首页 > 最新文献

RNA Biology最新文献

英文 中文
Identification and functional characterization of lncRNAs involved in human monocyte-to-macrophage differentiation. 参与人类单核细胞向巨噬细胞分化的 lncRNAs 的鉴定和功能表征。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-10-21 DOI: 10.1080/15476286.2024.2417155
Christy Montano, Sergio Covarrubias, Eric Malekos, Sol Katzman, Susan Carpenter

Although long noncoding RNAs (lncRNAs) constitute the majority of the human transcriptome, the functional roles of most remain elusive. While protein-coding genes in macrophage biology have been extensively studied, the contribution of lncRNAs in this context is poorly understood. Given the vast number of lncRNAs (>20,000), identifying candidates for functional characterization poses a significant challenge. Here, we present two complementary approaches to pinpoint and investigate lncRNAs involved in monocyte-to-macrophage differentiation: RNA-seq for functional inference and a high-throughput functional screen. These strategies enabled us to identify four lncRNA regulators of monocyte differentiation: lincRNA-JADE1, lincRNA-ANXA3, GATA2-AS1, and PPP2R5C-AS1. Preliminary insights suggest these lncRNAs may act in cis through neighbouring protein-coding genes, although their precise mechanisms remain to be elucidated. We further discuss the strengths and weaknesses of these methodologies, along with validation pipelines crucial for establishing lncRNA functionality.

尽管长非编码 RNA(lncRNA)构成了人类转录组的大部分,但其中大多数的功能作用仍然难以捉摸。虽然对巨噬细胞生物学中的蛋白编码基因进行了广泛的研究,但对 lncRNA 在这方面的贡献却知之甚少。鉴于 lncRNA 数量庞大(超过 20,000 个),确定候选的功能特征是一项重大挑战。在这里,我们提出了两种互补的方法来确定和研究参与单核细胞向巨噬细胞分化的 lncRNA:RNA-seq功能推断和高通量功能筛选。通过这些策略,我们发现了单核细胞分化的四个lncRNA调控因子:lincRNA-JADE1、lincRNA-ANXA3、GATA2-AS1和PPP2R5C-AS1。初步研究表明,这些lncRNA可能通过相邻的蛋白编码基因顺式作用,但其确切机制仍有待阐明。我们进一步讨论了这些方法的优缺点,以及对确定 lncRNA 功能至关重要的验证管道。
{"title":"Identification and functional characterization of lncRNAs involved in human monocyte-to-macrophage differentiation.","authors":"Christy Montano, Sergio Covarrubias, Eric Malekos, Sol Katzman, Susan Carpenter","doi":"10.1080/15476286.2024.2417155","DOIUrl":"10.1080/15476286.2024.2417155","url":null,"abstract":"<p><p>Although long noncoding RNAs (lncRNAs) constitute the majority of the human transcriptome, the functional roles of most remain elusive. While protein-coding genes in macrophage biology have been extensively studied, the contribution of lncRNAs in this context is poorly understood. Given the vast number of lncRNAs (>20,000), identifying candidates for functional characterization poses a significant challenge. Here, we present two complementary approaches to pinpoint and investigate lncRNAs involved in monocyte-to-macrophage differentiation: RNA-seq for functional inference and a high-throughput functional screen. These strategies enabled us to identify four lncRNA regulators of monocyte differentiation: <i>lincRNA-JADE1</i>, <i>lincRNA-ANXA3</i>, <i>GATA2-AS1</i>, and <i>PPP2R5C-AS1</i>. Preliminary insights suggest these lncRNAs may act in <i>cis</i> through neighbouring protein-coding genes, although their precise mechanisms remain to be elucidated. We further discuss the strengths and weaknesses of these methodologies, along with validation pipelines crucial for establishing lncRNA functionality.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"39-51"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A high-throughput search for intracellular factors that affect RNA folding identifies E. coli proteins PepA and YagL as RNA chaperones that promote RNA remodelling. 通过高通量搜索影响 RNA 折叠的细胞内因子,发现大肠杆菌蛋白 PepA 和 YagL 是促进 RNA 重塑的 RNA 合子。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-11-22 DOI: 10.1080/15476286.2024.2429956
Alejandra Matsuri Rojano-Nisimura, Lucas G Miller, Aparna Anantharaman, Aaron T Middleton, Elroi Kibret, Sung H Jung, Rick Russell, Lydia M Contreras

General RNA chaperones are RNA-binding proteins (RBPs) that interact transiently and non-specifically with RNA substrates and assist in their folding into their native state. In bacteria, these chaperones impact both coding and non-coding RNAs and are particularly important for large, structured RNAs which are prone to becoming kinetically trapped in misfolded states. Currently, due to the limited number of well-characterized examples and the lack of a consensus structural or sequence motif, it is difficult to identify general RNA chaperones in bacteria. Here, we adapted a previously published in vivo RNA regional accessibility probing assay to screen genome wide for intracellular factors in E. coli affecting RNA folding, among which we aimed to uncover novel RNA chaperones. Through this method, we identified eight proteins whose deletion gives changes in regional accessibility within the exogenously expressed Tetrahymena group I intron ribozyme. Furthermore, we purified and measured in vitro properties of two of these proteins, YagL and PepA, which were especially attractive as general chaperone candidates. We showed that both proteins bind RNA and that YagL accelerates native refolding of the ribozyme from a long-lived misfolded state. Further dissection of YagL showed that a putative helix-turn-helix (HTH) domain is responsible for most of its RNA-binding activity, but only the full protein shows chaperone activity. Altogether, this work expands the current repertoire of known general RNA chaperones in bacteria.

