructose at 35 g/L and NH<sub>4</sub>Cl at 5 g/L in LB medium, pH 7, and incubation at 30°C for 72 h. The fungal inhibition rate for strain LZN01 reached 71.1%. The improvement of inhibition rate for strain LZN01 in optimization fermentation was supported by transcriptomic analysis; a total of 491 genes were upregulated, while 736 genes were downregulated. Transcriptome analysis revealed that some differentially expressed genes involved in carbon and nitrogen metabolism, oxidation–reduction, fatty acid and secondary metabolism; This optimization process could potentially lead to significant alterations in the production levels and types of antimicrobial compounds by the strain. Metabolomics and UPLC/Q-Exactive Orbitrap MS analysis revealed that the production yields of antimicrobial compounds, such as surfactin, fengycin, shikimic acid, and myriocin, increased or were detected in the cell-free supernatant (CFS) after the fermentation optimization process. Our results indicate that fermentation optimization enhances the antifungal activity of the LZN01 strain by influencing the expression of genes responsible for the synthesis of antimicrobial compounds.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface-engineered bacteria in drug development 药物开发中的表面工程细菌
IF 5.7 2区 生物学 Pub Date : 2024-10-15 DOI: 10.1111/1751-7915.70033
Charles Dahlsson Leitao, Stefan Ståhl, John Löfblom

Bacterial surface display in combination with fluorescence-activated cell sorting is a versatile and robust system and an interesting alternative approach to phage display for the generation of therapeutic affinity proteins. The system enables real-time monitoring and sorting of cell populations, which presents unique possibilities for drug development. It has been used to develop several affibody molecules currently being evaluated preclinically for the treatment and diagnosis of, for example, cancer and neurodegenerative diseases. Additionally, it can be implemented in other areas of drug design, such as for mapping epitopes and evolving enzyme specificities.

细菌表面展示与荧光激活细胞分拣相结合,是一种多用途、稳健的系统,也是噬菌体展示法之外一种有趣的生成治疗亲和蛋白的替代方法。该系统可对细胞群进行实时监测和分选,为药物开发提供了独特的可能性。它已被用于开发几种亲和体分子,目前正在对其进行临床前评估,以治疗和诊断癌症和神经退行性疾病等。此外,它还可应用于药物设计的其他领域,如绘制表位图和进化酶特异性。
{"title":"Surface-engineered bacteria in drug development","authors":"Charles Dahlsson Leitao,&nbsp;Stefan Ståhl,&nbsp;John Löfblom","doi":"10.1111/1751-7915.70033","DOIUrl":"10.1111/1751-7915.70033","url":null,"abstract":"<p>Bacterial surface display in combination with fluorescence-activated cell sorting is a versatile and robust system and an interesting alternative approach to phage display for the generation of therapeutic affinity proteins. The system enables real-time monitoring and sorting of cell populations, which presents unique possibilities for drug development. It has been used to develop several affibody molecules currently being evaluated preclinically for the treatment and diagnosis of, for example, cancer and neurodegenerative diseases. Additionally, it can be implemented in other areas of drug design, such as for mapping epitopes and evolving enzyme specificities.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Escherichia coli on colorectal cancer: A two-edged sword 大肠杆菌对大肠癌的影响:一把双刃剑
IF 5.7 2区 生物学 Pub Date : 2024-10-14 DOI: 10.1111/1751-7915.70029
Chu Jian, Wu Yinhang, Zhuang Jing, Qu Zhanbo, Wang Zefeng, Han Shuwen

