Pub Date : 2020-10-01DOI: 10.29356/JMCS.V64I4.1203
D. C. Franco-Vásquez, E. Bosquez-Molina, R. Ventura-Aguilar
The cactus stem of Atlixco cultivar is consumed for its pharmacological properties and it is marketed not only in Mexico but also in other countries. Despite this, its complete phenolic profile is not known which are recognised as powerful antioxidants. This work aimed to develop a standardised methodology for optimise the conditions for phenolic compounds extraction in the cactus stem of Atlixco cultivar and to identify these compounds using mass spectrometry (MS). Results indicated the following: a) it is recommended to use one unit of freeze-dried cactus stem for every 50 units of solvent. Subsequently, the blend should be eluted with water/methanol/acetonitrile in a ratio of 25:25:50 by the column chromatography technique; b) samples maintained in a reflux system with an acidic medium after two hours of heating at 65 °C showed the greatest amount of phenolic compounds by MS, and c) trans-caffeic acid, ferulic acid, kaempferol, quercetin, and isorhamnetin were identified. In conclusion, only some of the phenolic compounds identified in this work had been reported in other cactus stem cultivars.
{"title":"Standardisation of Phenols and Flavonoids Extraction from Opuntia ficus-indica Mill Cv. Atlixco and Identification by Mass Spectrometry","authors":"D. C. Franco-Vásquez, E. Bosquez-Molina, R. Ventura-Aguilar","doi":"10.29356/JMCS.V64I4.1203","DOIUrl":"https://doi.org/10.29356/JMCS.V64I4.1203","url":null,"abstract":"The cactus stem of Atlixco cultivar is consumed for its pharmacological properties and it is marketed not only in Mexico but also in other countries. Despite this, its complete phenolic profile is not known which are recognised as powerful antioxidants. This work aimed to develop a standardised methodology for optimise the conditions for phenolic compounds extraction in the cactus stem of Atlixco cultivar and to identify these compounds using mass spectrometry (MS). Results indicated the following: a) it is recommended to use one unit of freeze-dried cactus stem for every 50 units of solvent. Subsequently, the blend should be eluted with water/methanol/acetonitrile in a ratio of 25:25:50 by the column chromatography technique; b) samples maintained in a reflux system with an acidic medium after two hours of heating at 65 °C showed the greatest amount of phenolic compounds by MS, and c) trans-caffeic acid, ferulic acid, kaempferol, quercetin, and isorhamnetin were identified. In conclusion, only some of the phenolic compounds identified in this work had been reported in other cactus stem cultivars.","PeriodicalId":21347,"journal":{"name":"Revista de la Sociedad Química de Mexico","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83598958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-09DOI: 10.29356/jmcs.v64i3.1167
J. Robles, B. Manzanilla
Allotropes of carbon such as graphene, graphane, fluorographene, doped graphene with N, B or P, graphene oxide, graphyne, and graphdiyne were studied through conceptual DFT reactivity descriptor indexes. To understand their chemical behavior and how they interact with different types of molecules, for instance, drugs (due to their potential use in drug carrier applications). This work shows the results of the changes in the global and local reactivity descriptor indexes and geometrical characteristics within the different graphene derivatives and rationalizes how they can interact with small molecules. Molecular hardness, the ionization energy, the electron affinity, electrodonating power index, and electroaccepting power indexes are the computed global reactivity descriptors. While, fukui functions, local softness, and molecular electrostatic potential are the local reactivity descriptors. The results suggest that the hybridization of carbons in the derivatives is kept close to sp, while for graphene is sp, the symmetry changes have as consequence changes in their chemical behavior. We found that doping with B or P (one or two atoms doped) and functionalizing with -OH or -COOH groups (as in graphene oxide), decreases the ionization energy in water solvent calculations, allowing for easier electron donation. On the other hand, doping with N atoms and functionalizing with F atoms increases the electron affinity. These types of changes enhance the chemisorption or physisorption by non-covalent interactions and covalent interactions with small molecules, principally, in the carbon atoms nearest to the doped/functionalized atom.