一般 RNA 合子是 RNA 结合蛋白(RBPs),能与 RNA 底物发生瞬时和非特异性相互作用,并帮助它们折叠成原生状态。在细菌中,这些伴侣蛋白对编码和非编码 RNA 都有影响,尤其是对大型、结构化的 RNA 尤为重要,因为这些 RNA 很容易在折叠错误的状态下被动力学困住。目前,由于表征良好的例子数量有限,而且缺乏共识的结构或序列图案,因此很难确定细菌中的通用 RNA 伴合子。在这里,我们改良了之前发表的体内 RNA 区域可及性探测方法,在全基因组范围内筛选大肠杆菌中影响 RNA 折叠的细胞内因素,旨在发现其中的新型 RNA 伴侣。通过这种方法,我们确定了 8 种蛋白质,它们的缺失会导致外源表达的四膜虫 I 组内含子核糖酶的区域可及性发生变化。此外,我们还纯化并测量了其中两个蛋白(YagL 和 PepA)的体外特性,这两个蛋白作为通用伴侣候选者特别具有吸引力。我们发现这两种蛋白都能与 RNA 结合,而且 YagL 能加速核糖酶从长期错误折叠状态的原生重折叠。对 YagL 的进一步分析表明,一个假定的螺旋-翻转-螺旋(HTH)结构域负责其大部分的 RNA 结合活性,但只有完整的蛋白质才显示出伴侣活性。总之,这项工作扩大了目前已知的细菌通用 RNA 合子的范围。
{"title":"A high-throughput search for intracellular factors that affect RNA folding identifies <i>E. coli</i> proteins PepA and YagL as RNA chaperones that promote RNA remodelling.","authors":"Alejandra Matsuri Rojano-Nisimura, Lucas G Miller, Aparna Anantharaman, Aaron T Middleton, Elroi Kibret, Sung H Jung, Rick Russell, Lydia M Contreras","doi":"10.1080/15476286.2024.2429956","DOIUrl":"10.1080/15476286.2024.2429956","url":null,"abstract":"<p><p>General RNA chaperones are RNA-binding proteins (RBPs) that interact transiently and non-specifically with RNA substrates and assist in their folding into their native state. In bacteria, these chaperones impact both coding and non-coding RNAs and are particularly important for large, structured RNAs which are prone to becoming kinetically trapped in misfolded states. Currently, due to the limited number of well-characterized examples and the lack of a consensus structural or sequence motif, it is difficult to identify general RNA chaperones in bacteria. Here, we adapted a previously published <i>in vivo</i> RNA regional accessibility probing assay to screen genome wide for intracellular factors in <i>E. coli</i> affecting RNA folding, among which we aimed to uncover novel RNA chaperones. Through this method, we identified eight proteins whose deletion gives changes in regional accessibility within the exogenously expressed <i>Tetrahymena</i> group I intron ribozyme. Furthermore, we purified and measured <i>in vitro</i> properties of two of these proteins, YagL and PepA, which were especially attractive as general chaperone candidates. We showed that both proteins bind RNA and that YagL accelerates native refolding of the ribozyme from a long-lived misfolded state. Further dissection of YagL showed that a putative helix-turn-helix (HTH) domain is responsible for most of its RNA-binding activity, but only the full protein shows chaperone activity. Altogether, this work expands the current repertoire of known general RNA chaperones in bacteria.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"13-30"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587861/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142688565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rbm3 deficiency leads to transcriptome-wide splicing alterations. Rbm3 缺乏会导致整个转录组的剪接改变。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-10-10 DOI: 10.1080/15476286.2024.2413820
Steffen Erkelenz, Marta Grzonka, Antonios Papadakis, Heiner Schaal, Jan H J Hoeijmakers, Ákos Gyenis

Rbm3 (RNA-binding motif protein 3) is a stress responsive gene, which maintains cellular homeostasis and promotes survival upon various harmful cellular stimuli. Rbm3 protein shows conserved structural and molecular similarities to heterogeneous nuclear ribonucleoproteins (hnRNPs), which regulate all steps of the mRNA metabolism. Growing evidence is pointing towards a broader role of Rbm3 in various steps of gene expression. Here, we demonstrate that Rbm3 deficiency is linked to transcriptome-wide pre-mRNA splicing alterations, which can be reversed through Rbm3 co-expression from a cDNA. Using an MS2 tethering assay, we show that Rbm3 regulates splice site selection similar to other hnRNP proteins when recruited between two competing 5 ' splice sites. Furthermore, we show that the N-terminal part of Rbm3 encompassing the RNA recognition motif (RRM), is sufficient to elicit changes in splice site selection. On the basis of these findings, we propose a novel, undescribed function of Rbm3 in RNA splicing that contributes to the preservation of transcriptome integrity.

