Pub Date : 2024-08-08DOI: 10.1186/s12958-024-01271-1
José A Ortiz, B Lledó, R Morales, A Máñez-Grau, A Cascales, A Rodríguez-Arnedo, Juan C Castillo, A Bernabeu, R Bernabeu
Purpose: To determine the factors influencing the likelihood of biochemical pregnancy loss (BPL) after transfer of a euploid embryo from preimplantation genetic testing for aneuploidy (PGT-A) cycles.
Methods: The study employed an observational, retrospective cohort design, encompassing 6020 embryos from 2879 PGT-A cycles conducted between February 2013 and September 2021. Trophectoderm biopsies in day 5 (D5) or day 6 (D6) blastocysts were analyzed by next generation sequencing (NGS). Only single embryo transfers (SET) were considered, totaling 1161 transfers. Of these, 49.9% resulted in positive pregnancy tests, with 18.3% experiencing BPL. To establish a predictive model for BPL, both classical statistical methods and five different supervised classification machine learning algorithms were used. A total of forty-seven factors were incorporated as predictor variables in the machine learning models.
Results: Throughout the optimization process for each model, various performance metrics were computed. Random Forest model emerged as the best model, boasting the highest area under the ROC curve (AUC) value of 0.913, alongside an accuracy of 0.830, positive predictive value of 0.857, and negative predictive value of 0.807. For the selected model, SHAP (SHapley Additive exPlanations) values were determined for each of the variables to establish which had the best predictive ability. Notably, variables pertaining to embryo biopsy demonstrated the greatest predictive capacity, followed by factors associated with ovarian stimulation (COS), maternal age, and paternal age.
Conclusions: The Random Forest model had a higher predictive power for identifying BPL occurrences in PGT-A cycles. Specifically, variables associated with the embryo biopsy procedure (biopsy day, number of biopsied embryos, and number of biopsied cells) and ovarian stimulation (number of oocytes retrieved and duration of stimulation), exhibited the strongest predictive power.
{"title":"Factors affecting biochemical pregnancy loss (BPL) in preimplantation genetic testing for aneuploidy (PGT-A) cycles: machine learning-assisted identification.","authors":"José A Ortiz, B Lledó, R Morales, A Máñez-Grau, A Cascales, A Rodríguez-Arnedo, Juan C Castillo, A Bernabeu, R Bernabeu","doi":"10.1186/s12958-024-01271-1","DOIUrl":"10.1186/s12958-024-01271-1","url":null,"abstract":"<p><strong>Purpose: </strong>To determine the factors influencing the likelihood of biochemical pregnancy loss (BPL) after transfer of a euploid embryo from preimplantation genetic testing for aneuploidy (PGT-A) cycles.</p><p><strong>Methods: </strong>The study employed an observational, retrospective cohort design, encompassing 6020 embryos from 2879 PGT-A cycles conducted between February 2013 and September 2021. Trophectoderm biopsies in day 5 (D5) or day 6 (D6) blastocysts were analyzed by next generation sequencing (NGS). Only single embryo transfers (SET) were considered, totaling 1161 transfers. Of these, 49.9% resulted in positive pregnancy tests, with 18.3% experiencing BPL. To establish a predictive model for BPL, both classical statistical methods and five different supervised classification machine learning algorithms were used. A total of forty-seven factors were incorporated as predictor variables in the machine learning models.</p><p><strong>Results: </strong>Throughout the optimization process for each model, various performance metrics were computed. Random Forest model emerged as the best model, boasting the highest area under the ROC curve (AUC) value of 0.913, alongside an accuracy of 0.830, positive predictive value of 0.857, and negative predictive value of 0.807. For the selected model, SHAP (SHapley Additive exPlanations) values were determined for each of the variables to establish which had the best predictive ability. Notably, variables pertaining to embryo biopsy demonstrated the greatest predictive capacity, followed by factors associated with ovarian stimulation (COS), maternal age, and paternal age.</p><p><strong>Conclusions: </strong>The Random Forest model had a higher predictive power for identifying BPL occurrences in PGT-A cycles. Specifically, variables associated with the embryo biopsy procedure (biopsy day, number of biopsied embryos, and number of biopsied cells) and ovarian stimulation (number of oocytes retrieved and duration of stimulation), exhibited the strongest predictive power.</p>","PeriodicalId":21011,"journal":{"name":"Reproductive Biology and Endocrinology","volume":"22 1","pages":"101"},"PeriodicalIF":4.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308629/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1186/s12958-024-01265-z
Julia Delenko, Xiangying Xue, Prodyot K Chatterjee, Nathaniel Hyman, Andrew J Shih, Robert P Adelson, Polona Safaric Tepes, Peter K Gregersen, Christine N Metz
Background: Patients with endometriosis suffer with chronic pelvic pain and infertility, and from the lack of pharmacologic therapies that consistently halt disease progression. Differences in the endometrium of patients with endometriosis vs. unaffected controls are well-documented. Specifically, shed endometrial tissues (delivered to the pelvic cavity via retrograde menstruation) reveal that a subset of stromal cells exhibiting pro-inflammatory, pro-fibrotic, and pro-senescence-like phenotypes is enhanced in endometriosis patients compared to controls. Additionally, cultured biopsy-derived endometrial stromal cells from endometriosis patients exhibit impaired decidualization, a defined differentiation process required for human embryo implantation and pregnancy. Quercetin, a senolytic agent, shows therapeutic potential for pulmonary fibrosis, a disorder attributed to senescent pulmonary fibroblasts. In rodent models of endometriosis, quercetin shows promise, and quercetin improves decidualization in vitro. However, the exact mechanisms are not completely understood. Therefore, we investigated the effects of quercetin on menstrual effluent-derived endometrial stromal cells from endometriosis patients and unaffected controls to define the signaling pathways underlying quercetin's effects on endometrial stromal cells.