{"title":"Conceptual DFT Reactivity Descriptors Computational Study of Graphene and Derivatives Flakes: Doped Graphene, Graphane, Fluorographene, Graphene Oxide, Graphyne, and Graphdiyne","authors":"J. Robles, B. Manzanilla","doi":"10.29356/jmcs.v64i3.1167","DOIUrl":"https://doi.org/10.29356/jmcs.v64i3.1167","url":null,"abstract":"Allotropes of carbon such as graphene, graphane, fluorographene, doped graphene with N, B or P, graphene oxide, graphyne, and graphdiyne were studied through conceptual DFT reactivity descriptor indexes. To understand their chemical behavior and how they interact with different types of molecules, for instance, drugs (due to their potential use in drug carrier applications). This work shows the results of the changes in the global and local reactivity descriptor indexes and geometrical characteristics within the different graphene derivatives and rationalizes how they can interact with small molecules. Molecular hardness, the ionization energy, the electron affinity, electrodonating power index, and electroaccepting power indexes are the computed global reactivity descriptors. While, fukui functions, local softness, and molecular electrostatic potential are the local reactivity descriptors. The results suggest that the hybridization of carbons in the derivatives is kept close to sp, while for graphene is sp, the symmetry changes have as consequence changes in their chemical behavior. We found that doping with B or P (one or two atoms doped) and functionalizing with -OH or -COOH groups (as in graphene oxide), decreases the ionization energy in water solvent calculations, allowing for easier electron donation. On the other hand, doping with N atoms and functionalizing with F atoms increases the electron affinity. These types of changes enhance the chemisorption or physisorption by non-covalent interactions and covalent interactions with small molecules, principally, in the carbon atoms nearest to the doped/functionalized atom.","PeriodicalId":21347,"journal":{"name":"Revista de la Sociedad Química de Mexico","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86761138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-02DOI: 10.29356/jmcs.v64i3.1213
Ana Martínez
On November 12, 2019 the first case of infection of a novel coronavirus (COVID-19) was identified at Wuhan, the capital of Hubei province in China. Regardless of the origin of this virus, which is uncertain, it has produced a pandemic that has been the cause of human deaths worldwide. Two drugs are being used as antiviral against this virus; cloroquine and hydroxychloroquine, although controversy exists concerning their effectiveness. The main objective of this report is to present the electronic properties of cloroquine and hydroxychloroquine that might help explain the action mechanisms against virus. The idea that emerges from this study is that acid-base equilibrium is not the only criteria of importance to explain the action mechanism, but that the oxide-reduction balance may also help explain the toxicity or effectiveness of these drugs. Being molecules able to oxidize other molecules is similar to yin-yang; a dualism that describes contrary forces, as oxidation may produce dysfunction and affect the conditions needed for viral infection, replication and propagation of the virus, but also contribute to increasing oxidative stress. These results offer a further step along the path of understanding these action mechanisms.
{"title":"Cloroquine and Hydroxychloroquine: the Yin-yang of these Drugs from a Theoretical Study","authors":"Ana Martínez","doi":"10.29356/jmcs.v64i3.1213","DOIUrl":"https://doi.org/10.29356/jmcs.v64i3.1213","url":null,"abstract":"On November 12, 2019 the first case of infection of a novel coronavirus (COVID-19) was identified at Wuhan, the capital of Hubei province in China. Regardless of the origin of this virus, which is uncertain, it has produced a pandemic that has been the cause of human deaths worldwide. Two drugs are being used as antiviral against this virus; cloroquine and hydroxychloroquine, although controversy exists concerning their effectiveness. The main objective of this report is to present the electronic properties of cloroquine and hydroxychloroquine that might help explain the action mechanisms against virus. The idea that emerges from this study is that acid-base equilibrium is not the only criteria of importance to explain the action mechanism, but that the oxide-reduction balance may also help explain the toxicity or effectiveness of these drugs. Being molecules able to oxidize other molecules is similar to yin-yang; a dualism that describes contrary forces, as oxidation may produce dysfunction and affect the conditions needed for viral infection, replication and propagation of the virus, but also contribute to increasing oxidative stress. These results offer a further step along the path of understanding these action mechanisms.","PeriodicalId":21347,"journal":{"name":"Revista de la Sociedad Química de Mexico","volume":"83 1","pages":"230-237"},"PeriodicalIF":0.0,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74561720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.29356/jmcs.v64i3.1157
Froylán M. E. Escalante, Daniel A. Pérez-Rico, Jorge Alarcón-Jiménez, Escarlett González-Morales, Luis Felipe Guerra-Álvarez, J. Ramírez-Vázquez, H. Gutiérrez-Pulido
Phycocyanin is a natural blue colorant with antioxidant activity which can be safely used in food, however its rapid degradation is still a concern for food manufacturing. Phycocyanin is easily degraded when exposed to mid-temperatures and/or light. Several studies have been stablished the degradation kinetics of aqueous solutions evaluating temperature or light as accelerating factors using a first order kinetic model and, both factors have been studied by separate or fixing one of them to evaluate the combined effect. The aim of this work was to develop an empirical model able to predict the effect of temperature and light combined in the degradation ratio of this pigment at selected storage conditions. We have tested five correlation models to fit temperature, light and time data to the degradation ratio of the phycocyanin; these were statistically tested to select the more appropriate. This is a novelty in the study of accelerated life-test analysis of phycocyanin, since most of the models are based on one accelerating variable at the time and the relationship between accelerating variables has not been explored before. We were able to develop a methodology to evaluate the effect of two accelerating life factors at once using CPC as model which is highly precise and easy to apply.