Rbm3(RNA 结合基序蛋白 3)是一种应激反应基因,它能维持细胞平衡,并在各种有害的细胞刺激下促进细胞存活。Rbm3 蛋白在结构和分子上与异质核核糖核蛋白(hnRNPs)相似,后者调控 mRNA 代谢的所有步骤。越来越多的证据表明,Rbm3 在基因表达的各个步骤中发挥着更广泛的作用。在这里,我们证明了 Rbm3 的缺乏与整个转录组的前 mRNA 剪接改变有关,而这种改变可以通过 cDNA 中 Rbm3 的共同表达来逆转。我们利用 MS2 拴系试验表明,当 Rbm3 被招募到两个相互竞争的 5 ' 剪接位点之间时,它调控剪接位点选择的能力与其他 hnRNP 蛋白类似。此外,我们还发现 Rbm3 的 N 端部分包括 RNA 识别基序(RRM),足以引起剪接位点选择的变化。基于这些发现,我们提出了 Rbm3 在 RNA 剪接中的一种新的、未被描述的功能,它有助于保持转录组的完整性。
{"title":"Rbm3 deficiency leads to transcriptome-wide splicing alterations.","authors":"Steffen Erkelenz, Marta Grzonka, Antonios Papadakis, Heiner Schaal, Jan H J Hoeijmakers, Ákos Gyenis","doi":"10.1080/15476286.2024.2413820","DOIUrl":"10.1080/15476286.2024.2413820","url":null,"abstract":"<p><p><i>Rbm3</i> (RNA-binding motif protein 3) is a stress responsive gene, which maintains cellular homeostasis and promotes survival upon various harmful cellular stimuli. Rbm3 protein shows conserved structural and molecular similarities to heterogeneous nuclear ribonucleoproteins (hnRNPs), which regulate all steps of the mRNA metabolism. Growing evidence is pointing towards a broader role of Rbm3 in various steps of gene expression. Here, we demonstrate that Rbm3 deficiency is linked to transcriptome-wide pre-mRNA splicing alterations, which can be reversed through Rbm3 co-expression from a cDNA. Using an MS2 tethering assay, we show that Rbm3 regulates splice site selection similar to other hnRNP proteins when recruited between two competing 5<math><msup><mi> </mi><mi>'</mi></msup></math> splice sites. Furthermore, we show that the N-terminal part of Rbm3 encompassing the RNA recognition motif (RRM), is sufficient to elicit changes in splice site selection. On the basis of these findings, we propose a novel, undescribed function of Rbm3 in RNA splicing that contributes to the preservation of transcriptome integrity.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-13"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575738/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant ribosomes as a score to fathom the melody of 2'-O-methylation across evolution. 以植物核糖体为乐谱,探索进化过程中 2'-O 甲基化的旋律。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-11-07 DOI: 10.1080/15476286.2024.2417152
Sara Alina Neumann, Christine Gaspin, Julio Sáez-Vásquez

2'-O-ribose methylation (2'-O-Me) is one of the most common RNA modifications detected in ribosomal RNAs (rRNA) from bacteria to eukaryotic cells. 2'-O-Me favours a specific RNA conformation and protects RNA from hydrolysis. Moreover, rRNA 2'-O-Me might stabilize its interactions with messenger RNA (mRNA), transfer RNA (tRNA) or proteins. The extent of rRNA 2'-O-Me fluctuates between species from 3-4 sites in bacteria to tens of sites in archaea, yeast, algae, plants and human. Depending on the organism as well as the rRNA targeting site and position, the 2'-O-Me reaction can be carried out by several site-specific RNA methyltransferases (RMTase) or by a single RMTase associated to specific RNA guides. Here, we review current progresses in rRNA 2'-O-Me (sites/Nm and RMTases) in plants and compare the results with molecular clues from unicellular (bacteria, archaea, algae and yeast) as well as multicellular (human and plants) organisms.

2'-O- 核糖甲基化(2'-O-Me)是在从细菌到真核细胞的核糖体 RNA(rRNA)中检测到的最常见的 RNA 修饰之一。2'-O-Me 有利于特定的 RNA 构象,保护 RNA 免受水解。此外,rRNA 2'-O-Me 可能会稳定其与信使 RNA(mRNA)、转移 RNA(tRNA)或蛋白质的相互作用。rRNA 2'-O-Me 在不同物种中的含量不尽相同,从细菌中的 3-4 个位点到古细菌、酵母、藻类、植物和人类中的数十个位点不等。根据生物体以及 rRNA 靶向位点和位置的不同,2'-O-Me 反应可由多个位点特异的 RNA 甲基转移酶(RMTase)或与特定 RNA 引导相关的单个 RMTase 完成。在此,我们回顾了目前植物中 rRNA 2'-O-Me(位点/Nm 和 RMT 酶)的研究进展,并将研究结果与单细胞生物(细菌、古生菌、藻类和酵母)以及多细胞生物(人类和植物)的分子线索进行了比较。
{"title":"Plant ribosomes as a score to fathom the melody of 2'-<i>O</i>-methylation across evolution.","authors":"Sara Alina Neumann, Christine Gaspin, Julio Sáez-Vásquez","doi":"10.1080/15476286.2024.2417152","DOIUrl":"10.1080/15476286.2024.2417152","url":null,"abstract":"<p><p>2'-<i>O</i>-ribose methylation (2'-<i>O</i>-Me) is one of the most common RNA modifications detected in ribosomal RNAs (rRNA) from bacteria to eukaryotic cells. 2'-<i>O</i>-Me favours a specific RNA conformation and protects RNA from hydrolysis. Moreover, rRNA 2'-<i>O</i>-Me might stabilize its interactions with messenger RNA (mRNA), transfer RNA (tRNA) or proteins. The extent of rRNA 2'-<i>O</i>-Me fluctuates between species from 3-4 sites in bacteria to tens of sites in archaea, yeast, algae, plants and human. Depending on the organism as well as the rRNA targeting site and position, the 2'-<i>O</i>-Me reaction can be carried out by several site-specific RNA methyltransferases (RMTase) or by a single RMTase associated to specific RNA guides. Here, we review current progresses in rRNA 2'-<i>O</i>-Me (sites/Nm and RMTases) in plants and compare the results with molecular clues from unicellular (bacteria, archaea, algae and yeast) as well as multicellular (human and plants) organisms.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"70-81"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542601/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell analysis of the epitranscriptome: RNA modifications under the microscope. 表转录组的单细胞分析:显微镜下的 RNA 修饰。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-02-18 DOI: 10.1080/15476286.2024.2315385
Eva Crespo-García, Alberto Bueno-Costa, Manel Esteller

