RNA-binding proteins (RBPs) play critical cellular roles by mediating various stages of RNA life cycles. Ssd1, an RBP with pleiotropic effects, has been implicated in aneuploidy tolerance in Saccharomyces cerevisiae but its mechanistic role remains unclear. Here we used a network-based approach to inform on Ssd1's role in aneuploidy tolerance, by identifying and experimentally perturbing a network of RBPs that share mRNA targets with Ssd1. We identified RBPs whose bound mRNA targets significantly overlap with Ssd1 targets. For 14 identified RBPs, we then used a genetic approach to generate all combinations of genotypes for euploid and aneuploid yeast with an extra copy of chromosome XII, with and without SSD1 and/or the RBP of interest. Deletion of 10 RBPs either exacerbated or alleviated the sensitivity of wild-type and/or ssd1∆ cells to chromosome XII duplication, in several cases indicating genetic interactions with SSD1 in the context of aneuploidy. We integrated these findings with results from a global over-expression screen that identified genes whose duplication complements ssd1∆ aneuploid sensitivity. The resulting network points to a sub-group of proteins with shared roles in translational repression and p-body formation, implicating these functions in aneuploidy tolerance. Our results reveal a role for new RBPs in aneuploidy tolerance and support a model in which Ssd1 mitigates translation-related stresses in aneuploid cells.
{"title":"Investigating the role of RNA-binding protein Ssd1 in aneuploidy tolerance through network analysis.","authors":"H Auguste Dutcher, Audrey P Gasch","doi":"10.1261/rna.080199.124","DOIUrl":"10.1261/rna.080199.124","url":null,"abstract":"<p><p>RNA-binding proteins (RBPs) play critical cellular roles by mediating various stages of RNA life cycles. Ssd1, an RBP with pleiotropic effects, has been implicated in aneuploidy tolerance in Saccharomyces cerevisiae but its mechanistic role remains unclear. Here we used a network-based approach to inform on Ssd1's role in aneuploidy tolerance, by identifying and experimentally perturbing a network of RBPs that share mRNA targets with Ssd1. We identified RBPs whose bound mRNA targets significantly overlap with Ssd1 targets. For 14 identified RBPs, we then used a genetic approach to generate all combinations of genotypes for euploid and aneuploid yeast with an extra copy of chromosome XII, with and without SSD1 and/or the RBP of interest. Deletion of 10 RBPs either exacerbated or alleviated the sensitivity of wild-type and/or ssd1∆ cells to chromosome XII duplication, in several cases indicating genetic interactions with SSD1 in the context of aneuploidy. We integrated these findings with results from a global over-expression screen that identified genes whose duplication complements ssd1∆ aneuploid sensitivity. The resulting network points to a sub-group of proteins with shared roles in translational repression and p-body formation, implicating these functions in aneuploidy tolerance. Our results reveal a role for new RBPs in aneuploidy tolerance and support a model in which Ssd1 mitigates translation-related stresses in aneuploid cells.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aleksandra Jarmolowicz, Nivedita Dutta, Witold Andralojc, Joanna Sarzynska, Grzegorz Framski, Daniel Baranowski, Jerzy Boryski, Ansuman Lahiri, Zofia Gdaniec, Elzbieta Kierzek, Ryszard Kierzek
During chemical synthesis of the purine riboside, the N7-regioisomer is kinetically formed whereas the N9-regioisomer is a thermodynamically formed product. We have studied the effect of substituting the N9-regioisomer of guanosine with its N7-regioisomer (N7-guanosine, 7G) at a central position of several RNA duplexes. We found that this single substitution by 7G severely diminished their thermodynamic stabilities when 7G paired with C and U, but remarkably, led to a significant amount of stabilization in most of the duplexes when forming mismatches with G and A. The extent of stabilization was observed to be dependent on the sequence and orientation of neighboring base pairs of N7-guanosine. 1D and 2D NMR studies on the duplexes along with extensive molecular dynamics simulations revealed the conformational differences occurring due to substitution of G by 7G and it was observed that the thermodynamic results were largely explainable by considering the formation of stable non-canonical hydrogen bonding interactions, although other interactions such as stacking and electrostatic interactions could also play a role. These observations can have important applications in the design of RNA-based disease diagnostics and therapeutics.
