Pub Date : 2024-01-01Epub Date: 2024-11-05DOI: 10.1080/15476286.2024.2421672
Tonin Beatriz Cristina Biz, Castro-Silva Carolina de Sousa, Slack Frank John, Jasiulionis Miriam Galvonas
Long non-coding RNAs (lncRNAs) have received growing attention due to their diverse regulatory roles in cancer, including in melanoma, an aggressive type of skin cancer. The plasticity and phenotypic adaptability of melanoma cells are crucial factors contributing to therapeutic resistance. The identification of molecules playing key roles in melanoma cell plasticity could unravel novel and more effective therapeutic targets. This review presents current concepts of melanoma cell plasticity, illustrating its fluidity and dismissing the outdated notion of epithelial-mesenchymal-like transition as a simplistic binary process. Emphasis is placed on the pivotal role of lncRNAs in orchestrating cell plasticity, employing various mechanisms recently elucidated and unveiling their potential as promising targets for novel therapeutic strategies. Insights into the molecular mechanisms coordinated by lncRNAs in melanoma pave the way for the development of RNA-based therapies, holding great promise for enhancing treatment outcomes and offering a glimpse into a more effective approach to melanoma treatment.
{"title":"LncRNAs in melanoma phenotypic plasticity: emerging targets for promising therapies.","authors":"Tonin Beatriz Cristina Biz, Castro-Silva Carolina de Sousa, Slack Frank John, Jasiulionis Miriam Galvonas","doi":"10.1080/15476286.2024.2421672","DOIUrl":"10.1080/15476286.2024.2421672","url":null,"abstract":"<p><p>Long non-coding RNAs (lncRNAs) have received growing attention due to their diverse regulatory roles in cancer, including in melanoma, an aggressive type of skin cancer. The plasticity and phenotypic adaptability of melanoma cells are crucial factors contributing to therapeutic resistance. The identification of molecules playing key roles in melanoma cell plasticity could unravel novel and more effective therapeutic targets. This review presents current concepts of melanoma cell plasticity, illustrating its fluidity and dismissing the outdated notion of epithelial-mesenchymal-like transition as a simplistic binary process. Emphasis is placed on the pivotal role of lncRNAs in orchestrating cell plasticity, employing various mechanisms recently elucidated and unveiling their potential as promising targets for novel therapeutic strategies. Insights into the molecular mechanisms coordinated by lncRNAs in melanoma pave the way for the development of RNA-based therapies, holding great promise for enhancing treatment outcomes and offering a glimpse into a more effective approach to melanoma treatment.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"81-93"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540095/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-06-05DOI: 10.1080/15476286.2024.2363029
Francis Combes, Thanh-Huong Bui, Frida J Pettersson, Sjoerd Hak
Production and storage of synthetic mRNA can introduce a variety of byproducts which reduce the overall integrity and functionality of mRNA vaccines and therapeutics. mRNA integrity is therefore designated as a critical quality attribute which must be evaluated with state-of-the-art analytical methods before clinical use. The current study first demonstrates the effect of heat degradation on transcript translatability and then describes a novel enzymatic approach to assess the integrity of conventional mRNA and long self-amplifying mRNA. By first hybridizing oligo-T to the poly(A) tail of intact mRNA and subsequently digesting the unhybridized RNA fragments with a 3'-5' exoribonuclease, individual nucleotides can be selectively released from RNA fragments. The adenosine-based fraction of these nucleotides can then be converted into ATP and detected by luminescence as a sensitive indicator of mRNA byproducts. We developed a polynucleotide phosphorylase (PNPase)-based assay that offers fast and sensitive evaluation of mRNA integrity, regardless of its length, thus presenting a novel and fully scalable alternative to chromatographic-, electrophoresis-, or sequencing-based techniques.