Methods: Menstrual effluent-derived endometrial stromal cells were collected and cultured from unaffected controls and endometriosis patients and then, low passage cells were treated with quercetin (25 µM) under basal or standard decidualization conditions. Decidualization responses were analyzed by measuring the production of IGFBP1 and PRL. Also, the effects of quercetin on intracellular cAMP levels and cellular oxidative stress responses were measured. Phosphokinase arrays, western blotting, and flow cytometry methods were performed to define the effects of quercetin on various signaling pathways and the potential mechanistic roles of quercetin.
Results: Quercetin significantly promotes decidualization of control- and endometriosis-endometrial stromal cells. Quercetin substantially reduces the phosphorylation of multiple signaling molecules in the AKT and ERK1/2 pathways, while enhancing the phosphorylation of p53 and total p53 levels. Furthermore, p53 inhibition blocks decidualization while p53 activation promotes decidualization. Finally, we provide evidence that quercetin increases apoptosis of endometrial stromal cells with a senescent-like phenotype.
Conclusions: These data provide insight into the mechanisms of action of quercetin on endometrial stromal cells and warrant future clinical trials to test quercetin and other senolytics for treating endometriosis.
背景:子宫内膜异位症患者饱受慢性盆腔疼痛和不孕症的折磨,而且缺乏能够持续阻止疾病进展的药物疗法。子宫内膜异位症患者的子宫内膜与未受影响的对照组相比存在差异,这一点已得到充分证实。具体来说,脱落的子宫内膜组织(通过逆行月经输送到盆腔)显示,与对照组相比,子宫内膜异位症患者的基质细胞亚群具有促炎症、促纤维化和促衰老的表型。此外,子宫内膜异位症患者培养的活检子宫内膜基质细胞表现出蜕膜化受损,而蜕膜化是人类胚胎植入和妊娠所需的明确分化过程。槲皮素是一种衰老剂,具有治疗肺纤维化的潜力。在子宫内膜异位症的啮齿动物模型中,槲皮素显示出治疗前景,槲皮素还能改善体外蜕膜化。然而,确切的机制还不完全清楚。因此,我们研究了槲皮素对子宫内膜异位症患者和未受影响的对照组月经流出物衍生的子宫内膜基质细胞的影响,以确定槲皮素影响子宫内膜基质细胞的信号通路:收集和培养未受影响的对照组和子宫内膜异位症患者的月经流出物来源的子宫内膜基质细胞,然后在基础或标准蜕膜化条件下用槲皮素(25 µM)处理低倍径细胞。通过测量 IGFBP1 和 PRL 的产生来分析蜕膜反应。此外,还测定了槲皮素对细胞内cAMP水平和细胞氧化应激反应的影响。为了明确槲皮素对各种信号通路的影响以及槲皮素的潜在机制作用,研究人员采用了磷酸激酶阵列、Western印迹和流式细胞术等方法:结果:槲皮素能明显促进对照组和子宫内膜异位症组子宫内膜基质细胞的蜕膜化。槲皮素大大降低了AKT和ERK1/2通路中多种信号分子的磷酸化,同时提高了p53的磷酸化和总p53水平。此外,抑制 p53 会阻止蜕膜化,而激活 p53 则会促进蜕膜化。最后,我们提供的证据表明,槲皮素能增加具有衰老样表型的子宫内膜基质细胞的凋亡:这些数据让我们深入了解了槲皮素对子宫内膜基质细胞的作用机制,为今后开展临床试验,测试槲皮素和其他衰老剂治疗子宫内膜异位症提供了依据。
{"title":"Quercetin enhances decidualization through AKT-ERK-p53 signaling and supports a role for senescence in endometriosis.","authors":"Julia Delenko, Xiangying Xue, Prodyot K Chatterjee, Nathaniel Hyman, Andrew J Shih, Robert P Adelson, Polona Safaric Tepes, Peter K Gregersen, Christine N Metz","doi":"10.1186/s12958-024-01265-z","DOIUrl":"10.1186/s12958-024-01265-z","url":null,"abstract":"<p><strong>Background: </strong>Patients with endometriosis suffer with chronic pelvic pain and infertility, and from the lack of pharmacologic therapies that consistently halt disease progression. Differences in the endometrium of patients with endometriosis vs. unaffected controls are well-documented. Specifically, shed endometrial tissues (delivered to the pelvic cavity via retrograde menstruation) reveal that a subset of stromal cells exhibiting pro-inflammatory, pro-fibrotic, and pro-senescence-like phenotypes is enhanced in endometriosis patients compared to controls. Additionally, cultured biopsy-derived endometrial stromal cells from endometriosis patients exhibit impaired decidualization, a defined differentiation process required for human embryo implantation and pregnancy. Quercetin, a senolytic agent, shows therapeutic potential for pulmonary fibrosis, a disorder attributed to senescent pulmonary fibroblasts. In rodent models of endometriosis, quercetin shows promise, and quercetin improves decidualization in vitro. However, the exact mechanisms are not completely understood. Therefore, we investigated the effects of quercetin on menstrual effluent-derived endometrial stromal cells from endometriosis patients and unaffected controls to define the signaling pathways underlying quercetin's effects on endometrial stromal cells.</p><p><strong>Methods: </strong>Menstrual effluent-derived endometrial stromal cells were collected and cultured from unaffected controls and endometriosis patients and then, low passage cells were treated with quercetin (25 µM) under basal or standard decidualization conditions. Decidualization responses were analyzed by measuring the production of IGFBP1 and PRL. Also, the effects of quercetin on intracellular cAMP levels and cellular oxidative stress responses were measured. Phosphokinase arrays, western blotting, and flow cytometry methods were performed to define the effects of quercetin on various signaling pathways and the potential mechanistic roles of quercetin.</p><p><strong>Results: </strong>Quercetin significantly promotes decidualization of control- and endometriosis-endometrial stromal cells. Quercetin substantially reduces the phosphorylation of multiple signaling molecules in the AKT and ERK1/2 pathways, while enhancing the phosphorylation of p53 and total p53 levels. Furthermore, p53 inhibition blocks decidualization while p53 activation promotes decidualization. Finally, we provide evidence that quercetin increases apoptosis of endometrial stromal cells with a senescent-like phenotype.</p><p><strong>Conclusions: </strong>These data provide insight into the mechanisms of action of quercetin on endometrial stromal cells and warrant future clinical trials to test quercetin and other senolytics for treating endometriosis.</p>","PeriodicalId":21011,"journal":{"name":"Reproductive Biology and Endocrinology","volume":"22 1","pages":"100"},"PeriodicalIF":4.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308242/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1186/s12958-024-01269-9
Min Zhao, Baoying Liao, Chuyu Yun, Xinyu Qi, Yanli Pang
Background: At present, a number of clinical trials have been carried out on GLP-1 receptor agonist liraglutide in the treatment of polycystic ovary syndrome (PCOS). However, the effect of liraglutide on follicle development and its specific mechanism are still unclear.