在嘌呤核苷的化学合成过程中,N7-杂环异构体是动力学形成的,而 N9-杂环异构体则是热力学形成的产物。我们研究了在几个 RNA 双链的中心位置用鸟苷的 N7-regioisomer (N7-鸟苷,7G)取代鸟苷的 N9-regioisomer 的效果。我们发现,当 7G 与 C 和 U 配对时,7G 的单次取代会严重降低它们的热力学稳定性,但值得注意的是,当 7G 与 G 和 A 形成错配时,大多数双链体的稳定性会显著提高。对双链体进行的一维和二维核磁共振研究以及广泛的分子动力学模拟揭示了由于 G 被 7G 取代而产生的构象差异,并观察到热力学结果在很大程度上可以通过考虑形成稳定的非经典氢键相互作用来解释,尽管其他相互作用(如堆积和静电相互作用)也可能发挥作用。这些观察结果可在设计基于 RNA 的疾病诊断和治疗中得到重要应用。
{"title":"The oligonucleotides containing N7-regioisomer of guanosine. Influence on thermodynamic properties and structure of RNA duplexes.","authors":"Aleksandra Jarmolowicz, Nivedita Dutta, Witold Andralojc, Joanna Sarzynska, Grzegorz Framski, Daniel Baranowski, Jerzy Boryski, Ansuman Lahiri, Zofia Gdaniec, Elzbieta Kierzek, Ryszard Kierzek","doi":"10.1261/rna.080106.124","DOIUrl":"https://doi.org/10.1261/rna.080106.124","url":null,"abstract":"<p><p>During chemical synthesis of the purine riboside, the N7-regioisomer is kinetically formed whereas the N9-regioisomer is a thermodynamically formed product. We have studied the effect of substituting the N9-regioisomer of guanosine with its N7-regioisomer (N7-guanosine, 7G) at a central position of several RNA duplexes. We found that this single substitution by 7G severely diminished their thermodynamic stabilities when 7G paired with C and U, but remarkably, led to a significant amount of stabilization in most of the duplexes when forming mismatches with G and A. The extent of stabilization was observed to be dependent on the sequence and orientation of neighboring base pairs of N7-guanosine. 1D and 2D NMR studies on the duplexes along with extensive molecular dynamics simulations revealed the conformational differences occurring due to substitution of G by 7G and it was observed that the thermodynamic results were largely explainable by considering the formation of stable non-canonical hydrogen bonding interactions, although other interactions such as stacking and electrostatic interactions could also play a role. These observations can have important applications in the design of RNA-based disease diagnostics and therapeutics.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Using a graph representation of RNA structures, we have studied the ensembles of secondary and tertiary graphs two sets of RNA with Monte Carlo simulations. The first consisted of 91 target ribozyme and riboswitch sequences of moderate lengths (< 150 nt) having a variety of secondary, H-type pseudoknots and kissing loop interactions. The second set consisted of 71 more diverse sequences across many RNA families. Using a simple empirical energy model for tertiary interactions and only sequence information for each target as input, the simulations examined how tertiary interactions impact the statistical mechanics of the fold ensembles. The results show that the graphs proliferate enormously when tertiary interactions are possible, producing an entropic driving force for the ensemble to access folds having tertiary structures even though they are overall energetically unfavorable in the energy model. For each of the targets in the two test sets, we assessed the quality of the model and the simulations by examining how well the simulated structures were able to predict the native fold and compared the results to fold predictions from ViennaRNA. Our model generated good or excellent predictions in a large majority of the targets. Overall, this method was able to produce predictions of comparable quality to Vienna, but it outperformed Vienna for structures with H-type pseudoknots. The results suggest that while tertiary interactions are predicated on real-space contacts, their impacts on the folded structure of RNA can be captured by graph space information for sequences of moderate lengths, using a simple tertiary energy model for the loops, the base pairs and base stacks.
{"title":"RNA fold prediction by Monte Carlo in graph space and the statistical mechanics of tertiary interactions.","authors":"Ethan Nhat-Huy Phan, Chi H Mak","doi":"10.1261/rna.080216.124","DOIUrl":"https://doi.org/10.1261/rna.080216.124","url":null,"abstract":"<p><p>Using a graph representation of RNA structures, we have studied the ensembles of secondary and tertiary graphs two sets of RNA with Monte Carlo simulations. The first consisted of 91 target ribozyme and riboswitch sequences of moderate lengths (< 150 nt) having a variety of secondary, H-type pseudoknots and kissing loop interactions. The second set consisted of 71 more diverse sequences across many RNA families. Using a simple empirical energy model for tertiary interactions and only sequence information for each target as input, the simulations examined how tertiary interactions impact the statistical mechanics of the fold ensembles. The results show that the graphs proliferate enormously when tertiary interactions are possible, producing an entropic driving force for the ensemble to access folds having tertiary structures even though they are overall energetically unfavorable in the energy model. For each of the targets in the two test sets, we assessed the quality of the model and the simulations by examining how well the simulated structures were able to predict the native fold and compared the results to fold predictions from ViennaRNA. Our model generated good or excellent predictions in a large majority of the targets. Overall, this method was able to produce predictions of comparable quality to Vienna, but it outperformed Vienna for structures with H-type pseudoknots. The results suggest that while tertiary interactions are predicated on real-space contacts, their impacts on the folded structure of RNA can be captured by graph space information for sequences of moderate lengths, using a simple tertiary energy model for the loops, the base pairs and base stacks.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142507013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ian Hall, Martin O'Steen, Sophie Gold, Sarah C Keane, Chase A Weidmann