The identification of mechanisms capable of modifying genetic information by the addition of covalent RNA modifications distinguishes a level of complexity in gene expression which challenges key long-standing concepts of RNA biology. One of the current challenges of molecular biology is to properly understand the molecular functions of these RNA modifications, with more than 170 different ones having been identified so far. However, it has not been possible to map specific RNA modifications at a single-cell resolution until very recently. This review will highlight the technological advances in single-cell methodologies aimed at assessing and testing the biological function of certain RNA modifications, focusing on m6A. These advances have allowed for the development of novel strategies that enable the study of the 'epitranscriptome'. Nevertheless, despite all these improvements, many challenges and difficulties still need fixing for these techniques to work efficiently.

通过添加共价 RNA 修饰物来修改遗传信息的机制的确定,使基因表达的复杂程度得到了提高,这对 RNA 生物学长期以来的关键概念提出了挑战。目前分子生物学面临的挑战之一是正确理解这些 RNA 修饰的分子功能,迄今已发现 170 多种不同的 RNA 修饰。然而,直到最近才有可能绘制单细胞分辨率的特定 RNA 修饰图。本综述将重点介绍旨在评估和测试某些 RNA 修饰(重点是 m6A)的生物功能的单细胞方法的技术进展。这些进步使我们能够开发新的策略来研究 "表转录组"。然而,尽管取得了这些进步,但要使这些技术有效发挥作用,仍需克服许多挑战和困难。
{"title":"Single-cell analysis of the epitranscriptome: RNA modifications under the microscope.","authors":"Eva Crespo-García, Alberto Bueno-Costa, Manel Esteller","doi":"10.1080/15476286.2024.2315385","DOIUrl":"10.1080/15476286.2024.2315385","url":null,"abstract":"<p><p>The identification of mechanisms capable of modifying genetic information by the addition of covalent RNA modifications distinguishes a level of complexity in gene expression which challenges key long-standing concepts of RNA biology. One of the current challenges of molecular biology is to properly understand the molecular functions of these RNA modifications, with more than 170 different ones having been identified so far. However, it has not been possible to map specific RNA modifications at a single-cell resolution until very recently. This review will highlight the technological advances in single-cell methodologies aimed at assessing and testing the biological function of certain RNA modifications, focusing on m<sup>6</sup>A. These advances have allowed for the development of novel strategies that enable the study of the 'epitranscriptome'. Nevertheless, despite all these improvements, many challenges and difficulties still need fixing for these techniques to work efficiently.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-8"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139900374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mature microRNA-binding protein QKI promotes microRNA-mediated gene silencing. 成熟的 microRNA 结合蛋白 QKI 可促进 microRNA 介导的基因沉默。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-02-19 DOI: 10.1080/15476286.2024.2314846
Kyung-Won Min, Myung Hyun Jo, Minseok Song, Ji Won Lee, Min Ji Shim, Kyungmin Kim, Hyun Bong Park, Shinwon Ha, Hyejin Mun, Ahsan Polash, Markus Hafner, Jung-Hyun Cho, Dongsan Kim, Ji-Hoon Jeong, Seungbeom Ko, Sungchul Hohng, Sung-Ung Kang, Je-Hyun Yoon

Although Argonaute (AGO) proteins have been the focus of microRNA (miRNA) studies, we observed AGO-free mature miRNAs directly interacting with RNA-binding proteins, implying the sophisticated nature of fine-tuning gene regulation by miRNAs. To investigate microRNA-binding proteins (miRBPs) globally, we analyzed PAR-CLIP data sets to identify RBP quaking (QKI) as a novel miRBP for let-7b. Potential existence of AGO-free miRNAs were further verified by measuring miRNA levels in genetically engineered AGO-depleted human and mouse cells. We have shown that QKI regulates miRNA-mediated gene silencing at multiple steps, and collectively serves as an auxiliary factor empowering AGO2/let-7b-mediated gene silencing. Depletion of QKI decreases interaction of AGO2 with let-7b and target mRNA, consequently controlling target mRNA decay. This finding indicates that QKI is a complementary factor in miRNA-mediated mRNA decay. QKI, however, also suppresses the dissociation of let-7b from AGO2, and slows the assembly of AGO2/miRNA/target mRNA complexes at the single-molecule level. We also revealed that QKI overexpression suppresses cMYC expression at post-transcriptional level, and decreases proliferation and migration of HeLa cells, demonstrating that QKI is a tumour suppressor gene by in part augmenting let-7b activity. Our data show that QKI is a new type of RBP implicated in the versatile regulation of miRNA-mediated gene silencing.