Methods: RNA sequencing was used to explore the molecular characteristics of granulosa cells from patients with PCOS treated with liraglutide. The levels of C-X-C motif chemokine ligand 10 (CXCL10) in follicular fluid were detected by ELISA, the expression levels of ovulation related genes and inflammatory factor genes in follicles and granulosa cells were detected by qPCR and the protein levels of connexin 43 (Cx43), Janus Kinase 2 (JAK2) and phosphorylated JAK2 were detected by Western blot. The mouse ovarian follicles culture system in vitro was used to detect the status of follicle development and ovulation.
Results: In the present study, we found that liraglutide inhibited the secretion of inflammatory factors in PCOS granulosa cells, among which CXCL10 was the most significant. In addition, CXCL10 was significantly higher in granulosa cells and follicular fluid in PCOS patients than in non-PCOS patients. We applied in vitro follicle culture and other techniques to carry out the mechanism exploration which revealed that CXCL10 disrupted the homeostasis of gap junction protein alpha 1 (GJA1) between oocyte and granulosa cells before physiological ovulation, thus inhibiting follicular development and ovulation. Liraglutide inhibited CXCL10 secretion in PCOS granulosa cells by inhibiting the JAK signaling pathway and can improved dehydroepiandrosterone (DHEA)-induced follicle development disorders, which is reversed by CXCL10 supplementation.
Conclusions: The present study suggests that liraglutide inhibits CXCL10 secretion in granulosa cells through JAK signaling pathway, thereby improving the homeostasis of GJA1 between oocyte and granulosa cells before physiological ovulation and ultimately improving the follicular development and ovulation of PCOS, which provides more supportive evidence for the clinical application of liraglutide in the treatment of ovulatory disorders in PCOS.
{"title":"Liraglutide improves follicle development in polycystic ovary syndrome by inhibiting CXCL10 secretion.","authors":"Min Zhao, Baoying Liao, Chuyu Yun, Xinyu Qi, Yanli Pang","doi":"10.1186/s12958-024-01269-9","DOIUrl":"10.1186/s12958-024-01269-9","url":null,"abstract":"<p><strong>Background: </strong>At present, a number of clinical trials have been carried out on GLP-1 receptor agonist liraglutide in the treatment of polycystic ovary syndrome (PCOS). However, the effect of liraglutide on follicle development and its specific mechanism are still unclear.</p><p><strong>Methods: </strong>RNA sequencing was used to explore the molecular characteristics of granulosa cells from patients with PCOS treated with liraglutide. The levels of C-X-C motif chemokine ligand 10 (CXCL10) in follicular fluid were detected by ELISA, the expression levels of ovulation related genes and inflammatory factor genes in follicles and granulosa cells were detected by qPCR and the protein levels of connexin 43 (Cx43), Janus Kinase 2 (JAK2) and phosphorylated JAK2 were detected by Western blot. The mouse ovarian follicles culture system in vitro was used to detect the status of follicle development and ovulation.</p><p><strong>Results: </strong>In the present study, we found that liraglutide inhibited the secretion of inflammatory factors in PCOS granulosa cells, among which CXCL10 was the most significant. In addition, CXCL10 was significantly higher in granulosa cells and follicular fluid in PCOS patients than in non-PCOS patients. We applied in vitro follicle culture and other techniques to carry out the mechanism exploration which revealed that CXCL10 disrupted the homeostasis of gap junction protein alpha 1 (GJA1) between oocyte and granulosa cells before physiological ovulation, thus inhibiting follicular development and ovulation. Liraglutide inhibited CXCL10 secretion in PCOS granulosa cells by inhibiting the JAK signaling pathway and can improved dehydroepiandrosterone (DHEA)-induced follicle development disorders, which is reversed by CXCL10 supplementation.</p><p><strong>Conclusions: </strong>The present study suggests that liraglutide inhibits CXCL10 secretion in granulosa cells through JAK signaling pathway, thereby improving the homeostasis of GJA1 between oocyte and granulosa cells before physiological ovulation and ultimately improving the follicular development and ovulation of PCOS, which provides more supportive evidence for the clinical application of liraglutide in the treatment of ovulatory disorders in PCOS.</p><p><strong>Trial registration: </strong>Not applicable.</p>","PeriodicalId":21011,"journal":{"name":"Reproductive Biology and Endocrinology","volume":"22 1","pages":"98"},"PeriodicalIF":4.2,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1186/s12958-024-01272-0
Jing Lin, Tianying Yang, Lu Li, Xiaoxi Sun, He Li
Objective: To examine the reproductive outcomes of assisted reproductive technology (ART) in gynecologic cancer patients and to assess maternal and neonatal complications.