{"title":"Phycocyanin Thermo-photostability: an Accelerated Life-test Analysis","authors":"Froylán M. E. Escalante, Daniel A. Pérez-Rico, Jorge Alarcón-Jiménez, Escarlett González-Morales, Luis Felipe Guerra-Álvarez, J. Ramírez-Vázquez, H. Gutiérrez-Pulido","doi":"10.29356/jmcs.v64i3.1157","DOIUrl":"https://doi.org/10.29356/jmcs.v64i3.1157","url":null,"abstract":"Phycocyanin is a natural blue colorant with antioxidant activity which can be safely used in food, however its rapid degradation is still a concern for food manufacturing. Phycocyanin is easily degraded when exposed to mid-temperatures and/or light. Several studies have been stablished the degradation kinetics of aqueous solutions evaluating temperature or light as accelerating factors using a first order kinetic model and, both factors have been studied by separate or fixing one of them to evaluate the combined effect. The aim of this work was to develop an empirical model able to predict the effect of temperature and light combined in the degradation ratio of this pigment at selected storage conditions. We have tested five correlation models to fit temperature, light and time data to the degradation ratio of the phycocyanin; these were statistically tested to select the more appropriate. This is a novelty in the study of accelerated life-test analysis of phycocyanin, since most of the models are based on one accelerating variable at the time and the relationship between accelerating variables has not been explored before. We were able to develop a methodology to evaluate the effect of two accelerating life factors at once using CPC as model which is highly precise and easy to apply.","PeriodicalId":21347,"journal":{"name":"Revista de la Sociedad Química de Mexico","volume":"263 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76771097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.29356/jmcs.v64i3.1139
F. Al-Qaim, Z. Mussa, A. Yuzir, K. Shameli
Metoprolol (MTP) is one of pharmaceuticals used for treatment of heart failure and hypertension. It was frequently detected in wastewater samples either influent or effluent. The application of graphite-PVC composite as anode was investigated for the degradation of metoprolol in the presence of strong electrolyte such as sodium chloride (NaCl). The degradation rate was strongly influenced by initial concentrations of metoprolol, NaCl concentration and applied voltage. An initial concentration of 2 mg/L was eliminated more than 95% after 30 min under optimum conditions; 5000 mg/L NaCl and 5 V. The consumption energy of the electrochemical reaction was 0.665 Wh/mg for metoprolol after 30 min. The kinetic rate constant of metoprolol could be ranged between 0.0016 and 0.0801 min-1. The electrochemical degradation efficiency of metoprolol and its by-products has been achieved. The degradation of metoprolol produced four transformated products as investigated and elucidated using liquid chromatography-time of flight/mass spectrometry. The proposed degradation pathway of metoprolol was schemed on the base of the identified intermediates.