{"title":"Rapid and scalable detection of synthetic mRNA byproducts using polynucleotide phosphorylase and polythymidine oligonucleotides.","authors":"Francis Combes, Thanh-Huong Bui, Frida J Pettersson, Sjoerd Hak","doi":"10.1080/15476286.2024.2363029","DOIUrl":"10.1080/15476286.2024.2363029","url":null,"abstract":"<p><p>Production and storage of synthetic mRNA can introduce a variety of byproducts which reduce the overall integrity and functionality of mRNA vaccines and therapeutics. mRNA integrity is therefore designated as a critical quality attribute which must be evaluated with state-of-the-art analytical methods before clinical use. The current study first demonstrates the effect of heat degradation on transcript translatability and then describes a novel enzymatic approach to assess the integrity of conventional mRNA and long self-amplifying mRNA. By first hybridizing oligo-T to the poly(A) tail of intact mRNA and subsequently digesting the unhybridized RNA fragments with a 3'-5' exoribonuclease, individual nucleotides can be selectively released from RNA fragments. The adenosine-based fraction of these nucleotides can then be converted into ATP and detected by luminescence as a sensitive indicator of mRNA byproducts. We developed a polynucleotide phosphorylase (PNPase)-based assay that offers fast and sensitive evaluation of mRNA integrity, regardless of its length, thus presenting a novel and fully scalable alternative to chromatographic-, electrophoresis-, or sequencing-based techniques.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-8"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11155706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The process of alternative splicing (AS) is widely deregulated in a variety of cancers. Splicing is dependent upon splicing factors. Recently, several long noncoding RNAs (lncRNAs) have been shown to regulate AS by directly/indirectly interacting with splicing factors. This review focuses on the regulation of AS by lncRNAs through their interaction with splicing factors. AS mis-regulation caused by either mutation in splicing factors or deregulated expression of splicing factors and lncRNAs has been shown to be involved in cancer development and progression, making aberrant splicing, splicing factors and lncRNA suitable targets for cancer therapy. This review also addresses some of the current approaches used to target AS, splicing factors and lncRNAs. Finally, we discuss research challenges, some of the unanswered questions in the field and provide recommendations to advance understanding of the nexus of lncRNAs, AS and splicing factors in cancer.
{"title":"The nexus of long noncoding RNAs, splicing factors, alternative splicing and their modulations.","authors":"Pushkar Malakar, Sudhanshu Shukla, Meghna Mondal, Rajesh Kumar Kar, Jawed Akhtar Siddiqui","doi":"10.1080/15476286.2023.2286099","DOIUrl":"10.1080/15476286.2023.2286099","url":null,"abstract":"<p><p>The process of alternative splicing (AS) is widely deregulated in a variety of cancers. Splicing is dependent upon splicing factors. Recently, several long noncoding RNAs (lncRNAs) have been shown to regulate AS by directly/indirectly interacting with splicing factors. This review focuses on the regulation of AS by lncRNAs through their interaction with splicing factors. AS mis-regulation caused by either mutation in splicing factors or deregulated expression of splicing factors and lncRNAs has been shown to be involved in cancer development and progression, making aberrant splicing, splicing factors and lncRNA suitable targets for cancer therapy. This review also addresses some of the current approaches used to target AS, splicing factors and lncRNAs. Finally, we discuss research challenges, some of the unanswered questions in the field and provide recommendations to advance understanding of the nexus of lncRNAs, AS and splicing factors in cancer.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-20"},"PeriodicalIF":4.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761143/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138452371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Double-stranded RNA (dsRNA) is a molecular pattern uniquely produced in cells infected with various viruses as a product or byproduct of replication. Cells detect such molecules, which indicate non-self invasion, and induce diverse immune responses to eliminate them. The degradation of virus-derived molecules can also play a role in the removal of pathogens and suppression of their replication. RNautophagy and DNautophagy are cellular degradative pathways in which RNA and DNA are directly imported into a hydrolytic organelle, the lysosome. Two lysosomal membrane proteins, SIDT2 and LAMP2C, mediate nucleic acid uptake via this pathway. Here, we showed that the expression of both SIDT2 and LAMP2C is selectively upregulated during the intracellular detection of poly(I:C), a synthetic analog of dsRNA that mimics viral infection. The upregulation of these two gene products upon poly(I:C) introduction was transient and synchronized. We also observed that the induction of SIDT2 and LAMP2C expression by poly(I:C) was dependent on MDA5, a cytoplasmic innate immune receptor that directly recognizes poly(I:C) and induces various antiviral responses. Finally, we showed that lysosomes can target viral RNA for degradation via RNautophagy and may suppress viral replication. Our results revealed a novel degradative pathway in cells as a downstream component of the innate immune response and provided evidence suggesting that the degradation of viral nucleic acids via RNautophagy/DNautophagy contributes to the suppression of viral replication.