Methods: Women diagnosed with gynecologic cancer who underwent their first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment between 2013 and 2021 at Shanghai Ji Ai Genetics and IVF Institute were included in this study. Infertile women without any history of cancer were matched to the cancer group. The primary outcome was the cumulative live birth rate. Baseline and follow-up data were compared between groups using Student's t-tests for normally distributed variables and with Chi-square test for categorical variables. A propensity score-based patient-matching approach was adopted to ensure comparability between individuals with and without specific cancer type.
Results: A total of 136 patients with a history of gynecologic cancer and 241 healthy infertile controls were included in this study. Endometrial cancer constituted 50.70% of the cases and cervical cancer constituted 34.60% of the cases. The cancer group exhibited significantly shorter duration of stimulation, lower levels of estradiol, lower number of retrieved oocytes, day-3 embryos, and blastocysts compared to the control group (P < 0.05). The cumulative live birth rate of the gynecologic cancer group was significantly lower than that of the control group (36.10% vs. 60.50%, P < 0.001). Maternal and neonatal complications did not significantly differ between the groups (P > 0.05). The endometrial cancer and cervical cancer groups showed significantly lower cumulative live birth rates than their matched controls (38.60% vs. 64.50%, P = 0.011 and 24.20% vs. 68.60%, P < 0.001, respectively).
Conclusions: These findings highlight the decreased occurrence of pregnancy and live birth in female gynecologic cancer patients undergoing ART, particularly in endometrial cancers and cervical cancers. These findings have important implications for counseling and managing gynecologic cancer patients undergoing ART.
{"title":"Analysis of assisted reproductive outcomes for gynecologic cancer survivors: a retrospective study.","authors":"Jing Lin, Tianying Yang, Lu Li, Xiaoxi Sun, He Li","doi":"10.1186/s12958-024-01272-0","DOIUrl":"10.1186/s12958-024-01272-0","url":null,"abstract":"<p><strong>Objective: </strong>To examine the reproductive outcomes of assisted reproductive technology (ART) in gynecologic cancer patients and to assess maternal and neonatal complications.</p><p><strong>Methods: </strong>Women diagnosed with gynecologic cancer who underwent their first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment between 2013 and 2021 at Shanghai Ji Ai Genetics and IVF Institute were included in this study. Infertile women without any history of cancer were matched to the cancer group. The primary outcome was the cumulative live birth rate. Baseline and follow-up data were compared between groups using Student's t-tests for normally distributed variables and with Chi-square test for categorical variables. A propensity score-based patient-matching approach was adopted to ensure comparability between individuals with and without specific cancer type.</p><p><strong>Results: </strong>A total of 136 patients with a history of gynecologic cancer and 241 healthy infertile controls were included in this study. Endometrial cancer constituted 50.70% of the cases and cervical cancer constituted 34.60% of the cases. The cancer group exhibited significantly shorter duration of stimulation, lower levels of estradiol, lower number of retrieved oocytes, day-3 embryos, and blastocysts compared to the control group (P < 0.05). The cumulative live birth rate of the gynecologic cancer group was significantly lower than that of the control group (36.10% vs. 60.50%, P < 0.001). Maternal and neonatal complications did not significantly differ between the groups (P > 0.05). The endometrial cancer and cervical cancer groups showed significantly lower cumulative live birth rates than their matched controls (38.60% vs. 64.50%, P = 0.011 and 24.20% vs. 68.60%, P < 0.001, respectively).</p><p><strong>Conclusions: </strong>These findings highlight the decreased occurrence of pregnancy and live birth in female gynecologic cancer patients undergoing ART, particularly in endometrial cancers and cervical cancers. These findings have important implications for counseling and managing gynecologic cancer patients undergoing ART.</p>","PeriodicalId":21011,"journal":{"name":"Reproductive Biology and Endocrinology","volume":"22 1","pages":"97"},"PeriodicalIF":4.2,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301938/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-03DOI: 10.1186/s12958-024-01267-x
Man-Xi Jiang, Lei Guo, Sen Li, Xiao-Feng Xiao, Wei Chen, Shao-Qing Chen, Nan-Qiao Chen, Yuan-Yuan Sun, Guang-Li Zhang, Xiao-Hai Zeng, Yan-Mei Xiao, Li-Hua Fan
Dual-person inspection in IVF laboratories cannot fully avoid mix-ups or embryo transfer errors, and data transcription or entry is time-consuming and redundant, often leading to delays in completing medical records. This study introduced a workflow-based RFID tag witnessing and real-time information entry platform for addressing these challenges. To assess its potential in reducing mix-ups, we conducted a simulation experiment in semen preparation to analyze its error correction rate. Additionally, we evaluated its impact on work efficiency, specifically in operation and data entry. Furthermore, we compared the cycle costs between paper labels and RFID tags. Finally, we retrospectively analyzed clinical outcomes of 20,424 oocyte retrieval cycles and 15,785 frozen embryo transfer cycles, which were divided into paper label and RFID tag groups. The study revealed that comparing to paper labels, RFID tag witnessing corrected 100% of tag errors, didn’t affect gamete/embryo operations, and notably shorten the time of entering data, but the cycle cost of RFID tags was significantly higher. However, no significant differences were observed in fertilization, embryo quality, blastocyst rates, clinical pregnancy, and live birth rates between two groups. RFID tag witnessing doesn’t negatively impact gamete/embryo operation, embryo quality and pregnancy outcomes, but it potentially reduces the risk of mix-ups or errors. Despite highly increased cost, integrating RFID tag witnessing with real-time information entry can remarkably decrease the data entry time, substantially improving the work efficiency. This workflow-based management platform also enhances operational safety, ensures medical informational integrity, and boosts embryologist’s confidence.