{"title":"Electrochemical Degradation of Metoprolol Using Graphite-PVC Composite as Anode: Elucidation and Characterization of New by-products Using LC-TOF/MS","authors":"F. Al-Qaim, Z. Mussa, A. Yuzir, K. Shameli","doi":"10.29356/jmcs.v64i3.1139","DOIUrl":"https://doi.org/10.29356/jmcs.v64i3.1139","url":null,"abstract":"Metoprolol (MTP) is one of pharmaceuticals used for treatment of heart failure and hypertension. It was frequently detected in wastewater samples either influent or effluent. The application of graphite-PVC composite as anode was investigated for the degradation of metoprolol in the presence of strong electrolyte such as sodium chloride (NaCl). The degradation rate was strongly influenced by initial concentrations of metoprolol, NaCl concentration and applied voltage. An initial concentration of 2 mg/L was eliminated more than 95% after 30 min under optimum conditions; 5000 mg/L NaCl and 5 V. The consumption energy of the electrochemical reaction was 0.665 Wh/mg for metoprolol after 30 min. The kinetic rate constant of metoprolol could be ranged between 0.0016 and 0.0801 min-1. The electrochemical degradation efficiency of metoprolol and its by-products has been achieved. The degradation of metoprolol produced four transformated products as investigated and elucidated using liquid chromatography-time of flight/mass spectrometry. The proposed degradation pathway of metoprolol was schemed on the base of the identified intermediates.","PeriodicalId":21347,"journal":{"name":"Revista de la Sociedad Química de Mexico","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88057358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.29356/jmcs.v64i3.1153
O. Kochkodan, N. Slobodianiuk, L. Kovshun, Olena Hyzhan
The effect of intermolecular interactions on processes of micelle formation and adsorption in binary mixtures of non-ionic Triton X100 (TX100) with ionic sodium dodecyl sulfate and dodecylpyridinium bromide surfactants was studied. The ionic surfactants have identical hydrophobic alkyl chain and different hydrophilic groups. A feature of the used binary surfactant mixtures is that critical micelle concentrations and surface activity of the individual components are considerably different. A synergetic effect of decreasing of the surface tension was found in the surfactant mixtures. It was shown that the mixed adsorption layers and the micellar phases are enriched with the nonionic surfactant. For both sodium dodecyl sulfate/TX100 and dodecylpyridinium bromide/TX100 systems, the synergetic effects were most pronounced at a high molar fraction of the nonionic surfactants in the mixture. By using the Ruben-Rosen model, molecular interaction parameters in the mixed micelles βm, and in the adsorption layers βσ were evaluated. As was shown βm and βσ parameters to be notably higher for sodium dodecyl sulfate/TX100 mixture.
{"title":"Molecular Interactions in Binary Surfactant Solutions: Effect of Ionic Counterpart","authors":"O. Kochkodan, N. Slobodianiuk, L. Kovshun, Olena Hyzhan","doi":"10.29356/jmcs.v64i3.1153","DOIUrl":"https://doi.org/10.29356/jmcs.v64i3.1153","url":null,"abstract":"The effect of intermolecular interactions on processes of micelle formation and adsorption in binary mixtures of non-ionic Triton X100 (TX100) with ionic sodium dodecyl sulfate and dodecylpyridinium bromide surfactants was studied. The ionic surfactants have identical hydrophobic alkyl chain and different hydrophilic groups. A feature of the used binary surfactant mixtures is that critical micelle concentrations and surface activity of the individual components are considerably different. A synergetic effect of decreasing of the surface tension was found in the surfactant mixtures. It was shown that the mixed adsorption layers and the micellar phases are enriched with the nonionic surfactant. For both sodium dodecyl sulfate/TX100 and dodecylpyridinium bromide/TX100 systems, the synergetic effects were most pronounced at a high molar fraction of the nonionic surfactants in the mixture. By using the Ruben-Rosen model, molecular interaction parameters in the mixed micelles βm, and in the adsorption layers βσ were evaluated. As was shown βm and βσ parameters to be notably higher for sodium dodecyl sulfate/TX100 mixture.","PeriodicalId":21347,"journal":{"name":"Revista de la Sociedad Química de Mexico","volume":"62 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84299112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.29356/jmcs.v64i3.1152
O. Ramírez-Marroquín, M. A. Jiménez-Arellanes, J. Luna-Herrera, J. L. Olivares‐Romero, I. Bonilla‐Landa, Karla V. Castro-Cerritos
In the present study we evaluated six α,β-unsaturated amides named piperlotines (for being isolated originally from Piper species) as new in vivo anti-inflammatory agents. In addition, we report the mechanosynthesis of two of them by mechanochemical activation of a Horner-Wadsworth-Emmons reaction. The reaction of β-amidophosphonate 4, an aromatic aldehyde and K2CO3 under grinding in a mortar and pestle afforded piperlotines 5-6 in good yields (70-88%) in short reaction times, obtaining only (E)-diastereomer. Piperlotines previously prepared were tested as anti-inflammatory and antibacterial agents. In this respect, derivatives 2 and 6 exhibited excellent in vivo anti-inflammatory activity on mice, especially trough topical administration (TPA acute inflammation model). Furthermore, piperlotine A, and compounds 2 and 6 had slight antimycobacterial activity against Mycobacterium tuberculosis (MIC = 50 μg/mL). In conclusion, the solventfree mechanosynthesis of piperlotines produced valuable compounds that could serve as templates for further investigation in the search of better drug-like compounds for the treatment of inflammatory diseases.