{"title":"Expression of RNautophagy/DNautophagy-related genes is regulated under control of an innate immune receptor.","authors":"Yuuki Fujiwara, Kazuki Oroku, Yinping Zhou, Masayuki Takahashi, Taiichi Katayama, Keiji Wada, Nobuyuki Tsutsumi, Tetsuo Sato, Tomohiro Kabuta","doi":"10.1080/15476286.2023.2291610","DOIUrl":"10.1080/15476286.2023.2291610","url":null,"abstract":"<p><p>Double-stranded RNA (dsRNA) is a molecular pattern uniquely produced in cells infected with various viruses as a product or byproduct of replication. Cells detect such molecules, which indicate non-self invasion, and induce diverse immune responses to eliminate them. The degradation of virus-derived molecules can also play a role in the removal of pathogens and suppression of their replication. RNautophagy and DNautophagy are cellular degradative pathways in which RNA and DNA are directly imported into a hydrolytic organelle, the lysosome. Two lysosomal membrane proteins, SIDT2 and LAMP2C, mediate nucleic acid uptake via this pathway. Here, we showed that the expression of both <i>SIDT2</i> and <i>LAMP2C</i> is selectively upregulated during the intracellular detection of poly(I:C), a synthetic analog of dsRNA that mimics viral infection. The upregulation of these two gene products upon poly(I:C) introduction was transient and synchronized. We also observed that the induction of <i>SIDT2</i> and <i>LAMP2C</i> expression by poly(I:C) was dependent on MDA5, a cytoplasmic innate immune receptor that directly recognizes poly(I:C) and induces various antiviral responses. Finally, we showed that lysosomes can target viral RNA for degradation via RNautophagy and may suppress viral replication. Our results revealed a novel degradative pathway in cells as a downstream component of the innate immune response and provided evidence suggesting that the degradation of viral nucleic acids via RNautophagy/DNautophagy contributes to the suppression of viral replication.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-9"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10793664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139417980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-03-31DOI: 10.1080/15476286.2024.2328440
Laura Teodori, Marjan Omer, Jørgen Kjems
The RNA molecule plays a pivotal role in many biological processes by relaying genetic information, regulating gene expression, and serving as molecular machines and catalyzers. This inherent versatility of RNA has fueled significant advancements in the field of RNA nanotechnology, driving the engineering of complex nanoscale architectures toward biomedical applications, including targeted drug delivery and bioimaging. RNA polymers, serving as building blocks, offer programmability and predictability of Watson-Crick base pairing, as well as non-canonical base pairing, for the construction of nanostructures with high precision and stoichiometry. Leveraging the ease of chemical modifications to protect the RNA from degradation, researchers have developed highly functional and biocompatible RNA architectures and integrated them into preclinical studies for the delivery of payloads and imaging agents. This review offers an educational introduction to the use of RNA as a biopolymer in the design of multifunctional nanostructures applied to targeted delivery in vivo, summarizing physical and biological barriers along with strategies to overcome them. Furthermore, we highlight the most recent progress in the development of both small and larger RNA nanostructures, with a particular focus on imaging reagents and targeted cancer therapeutics in pre-clinical models and provide insights into the prospects of this rapidly evolving field.