Escherichia coli (E. coli) is a ubiquitous symbiotic bacterium in the gut, and the diversity of E. coli genes determines the diversity of its functions. In this review, the two-edged sword theory was innovatively proposed. For the question ‘how can we harness the ambivalent nature of E. coli to screen and treat CRC?’, in terms of CRC screening, the variations in the abundance and subtypes of E. coli across different populations present an opportunity to utilise it as a biomarker, while in terms of CRC treatment, the natural beneficial effect of E. coli on CRC may be limited, and engineered E. coli, particularly certain subtypes with probiotic potential, can indeed play a significant role in CRC treatment. It seems that the favourable role of E. coli as a genetic tool lies not in its direct impact on CRC but its potential as a research platform that can be integrated with various technologies such as nanoparticles, imaging methods, and synthetic biology modification. The relationship between gut microflora and CRC remains unclear due to the complex diversity and interaction of gut microflora. Therefore, the application of E. coli should be based on the ‘One Health’ view and take the interactions between E. coli and other microorganisms, host, and environmental factors, as well as its own changes into account. In this paper, the two-edged sword role of E. coli in CRC is emphasised to realise the great potential of E. coli in CRC screening and treatment.

大肠杆菌(E. coli)是肠道中无处不在的共生细菌,大肠杆菌基因的多样性决定了其功能的多样性。本综述创新性地提出了双刃剑理论。对于 "如何利用大肠杆菌的矛盾特性筛查和治疗 CRC?"这一问题,在 CRC 筛查方面,不同人群中大肠杆菌丰度和亚型的差异为利用大肠杆菌作为生物标志物提供了机会;而在 CRC 治疗方面,大肠杆菌对 CRC 的天然有益作用可能有限,而工程大肠杆菌,尤其是某些具有益生潜力的亚型,确实可以在 CRC 治疗中发挥重要作用。大肠杆菌作为基因工具的有利作用似乎并不在于其对 CRC 的直接影响,而是其作为研究平台的潜力,可以与纳米粒子、成像方法和合成生物学改造等各种技术相结合。由于肠道微生物菌群的复杂多样性和相互作用,肠道微生物菌群与 CRC 之间的关系仍不清楚。因此,大肠杆菌的应用应基于 "同一健康 "的观点,考虑大肠杆菌与其他微生物、宿主、环境因素之间的相互作用以及自身的变化。本文强调了大肠杆菌在 CRC 中的双刃剑作用,以实现大肠杆菌在 CRC 筛查和治疗中的巨大潜力。
{"title":"Escherichia coli on colorectal cancer: A two-edged sword","authors":"Chu Jian,&nbsp;Wu Yinhang,&nbsp;Zhuang Jing,&nbsp;Qu Zhanbo,&nbsp;Wang Zefeng,&nbsp;Han Shuwen","doi":"10.1111/1751-7915.70029","DOIUrl":"https://doi.org/10.1111/1751-7915.70029","url":null,"abstract":"<p><i>Escherichia coli</i> (<i>E. coli</i>) is a ubiquitous symbiotic bacterium in the gut, and the diversity of <i>E. coli</i> genes determines the diversity of its functions. In this review, the two-edged sword theory was innovatively proposed. For the question ‘how can we harness the ambivalent nature of <i>E. coli</i> to screen and treat CRC?’, in terms of CRC screening, the variations in the abundance and subtypes of <i>E. coli</i> across different populations present an opportunity to utilise it as a biomarker, while in terms of CRC treatment, the natural beneficial effect of <i>E. coli</i> on CRC may be limited, and engineered <i>E. coli</i>, particularly certain subtypes with probiotic potential, can indeed play a significant role in CRC treatment. It seems that the favourable role of <i>E. coli</i> as a genetic tool lies not in its direct impact on CRC but its potential as a research platform that can be integrated with various technologies such as nanoparticles, imaging methods, and synthetic biology modification. The relationship between gut microflora and CRC remains unclear due to the complex diversity and interaction of gut microflora. Therefore, the application of <i>E. coli</i> should be based on the ‘One Health’ view and take the interactions between <i>E. coli</i> and other microorganisms, host, and environmental factors, as well as its own changes into account. In this paper, the two-edged sword role of <i>E. coli</i> in CRC is emphasised to realise the great potential of <i>E. coli</i> in CRC screening and treatment.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 10","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microbial Biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1