试管婴儿实验室的双人检查无法完全避免混淆或胚胎移植错误,而数据转录或输入耗时且冗余,往往会导致医疗记录延迟完成。本研究引入了基于工作流程的 RFID 标签见证和实时信息输入平台,以应对这些挑战。为了评估该平台在减少混淆方面的潜力,我们在精液制备过程中进行了模拟实验,分析其纠错率。此外,我们还评估了其对工作效率的影响,特别是在操作和数据录入方面。此外,我们还比较了纸质标签和 RFID 标签的周期成本。最后,我们回顾性分析了 20424 个卵细胞取回周期和 15785 个冷冻胚胎移植周期的临床结果,并将其分为纸质标签组和 RFID 标签组。研究显示,与纸质标签相比,RFID 标签见证可纠正 100%的标签错误,不影响配子/胚胎操作,并显著缩短了输入数据的时间,但 RFID 标签的周期成本明显更高。不过,两组在受精率、胚胎质量、囊胚率、临床妊娠率和活产率方面没有明显差异。RFID 标签见证不会对配子/胚胎操作、胚胎质量和妊娠结果产生负面影响,但有可能降低混淆或错误的风险。尽管成本大幅增加,但将 RFID 标签见证与实时信息输入相结合,可显著减少数据输入时间,大幅提高工作效率。这种基于工作流程的管理平台还能提高操作安全性,确保医疗信息的完整性,增强胚胎学家的信心。
{"title":"IVF laboratory management through workflow-based RFID tag witnessing and real-time information entry","authors":"Man-Xi Jiang, Lei Guo, Sen Li, Xiao-Feng Xiao, Wei Chen, Shao-Qing Chen, Nan-Qiao Chen, Yuan-Yuan Sun, Guang-Li Zhang, Xiao-Hai Zeng, Yan-Mei Xiao, Li-Hua Fan","doi":"10.1186/s12958-024-01267-x","DOIUrl":"https://doi.org/10.1186/s12958-024-01267-x","url":null,"abstract":"Dual-person inspection in IVF laboratories cannot fully avoid mix-ups or embryo transfer errors, and data transcription or entry is time-consuming and redundant, often leading to delays in completing medical records. This study introduced a workflow-based RFID tag witnessing and real-time information entry platform for addressing these challenges. To assess its potential in reducing mix-ups, we conducted a simulation experiment in semen preparation to analyze its error correction rate. Additionally, we evaluated its impact on work efficiency, specifically in operation and data entry. Furthermore, we compared the cycle costs between paper labels and RFID tags. Finally, we retrospectively analyzed clinical outcomes of 20,424 oocyte retrieval cycles and 15,785 frozen embryo transfer cycles, which were divided into paper label and RFID tag groups. The study revealed that comparing to paper labels, RFID tag witnessing corrected 100% of tag errors, didn’t affect gamete/embryo operations, and notably shorten the time of entering data, but the cycle cost of RFID tags was significantly higher. However, no significant differences were observed in fertilization, embryo quality, blastocyst rates, clinical pregnancy, and live birth rates between two groups. RFID tag witnessing doesn’t negatively impact gamete/embryo operation, embryo quality and pregnancy outcomes, but it potentially reduces the risk of mix-ups or errors. Despite highly increased cost, integrating RFID tag witnessing with real-time information entry can remarkably decrease the data entry time, substantially improving the work efficiency. This workflow-based management platform also enhances operational safety, ensures medical informational integrity, and boosts embryologist’s confidence.","PeriodicalId":21011,"journal":{"name":"Reproductive Biology and Endocrinology","volume":"187 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1186/s12958-024-01254-2
Linhang Nie, Xiaojie Wang, Songyuan Wang, Zhidan Hong, Mei Wang
Premature Ovarian Insufficiency (POI) is a highly heterogeneous condition characterized by ovarian dysfunction in women occurring before the age of 40, representing a significant cause of female infertility. It manifests through primary or secondary amenorrhea. While more than half of POI cases are idiopathic, genetic factors play a pivotal role in all instances with known causes, contributing to approximately 20-25% of cases. This article comprehensively reviews the genetic factors associated with POI, delineating the primary candidate genes. The discussion delves into the intricate relationship between these genes and ovarian development, elucidating the functional consequences of diverse mutations to underscore the fundamental impact of genetic effects on POI. The identified genetic factors, encompassing gene mutations and chromosomal abnormalities, are systematically classified based on whether the resulting POI is syndromic or non-syndromic. Furthermore, this paper explores the genetic interplay between mitochondrial genes, such as Required for Meiotic Nuclear Division 1 homolog Gene (RMND1), Mitochondrial Ribosomal Protein S22 Gene (MRPS22), Leucine-rich Pentapeptide Repeat Gene (LRPPRC), and non-coding RNAs, including both microRNAs and Long non-coding RNAs, with POI. The insights provided serve to consolidate and enhance our understanding of the etiology of POI, contributing to establishing a theoretical foundation for diagnosing and treating POI patients, as well as for exploring the mechanisms underlying the disease.