尽管Argonaute(AGO)蛋白一直是microRNA(miRNA)研究的重点,但我们观察到不含AGO的成熟miRNA直接与RNA结合蛋白相互作用,这意味着miRNA微调基因调控的复杂性。为了在全球范围内研究microRNA结合蛋白(miRBPs),我们分析了PAR-CLIP数据集,发现RBP quaking(QKI)是let-7b的新型miRBP。通过测量基因工程AGO缺失的人类和小鼠细胞中的miRNA水平,进一步验证了不含AGO的miRNA的潜在存在。我们的研究表明,QKI 在多个步骤上调控 miRNA 介导的基因沉默,并共同作为辅助因子赋予 AGO2/let-7b 介导的基因沉默权力。消耗 QKI 会减少 AGO2 与 let-7b 和目的 mRNA 的相互作用,从而控制目的 mRNA 的衰变。这一发现表明,QKI 是 miRNA 介导的 mRNA 衰减过程中的一个互补因子。然而,QKI 也抑制了 let-7b 与 AGO2 的解离,并在单分子水平上减缓了 AGO2/miRNA/ 目标 mRNA 复合物的组装。我们还发现,QKI 的过表达在转录后水平抑制了 cMYC 的表达,并降低了 HeLa 细胞的增殖和迁移,这表明 QKI 在一定程度上增强了 let-7b 的活性,是一种肿瘤抑制基因。我们的数据表明,QKI 是一种新型 RBP,与 miRNA 介导的基因沉默的多功能调控有关。
{"title":"Mature microRNA-binding protein QKI promotes microRNA-mediated gene silencing.","authors":"Kyung-Won Min, Myung Hyun Jo, Minseok Song, Ji Won Lee, Min Ji Shim, Kyungmin Kim, Hyun Bong Park, Shinwon Ha, Hyejin Mun, Ahsan Polash, Markus Hafner, Jung-Hyun Cho, Dongsan Kim, Ji-Hoon Jeong, Seungbeom Ko, Sungchul Hohng, Sung-Ung Kang, Je-Hyun Yoon","doi":"10.1080/15476286.2024.2314846","DOIUrl":"10.1080/15476286.2024.2314846","url":null,"abstract":"<p><p>Although Argonaute (AGO) proteins have been the focus of microRNA (miRNA) studies, we observed AGO-free mature miRNAs directly interacting with RNA-binding proteins, implying the sophisticated nature of fine-tuning gene regulation by miRNAs. To investigate microRNA-binding proteins (miRBPs) globally, we analyzed PAR-CLIP data sets to identify RBP quaking (QKI) as a novel miRBP for let-7b. Potential existence of AGO-free miRNAs were further verified by measuring miRNA levels in genetically engineered AGO-depleted human and mouse cells. We have shown that QKI regulates miRNA-mediated gene silencing at multiple steps, and collectively serves as an auxiliary factor empowering AGO2/let-7b-mediated gene silencing. Depletion of QKI decreases interaction of AGO2 with let-7b and target mRNA, consequently controlling target mRNA decay. This finding indicates that QKI is a complementary factor in miRNA-mediated mRNA decay. QKI, however, also suppresses the dissociation of let-7b from AGO2, and slows the assembly of AGO2/miRNA/target mRNA complexes at the single-molecule level. We also revealed that QKI overexpression suppresses cMYC expression at post-transcriptional level, and decreases proliferation and migration of HeLa cells, demonstrating that QKI is a tumour suppressor gene by in part augmenting let-7b activity. Our data show that QKI is a new type of RBP implicated in the versatile regulation of miRNA-mediated gene silencing.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-15"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139900373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WDR33 alternative polyadenylation is dependent on stochastic poly(a) site usage and splicing efficiencies. WDR33 的替代多腺苷酸化取决于随机多聚(a)位点的使用和剪接效率。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-09-26 DOI: 10.1080/15476286.2024.2408708
Lizhi Liu, Takahiro Seimiya, James L Manley

Transcripts from the human WDR33 gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA) within promoter-proximal introns/exons. This APA, which itself involves usage of multiple PA sites, results in the production of two non-canonical protein isoforms, V2 and V3, that are functionally completely unrelated to the full-length protein, with roles in innate immunity. The mechanism and regulation of WDR33 APA are unclear. Here, we report that levels of the PA factor CFIm25 modulate V2 and V3 expression, and that PA site usage of both V2 and V3 varies in distinct immune responses. Using newly developed assays to measure splicing and PA site strength, we show that splicing of V2-associated intron 6 is inefficient, allowing V2 to be produced using weak PA sites. Usage of V3's strong PA sites, on the other hand, is relatively low, reflecting the high efficiency of intron 7 splicing coupled with dependency on usage of an alternative 3' splice site within the intron. Overall, our findings demonstrate that usage of WDR33 alternative PA sites is stochastic, dependent on a complex interplay between splicing and PA, and thus provide new insights into mechanisms underlying APA.