{"title":"RNA nanostructures for targeted drug delivery and imaging.","authors":"Laura Teodori, Marjan Omer, Jørgen Kjems","doi":"10.1080/15476286.2024.2328440","DOIUrl":"10.1080/15476286.2024.2328440","url":null,"abstract":"<p><p>The RNA molecule plays a pivotal role in many biological processes by relaying genetic information, regulating gene expression, and serving as molecular machines and catalyzers. This inherent versatility of RNA has fueled significant advancements in the field of RNA nanotechnology, driving the engineering of complex nanoscale architectures toward biomedical applications, including targeted drug delivery and bioimaging. RNA polymers, serving as building blocks, offer programmability and predictability of Watson-Crick base pairing, as well as non-canonical base pairing, for the construction of nanostructures with high precision and stoichiometry. Leveraging the ease of chemical modifications to protect the RNA from degradation, researchers have developed highly functional and biocompatible RNA architectures and integrated them into preclinical studies for the delivery of payloads and imaging agents. This review offers an educational introduction to the use of RNA as a biopolymer in the design of multifunctional nanostructures applied to targeted delivery <i>in vivo</i>, summarizing physical and biological barriers along with strategies to overcome them. Furthermore, we highlight the most recent progress in the development of both small and larger RNA nanostructures, with a particular focus on imaging reagents and targeted cancer therapeutics in pre-clinical models and provide insights into the prospects of this rapidly evolving field.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-19"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140330105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-09-26DOI: 10.1080/15476286.2024.2408524
Jiali Lyu, Yanrong Zhuang, Yi Lin
Most, if not all organisms exhibit robust rhythmicity of their biological functions, allowing a perpetual adaptation to external clues within the daily 24 hours-cycle. Studies on circadian rhythm regulation primarily focused on transcriptional level, considering mRNA levels to represent the primary determinant of oscillations of intracellular protein levels. However, a plethora of emerging evidence suggests that post-transcriptional regulation, particularly rhythmic mRNA translation, is not solely reliant on the oscillation of transcription. Instead, the circadian regulation of mRNA translation plays a critical role as well. A comprehensive understanding of these mechanisms underlying rhythmic translation and its regulation should bridge the gap in rhythm regulation beyond RNA fluctuations in research, and greatly enhance our comprehension of rhythm generation and maintenance. In this review, we summarize the major mechanisms of circadian regulation of translation, including regulation of translation initiation, elongation, and the alteration in rhythmic translation to external stresses, such as endoplasmic reticulum (ER) stress and ageing. We also illuminate the complex interplay between phase separation and mRNA translation. Together, we have summarized various facets of mRNA translation in circadian regulation, to set on forthcoming studies into the intricate regulatory mechanisms underpinning circadian rhythms and their implications for associated disorders.
{"title":"Circadian regulation of translation.","authors":"Jiali Lyu, Yanrong Zhuang, Yi Lin","doi":"10.1080/15476286.2024.2408524","DOIUrl":"10.1080/15476286.2024.2408524","url":null,"abstract":"<p><p>Most, if not all organisms exhibit robust rhythmicity of their biological functions, allowing a perpetual adaptation to external clues within the daily 24 hours-cycle. Studies on circadian rhythm regulation primarily focused on transcriptional level, considering mRNA levels to represent the primary determinant of oscillations of intracellular protein levels. However, a plethora of emerging evidence suggests that post-transcriptional regulation, particularly rhythmic mRNA translation, is not solely reliant on the oscillation of transcription. Instead, the circadian regulation of mRNA translation plays a critical role as well. A comprehensive understanding of these mechanisms underlying rhythmic translation and its regulation should bridge the gap in rhythm regulation beyond RNA fluctuations in research, and greatly enhance our comprehension of rhythm generation and maintenance. In this review, we summarize the major mechanisms of circadian regulation of translation, including regulation of translation initiation, elongation, and the alteration in rhythmic translation to external stresses, such as endoplasmic reticulum (ER) stress and ageing. We also illuminate the complex interplay between phase separation and mRNA translation. Together, we have summarized various facets of mRNA translation in circadian regulation, to set on forthcoming studies into the intricate regulatory mechanisms underpinning circadian rhythms and their implications for associated disorders.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"14-24"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441039/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142353016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-10-07DOI: 10.1080/15476286.2024.2408523
Giulia Antonazzo, Pascale Gaudet, Ruth C Lovering, Helen Attrill
Regulatory non-coding RNAs (ncRNAs) are increasingly recognized as integral to the control of biological processes. This is often through the targeted regulation of mRNA expression, but this is by no means the only mechanism through which regulatory ncRNAs act. The Gene Ontology (GO) has long been used for the systematic annotation of protein-coding and ncRNA gene function, but rapid progress in the understanding of ncRNAs meant that the ontology needed to be revised to accurately reflect current knowledge. Here, a targeted effort to revise GO terms used for the annotation of regulatory ncRNAs is described, focusing on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). This paper provides guidance to biocurators annotating ncRNA-mediated processes using the GO and serves as background for researchers wishing to make use of the GO in their studies of ncRNAs and the biological processes they regulate.