卵巢早衰(POI)是一种高度异质性疾病,其特点是女性在 40 岁之前出现卵巢功能障碍,是导致女性不孕的一个重要原因。它表现为原发性或继发性闭经。虽然半数以上的 POI 病例是特发性的,但遗传因素在所有已知病因的病例中起着关键作用,约占 20-25% 的病例。本文全面回顾了与 POI 相关的遗传因素,并划分了主要的候选基因。文章深入探讨了这些基因与卵巢发育之间错综复杂的关系,阐明了不同基因突变的功能性后果,从而强调了遗传效应对 POI 的根本影响。已确定的遗传因素包括基因突变和染色体异常,并根据所导致的 POI 是综合征还是非综合征进行了系统分类。此外,本文还探讨了线粒体基因(如减数分裂核分裂 1 同源基因(RMND1)、线粒体核糖体蛋白 S22 基因(MRPS22)、富亮氨酸五肽重复基因(LRPPRC))和非编码 RNA(包括 microRNA 和长非编码 RNA)与 POI 之间的遗传相互作用。这些发现有助于巩固和提高我们对 POI 病因学的认识,为诊断和治疗 POI 患者以及探索该疾病的发病机制奠定理论基础。
{"title":"Genetic insights into the complexity of premature ovarian insufficiency.","authors":"Linhang Nie, Xiaojie Wang, Songyuan Wang, Zhidan Hong, Mei Wang","doi":"10.1186/s12958-024-01254-2","DOIUrl":"10.1186/s12958-024-01254-2","url":null,"abstract":"<p><p>Premature Ovarian Insufficiency (POI) is a highly heterogeneous condition characterized by ovarian dysfunction in women occurring before the age of 40, representing a significant cause of female infertility. It manifests through primary or secondary amenorrhea. While more than half of POI cases are idiopathic, genetic factors play a pivotal role in all instances with known causes, contributing to approximately 20-25% of cases. This article comprehensively reviews the genetic factors associated with POI, delineating the primary candidate genes. The discussion delves into the intricate relationship between these genes and ovarian development, elucidating the functional consequences of diverse mutations to underscore the fundamental impact of genetic effects on POI. The identified genetic factors, encompassing gene mutations and chromosomal abnormalities, are systematically classified based on whether the resulting POI is syndromic or non-syndromic. Furthermore, this paper explores the genetic interplay between mitochondrial genes, such as Required for Meiotic Nuclear Division 1 homolog Gene (RMND1), Mitochondrial Ribosomal Protein S22 Gene (MRPS22), Leucine-rich Pentapeptide Repeat Gene (LRPPRC), and non-coding RNAs, including both microRNAs and Long non-coding RNAs, with POI. The insights provided serve to consolidate and enhance our understanding of the etiology of POI, contributing to establishing a theoretical foundation for diagnosing and treating POI patients, as well as for exploring the mechanisms underlying the disease.</p>","PeriodicalId":21011,"journal":{"name":"Reproductive Biology and Endocrinology","volume":"22 1","pages":"94"},"PeriodicalIF":4.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295921/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1186/s12958-024-01266-y
Chiara Di Berardino, Alessia Peserico, Chiara Camerano Spelta Rapini, Liliana Liverani, Giulia Capacchietti, Valentina Russo, Paolo Berardinelli, Irem Unalan, Andrada-Ioana Damian-Buda, Aldo R Boccaccini, Barbara Barboni
Background: Assisted Reproductive Technologies (ARTs) have been validated in human and animal to solve reproductive problems such as infertility, aging, genetic selection/amplification and diseases. The persistent gap in ART biomedical applications lies in recapitulating the early stage of ovarian folliculogenesis, thus providing protocols to drive the large reserve of immature follicles towards the gonadotropin-dependent phase. Tissue engineering is becoming a concrete solution to potentially recapitulate ovarian structure, mostly relying on the use of autologous early follicles on natural or synthetic scaffolds. Based on these premises, the present study has been designed to validate the use of the ovarian bioinspired patterned electrospun fibrous scaffolds fabricated with poly(ε-caprolactone) (PCL) for multiple preantral (PA) follicle development.
Methods: PA follicles isolated from lamb ovaries were cultured on PCL scaffold adopting a validated single-follicle protocol (Ctrl) or simulating a multiple-follicle condition by reproducing an artificial ovary engrafted with 5 or 10 PA (AO5PA and AO10PA). The incubations were protracted for 14 and 18 days before assessing scaffold-based microenvironment suitability to assist in vitro folliculogenesis (ivF) and oogenesis at morphological and functional level.
Results: The ivF outcomes demonstrated that PCL-scaffolds generate an appropriate biomimetic ovarian microenvironment supporting the transition of multiple PA follicles towards early antral (EA) stage by supporting follicle growth and steroidogenic activation. PCL-multiple bioengineering ivF (AO10PA) performed in long term generated, in addition, the greatest percentage of highly specialized gametes by enhancing meiotic competence, large chromatin remodeling and parthenogenetic developmental competence.
Conclusions: The study showcased the proof of concept for a next-generation ART use of PCL-patterned scaffold aimed to generate transplantable artificial ovary engrafted with autologous early-stage follicles or to advance ivF technologies holding a 3D bioinspired matrix promoting a physiological long-term multiple PA follicle protocol.