人类 WDR33 基因编码 mRNA 多腺苷酸化(PA)机制的核心成分,该基因的转录本在启动子近端内含子/外显子中发生替代性多腺苷酸化(APA)。这种替代多腺苷酸化(APA)本身涉及多个 PA 位点的使用,导致产生两种非规范蛋白异构体 V2 和 V3,它们在功能上与全长蛋白完全无关,在先天性免疫中发挥作用。WDR33 APA 的机制和调控尚不清楚。在这里,我们报告了 PA 因子 CFIm25 的水平会调节 V2 和 V3 的表达,而且在不同的免疫反应中,V2 和 V3 的 PA 位点使用情况也不同。利用新开发的测量剪接和PA位点强度的检测方法,我们发现V2-相关内含子6的剪接效率很低,使得V2能够利用弱PA位点产生。另一方面,V3的强PA位点的使用率相对较低,这反映了内含子7剪接的高效率以及对内含子中另一个3'剪接位点使用的依赖性。总之,我们的研究结果表明,WDR33替代PA位点的使用是随机的,取决于剪接和PA之间复杂的相互作用,从而为APA的内在机制提供了新的见解。
{"title":"<i>WDR33</i> alternative polyadenylation is dependent on stochastic poly(a) site usage and splicing efficiencies.","authors":"Lizhi Liu, Takahiro Seimiya, James L Manley","doi":"10.1080/15476286.2024.2408708","DOIUrl":"10.1080/15476286.2024.2408708","url":null,"abstract":"<p><p>Transcripts from the human <i>WDR33</i> gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA) within promoter-proximal introns/exons. This APA, which itself involves usage of multiple PA sites, results in the production of two non-canonical protein isoforms, V2 and V3, that are functionally completely unrelated to the full-length protein, with roles in innate immunity. The mechanism and regulation of <i>WDR33</i> APA are unclear. Here, we report that levels of the PA factor CFIm25 modulate V2 and V3 expression, and that PA site usage of both V2 and V3 varies in distinct immune responses. Using newly developed assays to measure splicing and PA site strength, we show that splicing of V2-associated intron 6 is inefficient, allowing V2 to be produced using weak PA sites. Usage of V3's strong PA sites, on the other hand, is relatively low, reflecting the high efficiency of intron 7 splicing coupled with dependency on usage of an alternative 3' splice site within the intron. Overall, our findings demonstrate that usage of <i>WDR33</i> alternative PA sites is stochastic, dependent on a complex interplay between splicing and PA, and thus provide new insights into mechanisms underlying APA.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"25-35"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445923/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142353014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LncRNAs in melanoma phenotypic plasticity: emerging targets for promising therapies. 黑色素瘤表型可塑性中的 LncRNAs:有望成为疗法的新兴靶点。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-11-05 DOI: 10.1080/15476286.2024.2421672
Tonin Beatriz Cristina Biz, Castro-Silva Carolina de Sousa, Slack Frank John, Jasiulionis Miriam Galvonas

Long non-coding RNAs (lncRNAs) have received growing attention due to their diverse regulatory roles in cancer, including in melanoma, an aggressive type of skin cancer. The plasticity and phenotypic adaptability of melanoma cells are crucial factors contributing to therapeutic resistance. The identification of molecules playing key roles in melanoma cell plasticity could unravel novel and more effective therapeutic targets. This review presents current concepts of melanoma cell plasticity, illustrating its fluidity and dismissing the outdated notion of epithelial-mesenchymal-like transition as a simplistic binary process. Emphasis is placed on the pivotal role of lncRNAs in orchestrating cell plasticity, employing various mechanisms recently elucidated and unveiling their potential as promising targets for novel therapeutic strategies. Insights into the molecular mechanisms coordinated by lncRNAs in melanoma pave the way for the development of RNA-based therapies, holding great promise for enhancing treatment outcomes and offering a glimpse into a more effective approach to melanoma treatment.