人们越来越认识到,调控性非编码 RNA(ncRNA)是控制生物过程不可或缺的一部分。这通常是通过有针对性地调控 mRNA 的表达来实现的,但这绝不是调控性 ncRNA 作用的唯一机制。长期以来,基因本体(Gene Ontology,GO)一直被用于系统标注蛋白质编码基因和 ncRNA 基因的功能,但人们对 ncRNA 的认识进展迅速,这意味着需要对本体进行修订,以准确反映当前的知识。本文介绍了有针对性地修订用于注释调控 ncRNA 的 GO 术语的工作,重点是微小 RNA(miRNA)、长非编码 RNA(lncRNA)、小干扰 RNA(siRNA)和 PIWI 交互 RNA(piRNA)。本文为使用 GO 对 ncRNA 介导的过程进行注释的生物学家提供指导,并为希望在研究 ncRNA 及其调控的生物过程时使用 GO 的研究人员提供背景资料。
{"title":"Representation of non-coding RNA-mediated regulation of gene expression using the Gene Ontology.","authors":"Giulia Antonazzo, Pascale Gaudet, Ruth C Lovering, Helen Attrill","doi":"10.1080/15476286.2024.2408523","DOIUrl":"10.1080/15476286.2024.2408523","url":null,"abstract":"<p><p>Regulatory non-coding RNAs (ncRNAs) are increasingly recognized as integral to the control of biological processes. This is often through the targeted regulation of mRNA expression, but this is by no means the only mechanism through which regulatory ncRNAs act. The Gene Ontology (GO) has long been used for the systematic annotation of protein-coding and ncRNA gene function, but rapid progress in the understanding of ncRNAs meant that the ontology needed to be revised to accurately reflect current knowledge. Here, a targeted effort to revise GO terms used for the annotation of regulatory ncRNAs is described, focusing on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). This paper provides guidance to biocurators annotating ncRNA-mediated processes using the GO and serves as background for researchers wishing to make use of the GO in their studies of ncRNAs and the biological processes they regulate.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"36-48"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459742/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-12-19DOI: 10.1080/15476286.2023.2294222
Daniel P Neumann, Katherine A Pillman, B Kate Dredge, Andrew G Bert, Caroline A Phillips, Rachael Lumb, Yesha Ramani, Cameron P Bracken, Brett G Hollier, Luke A Selth, Traude H Beilharz, Gregory J Goodall, Philip A Gregory
Epithelial-mesenchymal transition (EMT) plays important roles in tumour progression and is orchestrated by dynamic changes in gene expression. While it is well established that post-transcriptional regulation plays a significant role in EMT, the extent of alternative polyadenylation (APA) during EMT has not yet been explored. Using 3' end anchored RNA sequencing, we mapped the alternative polyadenylation (APA) landscape following Transforming Growth Factor (TGF)-β-mediated induction of EMT in human mammary epithelial cells and found APA generally causes 3'UTR lengthening during this cell state transition. Investigation of potential mediators of APA indicated the RNA-binding protein Quaking (QKI), a splicing factor induced during EMT, regulates a subset of events including the length of its own transcript. Analysis of QKI crosslinked immunoprecipitation (CLIP)-sequencing data identified the binding of QKI within 3' untranslated regions (UTRs) was enriched near cleavage and polyadenylation sites. Following QKI knockdown, APA of many transcripts is altered to produce predominantly shorter 3'UTRs associated with reduced gene expression. These findings reveal the changes in APA that occur during EMT and identify a potential role for QKI in this process.