背景:辅助生殖技术(ART)已在人类和动物身上得到验证,可解决不孕、衰老、基因选择/扩增和疾病等生殖问题。辅助生殖技术在生物医学应用方面的长期空白在于重现卵巢卵泡生成的早期阶段,从而提供驱动大量储备未成熟卵泡进入促性腺激素依赖阶段的方案。组织工程正成为可能重现卵巢结构的具体解决方案,主要依赖于在天然或合成支架上使用自体早期卵泡。基于这些前提,本研究旨在验证使用聚(ε-己内酯)(PCL)制造的卵巢生物启发图案电纺纤维支架在多个前胚叶(PA)卵泡发育中的应用:方法:在 PCL 支架上培养从羔羊卵巢中分离出的 PA 卵泡,培养方法既可采用有效的单卵泡培养方案(Ctrl),也可模拟多卵泡培养条件,即在人工卵巢中移植 5 个或 10 个 PA(AO5PA 和 AO10PA)。在评估基于支架的微环境对体外卵泡生成(ivF)和卵子生成在形态和功能层面的适宜性之前,分别进行了14天和18天的培养:结果:体外卵泡生成结果表明,PCL支架可生成适当的仿生卵巢微环境,通过支持卵泡生长和类固醇生成活化,支持多PA卵泡向早期前叶(EA)阶段过渡。此外,通过提高减数分裂能力、大染色质重塑和孤雌生殖发育能力,长期进行的PCL-多倍体生物工程ivF(AO10PA)产生了最大比例的高度特化配子:该研究展示了使用 PCL 模板支架进行下一代 ART 的概念验证,该支架旨在生成移植自体早期卵泡的可移植人工卵巢,或利用三维生物启发基质促进生理性长期多 PA 卵泡方案,从而推动人工受孕技术的发展。
{"title":"Bioengineered 3D ovarian model for long-term multiple development of preantral follicle: bridging the gap for poly(ε-caprolactone) (PCL)-based scaffold reproductive applications.","authors":"Chiara Di Berardino, Alessia Peserico, Chiara Camerano Spelta Rapini, Liliana Liverani, Giulia Capacchietti, Valentina Russo, Paolo Berardinelli, Irem Unalan, Andrada-Ioana Damian-Buda, Aldo R Boccaccini, Barbara Barboni","doi":"10.1186/s12958-024-01266-y","DOIUrl":"10.1186/s12958-024-01266-y","url":null,"abstract":"<p><strong>Background: </strong>Assisted Reproductive Technologies (ARTs) have been validated in human and animal to solve reproductive problems such as infertility, aging, genetic selection/amplification and diseases. The persistent gap in ART biomedical applications lies in recapitulating the early stage of ovarian folliculogenesis, thus providing protocols to drive the large reserve of immature follicles towards the gonadotropin-dependent phase. Tissue engineering is becoming a concrete solution to potentially recapitulate ovarian structure, mostly relying on the use of autologous early follicles on natural or synthetic scaffolds. Based on these premises, the present study has been designed to validate the use of the ovarian bioinspired patterned electrospun fibrous scaffolds fabricated with poly(ε-caprolactone) (PCL) for multiple preantral (PA) follicle development.</p><p><strong>Methods: </strong>PA follicles isolated from lamb ovaries were cultured on PCL scaffold adopting a validated single-follicle protocol (Ctrl) or simulating a multiple-follicle condition by reproducing an artificial ovary engrafted with 5 or 10 PA (AO<sub>5PA</sub> and AO<sub>10PA</sub>). The incubations were protracted for 14 and 18 days before assessing scaffold-based microenvironment suitability to assist in vitro folliculogenesis (ivF) and oogenesis at morphological and functional level.</p><p><strong>Results: </strong>The ivF outcomes demonstrated that PCL-scaffolds generate an appropriate biomimetic ovarian microenvironment supporting the transition of multiple PA follicles towards early antral (EA) stage by supporting follicle growth and steroidogenic activation. PCL-multiple bioengineering ivF (AO<sub>10PA</sub>) performed in long term generated, in addition, the greatest percentage of highly specialized gametes by enhancing meiotic competence, large chromatin remodeling and parthenogenetic developmental competence.</p><p><strong>Conclusions: </strong>The study showcased the proof of concept for a next-generation ART use of PCL-patterned scaffold aimed to generate transplantable artificial ovary engrafted with autologous early-stage follicles or to advance ivF technologies holding a 3D bioinspired matrix promoting a physiological long-term multiple PA follicle protocol.</p>","PeriodicalId":21011,"journal":{"name":"Reproductive Biology and Endocrinology","volume":"22 1","pages":"95"},"PeriodicalIF":4.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1186/s12958-024-01259-x
Abubakar Ibrahim, Martina Irwan Khoo, Engku Husna Engku Ismail, Nik Hazlina Nik Hussain, Anani Aila Mat Zin, Liza Noordin, Sarimah Abdullah, Zaleha Abdullah Mahdy, Nik Ahmad Zuky Nik Lah
Background: This systematic review explores the level of oxidative stress (OS) markers during pregnancy and their correlation with complications. Unlike previous studies, it refrains from directly investigating the role of OS but instead synthesises data on the levels of these markers and their implications for various pregnancy-related complications such as preeclampsia, intrauterine growth restrictions, preterm premature rupture of membranes, preterm labour, gestational diabetes mellitus and miscarriages.
Method: STUDY DESIGN: Utilizing a systematic review approach, we conducted a comprehensive search across databases, including MEDLINE, CINAHL (EBSCOhost), ScienceDirect, Web of Science, and SCOPUS. Our search encompassed all publication years in English.
Results: After evaluating 54,173 records, 45 studies with a low risk of bias were selected for inclusion. This systematic review has underscored the importance of these markers in both physiological and pathological pregnancy states such as preeclampsia, intrauterine growth restrictions, preterm premature rupture of membranes, preterm labour, gestational diabetes mellitus and miscarriages.
Conclusion: This systematic review provides valuable insights into the role of OS in pregnancy and their connection to complications. These selected studies delved deeply into OS markers during pregnancy and their implications for associated complications. The comprehensive findings highlighted the significance of OS markers in both normal and pathological pregnancy conditions, paving the way for further research in this field.