{"title":"Anti-inflammatory Activity of Piperlotines","authors":"O. Ramírez-Marroquín, M. A. Jiménez-Arellanes, J. Luna-Herrera, J. L. Olivares‐Romero, I. Bonilla‐Landa, Karla V. Castro-Cerritos","doi":"10.29356/jmcs.v64i3.1152","DOIUrl":"https://doi.org/10.29356/jmcs.v64i3.1152","url":null,"abstract":"In the present study we evaluated six α,β-unsaturated amides named piperlotines (for being isolated originally from Piper species) as new in vivo anti-inflammatory agents. In addition, we report the mechanosynthesis of two of them by mechanochemical activation of a Horner-Wadsworth-Emmons reaction. The reaction of β-amidophosphonate 4, an aromatic aldehyde and K2CO3 under grinding in a mortar and pestle afforded piperlotines 5-6 in good yields (70-88%) in short reaction times, obtaining only (E)-diastereomer. Piperlotines previously prepared were tested as anti-inflammatory and antibacterial agents. In this respect, derivatives 2 and 6 exhibited excellent in vivo anti-inflammatory activity on mice, especially trough topical administration (TPA acute inflammation model). Furthermore, piperlotine A, and compounds 2 and 6 had slight antimycobacterial activity against Mycobacterium tuberculosis (MIC = 50 μg/mL). In conclusion, the solventfree mechanosynthesis of piperlotines produced valuable compounds that could serve as templates for further investigation in the search of better drug-like compounds for the treatment of inflammatory diseases.","PeriodicalId":21347,"journal":{"name":"Revista de la Sociedad Química de Mexico","volume":"18 1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78040138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.29356/jmcs.v64i3.1198
Hung Yu Lin, B. Xiao, Yang Liu
Abstract. A novel type of multifunctional nanocatalysts (La-/Sm-PMO-ILCl) based on the immobilization of benzotriazolium ionic liquid and further incorporation of samarium acetate or lanthanum acetate onto periodic mesoporous organosilica were afforded for the cycloaddition of CO2 and epoxides to produce cyclic carbonates. In consequence of the intramolecular synergistic effect between samarium sites of periodic mesoporous organosilica and homogeneously dispersed basic sites of ionic liquid, the powerful catalyst Sm-PMO-ILCl offered superior catalytic performance with ultra high yields and selectivities in the cycloaddition reaction without the addition of any solvent and cocatalyst. Moreover, the catalyst Sm-PMO-ILCl could be easily recovered by filtration and reused for at least five runs without any significant loss of its catalytic activity. Resumen. Se prepararon nuevos nano catalizadores (La-(Sm-PMO-ILC1) por la via de inmovilizacion del liquido ionico benzotriazolium y adicion se acetato de samario o acetato de lantano en organosilice mesoporosa. Los catalizadores se evaluaron en la ciclo adicion de CO2 y epoxidos para producir carbonatos ciclicos. El efecto sinergico intramolecular entre los sitios de samario de la organosilice y los sitios basicos del liquido ionico homogeneamente distribuidos inducen una alta actividad catalitica en el catalizador Sm-PMO-ILC1. Asi, con este catalizador se obtuvo alta conversion y selectividad en la reaccion de ciclo adicion, sin agregar solvente ni co-catalizador. Ademas, el catalizador Sm-PMO-ILC1 podria recuperarse facilmente por filtracion y reusado por al menos 5 corridas sin perdida significativa de su actividad catalitica.