{"title":"The landscape of alternative polyadenylation during EMT and its regulation by the RNA-binding protein Quaking.","authors":"Daniel P Neumann, Katherine A Pillman, B Kate Dredge, Andrew G Bert, Caroline A Phillips, Rachael Lumb, Yesha Ramani, Cameron P Bracken, Brett G Hollier, Luke A Selth, Traude H Beilharz, Gregory J Goodall, Philip A Gregory","doi":"10.1080/15476286.2023.2294222","DOIUrl":"10.1080/15476286.2023.2294222","url":null,"abstract":"<p><p>Epithelial-mesenchymal transition (EMT) plays important roles in tumour progression and is orchestrated by dynamic changes in gene expression. While it is well established that post-transcriptional regulation plays a significant role in EMT, the extent of alternative polyadenylation (APA) during EMT has not yet been explored. Using 3' end anchored RNA sequencing, we mapped the alternative polyadenylation (APA) landscape following Transforming Growth Factor (TGF)-β-mediated induction of EMT in human mammary epithelial cells and found APA generally causes 3'UTR lengthening during this cell state transition. Investigation of potential mediators of APA indicated the RNA-binding protein Quaking (QKI), a splicing factor induced during EMT, regulates a subset of events including the length of its own transcript. Analysis of QKI crosslinked immunoprecipitation (CLIP)-sequencing data identified the binding of QKI within 3' untranslated regions (UTRs) was enriched near cleavage and polyadenylation sites. Following QKI knockdown, APA of many transcripts is altered to produce predominantly shorter 3'UTRs associated with reduced gene expression. These findings reveal the changes in APA that occur during EMT and identify a potential role for QKI in this process.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-11"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732628/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138809129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-03-13DOI: 10.1080/15476286.2024.2313881
Jonathan Feicht, Ralf-Peter Jansen
The high-density lipoprotein binding protein (HDLBP) is the human member of an evolutionarily conserved family of RNA-binding proteins, the vigilin protein family. These proteins are characterized by 14 or 15 RNA-interacting KH (heterologous nuclear ribonucleoprotein K homology) domains. While mainly present at the cytoplasmic face of the endoplasmic reticulum, HDLBP and its homologs are also found in the cytosol and nucleus. HDLBP is involved in various processes, including translation, chromosome segregation, cholesterol transport and carcinogenesis. Especially, its association with the latter two has attracted specific interest in the HDLBP's molecular role. In this review, we give an overview of some of the functions of the protein as well as introduce its impact on different kinds of cancer, its connection to lipid metabolism and its role in viral infection. We also aim at addressing the possible use of HDLBP as a drug target or biomarker and discuss its future implications.
{"title":"The high-density lipoprotein binding protein HDLBP is an unusual RNA-binding protein with multiple roles in cancer and disease.","authors":"Jonathan Feicht, Ralf-Peter Jansen","doi":"10.1080/15476286.2024.2313881","DOIUrl":"10.1080/15476286.2024.2313881","url":null,"abstract":"<p><p>The high-density lipoprotein binding protein (HDLBP) is the human member of an evolutionarily conserved family of RNA-binding proteins, the vigilin protein family. These proteins are characterized by 14 or 15 RNA-interacting KH (heterologous nuclear ribonucleoprotein K homology) domains. While mainly present at the cytoplasmic face of the endoplasmic reticulum, HDLBP and its homologs are also found in the cytosol and nucleus. HDLBP is involved in various processes, including translation, chromosome segregation, cholesterol transport and carcinogenesis. Especially, its association with the latter two has attracted specific interest in the HDLBP's molecular role. In this review, we give an overview of some of the functions of the protein as well as introduce its impact on different kinds of cancer, its connection to lipid metabolism and its role in viral infection. We also aim at addressing the possible use of HDLBP as a drug target or biomarker and discuss its future implications.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-10"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939154/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140111326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}