{"title":"Oxidative stress biomarkers in pregnancy: a systematic review.","authors":"Abubakar Ibrahim, Martina Irwan Khoo, Engku Husna Engku Ismail, Nik Hazlina Nik Hussain, Anani Aila Mat Zin, Liza Noordin, Sarimah Abdullah, Zaleha Abdullah Mahdy, Nik Ahmad Zuky Nik Lah","doi":"10.1186/s12958-024-01259-x","DOIUrl":"10.1186/s12958-024-01259-x","url":null,"abstract":"<p><strong>Background: </strong>This systematic review explores the level of oxidative stress (OS) markers during pregnancy and their correlation with complications. Unlike previous studies, it refrains from directly investigating the role of OS but instead synthesises data on the levels of these markers and their implications for various pregnancy-related complications such as preeclampsia, intrauterine growth restrictions, preterm premature rupture of membranes, preterm labour, gestational diabetes mellitus and miscarriages.</p><p><strong>Method: </strong>STUDY DESIGN: Utilizing a systematic review approach, we conducted a comprehensive search across databases, including MEDLINE, CINAHL (EBSCOhost), ScienceDirect, Web of Science, and SCOPUS. Our search encompassed all publication years in English.</p><p><strong>Results: </strong>After evaluating 54,173 records, 45 studies with a low risk of bias were selected for inclusion. This systematic review has underscored the importance of these markers in both physiological and pathological pregnancy states such as preeclampsia, intrauterine growth restrictions, preterm premature rupture of membranes, preterm labour, gestational diabetes mellitus and miscarriages.</p><p><strong>Conclusion: </strong>This systematic review provides valuable insights into the role of OS in pregnancy and their connection to complications. These selected studies delved deeply into OS markers during pregnancy and their implications for associated complications. The comprehensive findings highlighted the significance of OS markers in both normal and pathological pregnancy conditions, paving the way for further research in this field.</p>","PeriodicalId":21011,"journal":{"name":"Reproductive Biology and Endocrinology","volume":"22 1","pages":"93"},"PeriodicalIF":4.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295331/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1186/s12958-024-01264-0
Beatrice Belmonte, Giovanni Di Lorenzo, Alessandro Mangogna, Barbara Bortot, Giorgio Bertolazzi, Selene Sammataro, Simona Merighi, Anna Martorana, Gabriella Zito, Federico Romano, Anna Giorgiutti, Cristina Bottin, Fabrizio Zanconati, Andrea Romano, Giuseppe Ricci, Stefania Biffi
Background: Endometriosis is a gynecological disease characterized by the presence of endometrial tissue in abnormal locations, leading to severe symptoms, inflammation, pain, organ dysfunction, and infertility. Surgical removal of endometriosis lesions is crucial for improving pain and fertility outcomes, with the goal of complete lesion removal. This study aimed to analyze the location and expression patterns of poly (ADP-ribose) polymerase 1 (PARP-1), epithelial cell adhesion molecule (EpCAM), and folate receptor alpha (FRα) in endometriosis lesions and evaluate their potential for targeted imaging.
Methods: Gene expression analysis was performed using the Turku endometriosis database (EndometDB). By immunohistochemistry, we investigated the presence and distribution of PARP-1, EpCAM, and FRα in endometriosis foci and adjacent tissue. We also applied an ad hoc platform for the analysis of images to perform a quantitative immunolocalization analysis. Double immunofluorescence analysis was carried out for PARP-1 and EpCAM, as well as for PARP-1 and FRα, to explore the expression of these combined markers within endometriosis foci and their potential simultaneous utilization in surgical treatment.
Results: Gene expression analysis revealed that PARP-1, EpCAM, and FOLR1 (FRα gene) are more highly expressed in endometriotic lesions than in the peritoneum, which served as the control tissue. The results of the immunohistochemical study revealed a significant increase in the expression levels of all three biomarkers inside the endometriosis foci compared to the adjacent tissues. Additionally, the double immunofluorescence analysis consistently demonstrated the presence of PARP-1 in the nucleus and the expression of EpCAM and FRα in the cell membrane and cytoplasm.
Conclusion: Overall, these three markers demonstrate significant potential for effective imaging of endometriosis. In particular, the results emphasize the importance of PARP-1 expression as a possible indicator for distinguishing endometriotic lesions from adjacent tissue. PARP-1, as a potential biomarker for endometriosis, offers promising avenues for further investigation in terms of both pathophysiology and diagnostic-therapeutic approaches.
{"title":"PARP-1, EpCAM, and FRα as potential targets for intraoperative detection and delineation of endometriosis: a quantitative tissue expression analysis.","authors":"Beatrice Belmonte, Giovanni Di Lorenzo, Alessandro Mangogna, Barbara Bortot, Giorgio Bertolazzi, Selene Sammataro, Simona Merighi, Anna Martorana, Gabriella Zito, Federico Romano, Anna Giorgiutti, Cristina Bottin, Fabrizio Zanconati, Andrea Romano, Giuseppe Ricci, Stefania Biffi","doi":"10.1186/s12958-024-01264-0","DOIUrl":"10.1186/s12958-024-01264-0","url":null,"abstract":"<p><strong>Background: </strong>Endometriosis is a gynecological disease characterized by the presence of endometrial tissue in abnormal locations, leading to severe symptoms, inflammation, pain, organ dysfunction, and infertility. Surgical removal of endometriosis lesions is crucial for improving pain and fertility outcomes, with the goal of complete lesion removal. This study aimed to analyze the location and expression patterns of poly (ADP-ribose) polymerase 1 (PARP-1), epithelial cell adhesion molecule (EpCAM), and folate receptor alpha (FRα) in endometriosis lesions and evaluate their potential for targeted imaging.</p><p><strong>Methods: </strong>Gene expression analysis was performed using the Turku endometriosis database (EndometDB). By immunohistochemistry, we investigated the presence and distribution of PARP-1, EpCAM, and FRα in endometriosis foci and adjacent tissue. We also applied an ad hoc platform for the analysis of images to perform a quantitative immunolocalization analysis. Double immunofluorescence analysis was carried out for PARP-1 and EpCAM, as well as for PARP-1 and FRα, to explore the expression of these combined markers within endometriosis foci and their potential simultaneous utilization in surgical treatment.</p><p><strong>Results: </strong>Gene expression analysis revealed that PARP-1, EpCAM, and FOLR1 (FRα gene) are more highly expressed in endometriotic lesions than in the peritoneum, which served as the control tissue. The results of the immunohistochemical study revealed a significant increase in the expression levels of all three biomarkers inside the endometriosis foci compared to the adjacent tissues. Additionally, the double immunofluorescence analysis consistently demonstrated the presence of PARP-1 in the nucleus and the expression of EpCAM and FRα in the cell membrane and cytoplasm.</p><p><strong>Conclusion: </strong>Overall, these three markers demonstrate significant potential for effective imaging of endometriosis. In particular, the results emphasize the importance of PARP-1 expression as a possible indicator for distinguishing endometriotic lesions from adjacent tissue. PARP-1, as a potential biomarker for endometriosis, offers promising avenues for further investigation in terms of both pathophysiology and diagnostic-therapeutic approaches.</p>","PeriodicalId":21011,"journal":{"name":"Reproductive Biology and Endocrinology","volume":"22 1","pages":"92"},"PeriodicalIF":4.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293020/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}