{"title":"Highly Active Benzotriazolium Ionic Liquid-modified Periodic Mesoporous Organosilica Supported Samarium/Lanthanum Nanoparticles for Sustainable Transformation of Carbon Dioxide to Cyclic Carbonates","authors":"Hung Yu Lin, B. Xiao, Yang Liu","doi":"10.29356/jmcs.v64i3.1198","DOIUrl":"https://doi.org/10.29356/jmcs.v64i3.1198","url":null,"abstract":"Abstract. A novel type of multifunctional nanocatalysts (La-/Sm-PMO-ILCl) based on the immobilization of benzotriazolium ionic liquid and further incorporation of samarium acetate or lanthanum acetate onto periodic mesoporous organosilica were afforded for the cycloaddition of CO2 and epoxides to produce cyclic carbonates. In consequence of the intramolecular synergistic effect between samarium sites of periodic mesoporous organosilica and homogeneously dispersed basic sites of ionic liquid, the powerful catalyst Sm-PMO-ILCl offered superior catalytic performance with ultra high yields and selectivities in the cycloaddition reaction without the addition of any solvent and cocatalyst. Moreover, the catalyst Sm-PMO-ILCl could be easily recovered by filtration and reused for at least five runs without any significant loss of its catalytic activity. \u0000Resumen. Se prepararon nuevos nano catalizadores (La-(Sm-PMO-ILC1) por la via de inmovilizacion del liquido ionico benzotriazolium y adicion se acetato de samario o acetato de lantano en organosilice mesoporosa. Los catalizadores se evaluaron en la ciclo adicion de CO2 y epoxidos para producir carbonatos ciclicos. El efecto sinergico intramolecular entre los sitios de samario de la organosilice y los sitios basicos del liquido ionico homogeneamente distribuidos inducen una alta actividad catalitica en el catalizador Sm-PMO-ILC1. Asi, con este catalizador se obtuvo alta conversion y selectividad en la reaccion de ciclo adicion, sin agregar solvente ni co-catalizador. Ademas, el catalizador Sm-PMO-ILC1 podria recuperarse facilmente por filtracion y reusado por al menos 5 corridas sin perdida significativa de su actividad catalitica.","PeriodicalId":21347,"journal":{"name":"Revista de la Sociedad Química de Mexico","volume":"62 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86252767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-04DOI: 10.29356/JMCS.V64I2.1111
Haydar A. Mohammad-Salim, Rezan J. Hassan, H. Abdallah, M. Oftadeh
The reaction mechanisms of [3+2] cycloaddition (32CA) between the α,β-unsaturated selenoaldehyde with nitrone and nitrile oxide were investigated theoretically using the molecular electron density theory (MEDT). Selenoaldehyde has two unsaturations which allow for the cycloaddition occurring. It was expected to undergo four regioisomeric reaction paths in two separate reactions with nitrone and nitrile oxide. The study was conducted using ab initio approach at MP2/6-31G(d) level of theory. Potential energy surfaces were generated from the energies of the stationary points involved in the mechanisms and the dominant reaction pathways were identified. It was found that Pathway 3 and 4 are the two competing reaction channels, where the cycloaddition reaction occurs at the selenium-analogue carbonyl group of selenoaldehyde. The reactivity indices were analysed at the ground state of the reactants to predict the reactivity of studied organic molecules in 32CA reactions. Analysis of the electronic structure of nitrone and nitrile oxide, the three-atomcomponents (TACs), and their participation in 32CA reactions towards selenoaldehyde allows establishing a useful classification of 32CA reactions into zwitterionin-type (zw-type) reactions involving TACs with a high zwitterionic character.