长非编码 RNA(lncRNA)在癌症(包括黑色素瘤这种侵袭性皮肤癌)中发挥着多种调控作用,因此受到越来越多的关注。黑色素瘤细胞的可塑性和表型适应性是导致耐药性的关键因素。确定在黑色素瘤细胞可塑性中发挥关键作用的分子,可以揭示新的、更有效的治疗靶点。本综述介绍了黑色素瘤细胞可塑性的现有概念,说明了它的流动性,并否定了上皮-间质样转化这一过时的概念,将其视为简单化的二元过程。文章强调了lncRNA在协调细胞可塑性方面的关键作用,运用了最近阐明的各种机制,并揭示了它们作为新型治疗策略潜在靶点的潜力。对黑色素瘤中由 lncRNAs 协调的分子机制的深入了解为开发基于 RNA 的疗法铺平了道路,为提高治疗效果带来了巨大希望,并为更有效的黑色素瘤治疗方法提供了曙光。
{"title":"LncRNAs in melanoma phenotypic plasticity: emerging targets for promising therapies.","authors":"Tonin Beatriz Cristina Biz, Castro-Silva Carolina de Sousa, Slack Frank John, Jasiulionis Miriam Galvonas","doi":"10.1080/15476286.2024.2421672","DOIUrl":"10.1080/15476286.2024.2421672","url":null,"abstract":"<p><p>Long non-coding RNAs (lncRNAs) have received growing attention due to their diverse regulatory roles in cancer, including in melanoma, an aggressive type of skin cancer. The plasticity and phenotypic adaptability of melanoma cells are crucial factors contributing to therapeutic resistance. The identification of molecules playing key roles in melanoma cell plasticity could unravel novel and more effective therapeutic targets. This review presents current concepts of melanoma cell plasticity, illustrating its fluidity and dismissing the outdated notion of epithelial-mesenchymal-like transition as a simplistic binary process. Emphasis is placed on the pivotal role of lncRNAs in orchestrating cell plasticity, employing various mechanisms recently elucidated and unveiling their potential as promising targets for novel therapeutic strategies. Insights into the molecular mechanisms coordinated by lncRNAs in melanoma pave the way for the development of RNA-based therapies, holding great promise for enhancing treatment outcomes and offering a glimpse into a more effective approach to melanoma treatment.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"81-93"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540095/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid and scalable detection of synthetic mRNA byproducts using polynucleotide phosphorylase and polythymidine oligonucleotides. 使用多核苷酸磷酸化酶和多胸苷寡核苷酸快速、可扩展地检测合成 mRNA 副产品。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-06-05 DOI: 10.1080/15476286.2024.2363029
Francis Combes, Thanh-Huong Bui, Frida J Pettersson, Sjoerd Hak

Production and storage of synthetic mRNA can introduce a variety of byproducts which reduce the overall integrity and functionality of mRNA vaccines and therapeutics. mRNA integrity is therefore designated as a critical quality attribute which must be evaluated with state-of-the-art analytical methods before clinical use. The current study first demonstrates the effect of heat degradation on transcript translatability and then describes a novel enzymatic approach to assess the integrity of conventional mRNA and long self-amplifying mRNA. By first hybridizing oligo-T to the poly(A) tail of intact mRNA and subsequently digesting the unhybridized RNA fragments with a 3'-5' exoribonuclease, individual nucleotides can be selectively released from RNA fragments. The adenosine-based fraction of these nucleotides can then be converted into ATP and detected by luminescence as a sensitive indicator of mRNA byproducts. We developed a polynucleotide phosphorylase (PNPase)-based assay that offers fast and sensitive evaluation of mRNA integrity, regardless of its length, thus presenting a novel and fully scalable alternative to chromatographic-, electrophoresis-, or sequencing-based techniques.

合成 mRNA 的生产和储存会产生各种副产品,从而降低 mRNA 疫苗和疗法的整体完整性和功能性。因此,mRNA 的完整性被指定为一项关键的质量属性,在临床使用前必须使用最先进的分析方法对其进行评估。目前的研究首先证明了热降解对转录本翻译能力的影响,然后介绍了一种新的酶解方法来评估常规 mRNA 和长自增 mRNA 的完整性。首先将寡核苷酸 T 与完整 mRNA 的聚(A)尾杂交,然后用 3'-5' 外切核酸酶消化未杂交的 RNA 片段,就能选择性地从 RNA 片段中释放出单个核苷酸。然后,这些核苷酸中的腺苷酸部分可转化为 ATP,并通过发光检测作为 mRNA 副产物的灵敏指标。我们开发了一种基于多核苷酸磷酸化酶(PNPase)的检测方法,可快速灵敏地评估 mRNA 的完整性(无论其长度如何),从而为基于色谱、电泳或测序的技术提供了一种新颖且完全可扩展的替代方法。
{"title":"Rapid and scalable detection of synthetic mRNA byproducts using polynucleotide phosphorylase and polythymidine oligonucleotides.","authors":"Francis Combes, Thanh-Huong Bui, Frida J Pettersson, Sjoerd Hak","doi":"10.1080/15476286.2024.2363029","DOIUrl":"10.1080/15476286.2024.2363029","url":null,"abstract":"<p><p>Production and storage of synthetic mRNA can introduce a variety of byproducts which reduce the overall integrity and functionality of mRNA vaccines and therapeutics. mRNA integrity is therefore designated as a critical quality attribute which must be evaluated with state-of-the-art analytical methods before clinical use. The current study first demonstrates the effect of heat degradation on transcript translatability and then describes a novel enzymatic approach to assess the integrity of conventional mRNA and long self-amplifying mRNA. By first hybridizing oligo-T to the poly(A) tail of intact mRNA and subsequently digesting the unhybridized RNA fragments with a 3'-5' exoribonuclease, individual nucleotides can be selectively released from RNA fragments. The adenosine-based fraction of these nucleotides can then be converted into ATP and detected by luminescence as a sensitive indicator of mRNA byproducts. We developed a polynucleotide phosphorylase (PNPase)-based assay that offers fast and sensitive evaluation of mRNA integrity, regardless of its length, thus presenting a novel and fully scalable alternative to chromatographic-, electrophoresis-, or sequencing-based techniques.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-8"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11155706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of RNautophagy/DNautophagy-related genes is regulated under control of an innate immune receptor. RNautophagy/DNautophagy 相关基因的表达受先天性免疫受体的调控。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-01-10 DOI: 10.1080/15476286.2023.2291610
Yuuki Fujiwara, Kazuki Oroku, Yinping Zhou, Masayuki Takahashi, Taiichi Katayama, Keiji Wada, Nobuyuki Tsutsumi, Tetsuo Sato, Tomohiro Kabuta