{"title":"The Theoretical Study on the Mechanism of [3+2] Cycloaddition Reactions between α,β-unsaturated Selenoaldehyde with Nitrone and with Nitrile Oxide","authors":"Haydar A. Mohammad-Salim, Rezan J. Hassan, H. Abdallah, M. Oftadeh","doi":"10.29356/JMCS.V64I2.1111","DOIUrl":"https://doi.org/10.29356/JMCS.V64I2.1111","url":null,"abstract":"The reaction mechanisms of [3+2] cycloaddition (32CA) between the α,β-unsaturated selenoaldehyde with nitrone and nitrile oxide were investigated theoretically using the molecular electron density theory (MEDT). Selenoaldehyde has two unsaturations which allow for the cycloaddition occurring. It was expected to undergo four regioisomeric reaction paths in two separate reactions with nitrone and nitrile oxide. The study was conducted using ab initio approach at MP2/6-31G(d) level of theory. Potential energy surfaces were generated from the energies of the stationary points involved in the mechanisms and the dominant reaction pathways were identified. It was found that Pathway 3 and 4 are the two competing reaction channels, where the cycloaddition reaction occurs at the selenium-analogue carbonyl group of selenoaldehyde. The reactivity indices were analysed at the ground state of the reactants to predict the reactivity of studied organic molecules in 32CA reactions. Analysis of the electronic structure of nitrone and nitrile oxide, the three-atomcomponents (TACs), and their participation in 32CA reactions towards selenoaldehyde allows establishing a useful classification of 32CA reactions into zwitterionin-type (zw-type) reactions involving TACs with a high zwitterionic character.","PeriodicalId":21347,"journal":{"name":"Revista de la Sociedad Química de Mexico","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83741739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-04DOI: 10.29356/jmcs.v64i2.1093
R. Joshi
The present study explored essential oil constituents of the medicinal plants used in traditional medicine and growing wild in the Western Ghats region of India, which is one of the 34 global biodiversity hotspots. The hydro distilled essential oils of Blumea lanceolaria (Roxb.) Druce. (Asteraceae), Heliotropium indicum L. (Boraginaceae) and Triumfetta rhomboidea Jacq. (Tiliaceae) were analyzed using gas chromatography equipped with a flame ionization detector (GC-FID) and gas chromatography coupled with mass spectroscopy (GC/MS). Thirty-six, twenty-seven, and fifty constituents were identified from the essential oils of B. lanceolaria, H. indicum, and T. rhomboidea, respectively comprising 97.3% (B. lanceolaria), 98.2% (H. indicum) and 97.6% (T. rhomboidea) of the total oil constituents. The major compounds of B. lanceolaria, H. indicum, and T. rhomboidea were identified as β-pinene (82.3%), methyl salicylate (54.3%), and βcaryophyllene (28.9%), respectively. The essential of B. lanceolaria was found to be rich in monoterpene hydrocarbons (90.4%), while H. indicum and T. rhomboidea oils were rich in phenyl derivative (72.8%) and sesquiterpene hydrocarbons (69.5%) type constituents, respectively. The common compounds viz., terpin-4-ol and eugenol were identified in the essential oils of B. lanceolaria, H. indicum, and T. rhomboidea.
{"title":"GC-MS Analysis of Volatile Organic Constituents of Traditionally Used Medicinal Plants from the Western Ghats of India: Blumea lanceolaria (Roxb.) Druce., Heliotropium indicum L. and Triumfetta rhomboidea Jacq.","authors":"R. Joshi","doi":"10.29356/jmcs.v64i2.1093","DOIUrl":"https://doi.org/10.29356/jmcs.v64i2.1093","url":null,"abstract":"The present study explored essential oil constituents of the medicinal plants used in traditional medicine and growing wild in the Western Ghats region of India, which is one of the 34 global biodiversity hotspots. The hydro distilled essential oils of Blumea lanceolaria (Roxb.) Druce. (Asteraceae), Heliotropium indicum L. (Boraginaceae) and Triumfetta rhomboidea Jacq. (Tiliaceae) were analyzed using gas chromatography equipped with a flame ionization detector (GC-FID) and gas chromatography coupled with mass spectroscopy (GC/MS). Thirty-six, twenty-seven, and fifty constituents were identified from the essential oils of B. lanceolaria, H. indicum, and T. rhomboidea, respectively comprising 97.3% (B. lanceolaria), 98.2% (H. indicum) and 97.6% (T. rhomboidea) of the total oil constituents. The major compounds of B. lanceolaria, H. indicum, and T. rhomboidea were identified as β-pinene (82.3%), methyl salicylate (54.3%), and βcaryophyllene (28.9%), respectively. The essential of B. lanceolaria was found to be rich in monoterpene hydrocarbons (90.4%), while H. indicum and T. rhomboidea oils were rich in phenyl derivative (72.8%) and sesquiterpene hydrocarbons (69.5%) type constituents, respectively. The common compounds viz., terpin-4-ol and eugenol were identified in the essential oils of B. lanceolaria, H. indicum, and T. rhomboidea.","PeriodicalId":21347,"journal":{"name":"Revista de la Sociedad Química de Mexico","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88715174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}