Double-stranded RNA (dsRNA) is a molecular pattern uniquely produced in cells infected with various viruses as a product or byproduct of replication. Cells detect such molecules, which indicate non-self invasion, and induce diverse immune responses to eliminate them. The degradation of virus-derived molecules can also play a role in the removal of pathogens and suppression of their replication. RNautophagy and DNautophagy are cellular degradative pathways in which RNA and DNA are directly imported into a hydrolytic organelle, the lysosome. Two lysosomal membrane proteins, SIDT2 and LAMP2C, mediate nucleic acid uptake via this pathway. Here, we showed that the expression of both SIDT2 and LAMP2C is selectively upregulated during the intracellular detection of poly(I:C), a synthetic analog of dsRNA that mimics viral infection. The upregulation of these two gene products upon poly(I:C) introduction was transient and synchronized. We also observed that the induction of SIDT2 and LAMP2C expression by poly(I:C) was dependent on MDA5, a cytoplasmic innate immune receptor that directly recognizes poly(I:C) and induces various antiviral responses. Finally, we showed that lysosomes can target viral RNA for degradation via RNautophagy and may suppress viral replication. Our results revealed a novel degradative pathway in cells as a downstream component of the innate immune response and provided evidence suggesting that the degradation of viral nucleic acids via RNautophagy/DNautophagy contributes to the suppression of viral replication.

双链 RNA(dsRNA)是受各种病毒感染的细胞中产生的一种独特的分子模式,是病毒复制的产物或副产品。细胞会检测到这种表示非自身入侵的分子,并诱发多种免疫反应来消除它们。病毒衍生分子的降解在清除病原体和抑制其复制方面也能发挥作用。RNautophagy 和 DNautophagy 是细胞降解途径,其中 RNA 和 DNA 被直接导入水解细胞器--溶酶体。两种溶酶体膜蛋白 SIDT2 和 LAMP2C 通过这一途径介导核酸摄取。在这里,我们发现在细胞内检测poly(I:C)(一种模拟病毒感染的dsRNA合成类似物)时,SIDT2和LAMP2C的表达都会选择性上调。在引入 poly(I:C) 时,这两种基因产物的上调是短暂和同步的。我们还观察到,poly(I:C) 诱导 SIDT2 和 LAMP2C 的表达依赖于 MDA5,MDA5 是一种细胞质先天性免疫受体,能直接识别 poly(I:C)并诱导各种抗病毒反应。最后,我们发现溶酶体可通过 RN 自噬作用将病毒 RNA 作为降解目标,并可抑制病毒复制。我们的研究结果揭示了细胞中作为先天性免疫反应下游成分的一种新型降解途径,并提供证据表明,通过 RNautophagy/DNautophagy 降解病毒核酸有助于抑制病毒复制。
{"title":"Expression of RNautophagy/DNautophagy-related genes is regulated under control of an innate immune receptor.","authors":"Yuuki Fujiwara, Kazuki Oroku, Yinping Zhou, Masayuki Takahashi, Taiichi Katayama, Keiji Wada, Nobuyuki Tsutsumi, Tetsuo Sato, Tomohiro Kabuta","doi":"10.1080/15476286.2023.2291610","DOIUrl":"10.1080/15476286.2023.2291610","url":null,"abstract":"<p><p>Double-stranded RNA (dsRNA) is a molecular pattern uniquely produced in cells infected with various viruses as a product or byproduct of replication. Cells detect such molecules, which indicate non-self invasion, and induce diverse immune responses to eliminate them. The degradation of virus-derived molecules can also play a role in the removal of pathogens and suppression of their replication. RNautophagy and DNautophagy are cellular degradative pathways in which RNA and DNA are directly imported into a hydrolytic organelle, the lysosome. Two lysosomal membrane proteins, SIDT2 and LAMP2C, mediate nucleic acid uptake via this pathway. Here, we showed that the expression of both <i>SIDT2</i> and <i>LAMP2C</i> is selectively upregulated during the intracellular detection of poly(I:C), a synthetic analog of dsRNA that mimics viral infection. The upregulation of these two gene products upon poly(I:C) introduction was transient and synchronized. We also observed that the induction of <i>SIDT2</i> and <i>LAMP2C</i> expression by poly(I:C) was dependent on MDA5, a cytoplasmic innate immune receptor that directly recognizes poly(I:C) and induces various antiviral responses. Finally, we showed that lysosomes can target viral RNA for degradation via RNautophagy and may suppress viral replication. Our results revealed a novel degradative pathway in cells as a downstream component of the innate immune response and provided evidence suggesting that the degradation of viral nucleic acids via RNautophagy/DNautophagy contributes to the suppression of viral replication.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-9"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10793664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139417980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
RNA Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1