RNAs are often studied in non-native sequence contexts to facilitate structural studies. However, seemingly innocuous changes to an RNA sequence may perturb the native structure and generate inaccurate or ambiguous structural models. To facilitate the investigation of native RNA secondary structure by selective 2' hydroxyl acylation analyzed by primer extension (SHAPE), we engineered an approach that couples minimal enzymatic steps to RNA chemical probing and mutational profiling (MaP) reverse transcription (RT) methods - a process we call template switching and mutational profiling (Switch-MaP). In Switch-MaP, RT templates and additional library sequences are added post-probing through ligation and template switching, capturing reactivities for every nucleotide. For a candidate SAM-I riboswitch, we compared RNA structure models generated by the Switch-MaP approach to those of traditional primer-based MaP, including RNAs with or without appended structure cassettes. Primer-based MaP masked reactivity data in the 5' and 3' ends of the RNA, producing ambiguous ensembles inconsistent with the conserved SAM-I riboswitch secondary structure. Structure cassettes enabled unambiguous modeling of an aptamer-only construct but introduced non-native interactions in the full length riboswitch. In contrast, Switch-MaP provided reactivity data for all nucleotides in each RNA and enabled unambiguous modeling of secondary structure, consistent with the conserved SAM-I fold. Switch-MaP is a straightforward alternative approach to primer-based and cassette-based chemical probing methods that precludes primer masking and the formation of alternative secondary structures due to non-native sequence elements.
{"title":"Template switching enables chemical probing of native RNA structures.","authors":"Ian Hall, Martin O'Steen, Sophie Gold, Sarah C Keane, Chase A Weidmann","doi":"10.1261/rna.079926.123","DOIUrl":"https://doi.org/10.1261/rna.079926.123","url":null,"abstract":"<p><p>RNAs are often studied in non-native sequence contexts to facilitate structural studies. However, seemingly innocuous changes to an RNA sequence may perturb the native structure and generate inaccurate or ambiguous structural models. To facilitate the investigation of native RNA secondary structure by selective 2' hydroxyl acylation analyzed by primer extension (SHAPE), we engineered an approach that couples minimal enzymatic steps to RNA chemical probing and mutational profiling (MaP) reverse transcription (RT) methods - a process we call template switching and mutational profiling (Switch-MaP). In Switch-MaP, RT templates and additional library sequences are added post-probing through ligation and template switching, capturing reactivities for every nucleotide. For a candidate SAM-I riboswitch, we compared RNA structure models generated by the Switch-MaP approach to those of traditional primer-based MaP, including RNAs with or without appended structure cassettes. Primer-based MaP masked reactivity data in the 5' and 3' ends of the RNA, producing ambiguous ensembles inconsistent with the conserved SAM-I riboswitch secondary structure. Structure cassettes enabled unambiguous modeling of an aptamer-only construct but introduced non-native interactions in the full length riboswitch. In contrast, Switch-MaP provided reactivity data for all nucleotides in each RNA and enabled unambiguous modeling of secondary structure, consistent with the conserved SAM-I fold. Switch-MaP is a straightforward alternative approach to primer-based and cassette-based chemical probing methods that precludes primer masking and the formation of alternative secondary structures due to non-native sequence elements.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142507014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroRNAs (miRNAs) associate with Argonaute (AGO) proteins to form complexes that direct mRNA repression. miRNAs are also the subject of regulation. For example, some miRNAs are destabilized through a pathway in which pairing to specialized transcripts recruits the ZSWIM8 E3 ubiquitin ligase, which polyubiquitinates AGO, leading to its degradation and exposure of the miRNA to cellular nucleases. Here, we found that 22 miRNAs in C. elegans are sensitive to loss of EBAX-1, the ZSWIM8 ortholog in nematodes, implying that these 22 miRNAs might be subject to this pathway of target-directed miRNA degradation (TDMD). The impact of EBAX-1 depended on the developmental stage, with the greatest effect on the miRNA pool (14.5%) observed in L1 larvae and the greatest number of different miRNAs affected (17) observed in germline-depleted adults. The affected miRNAs included the miR-35-42 family, as well as other miRNAs among the least stable in the worm, suggesting that TDMD is a major miRNA destabilization pathway in the worm. The excess miR-35-42 molecules that accumulated in ebax-1 mutants caused increased repression of their predicted target mRNAs and underwent 3' trimming over time. In general, however, miRNAs sensitive to EBAX-1 loss had no consistent pattern of either trimming or tailing. Replacement of the 3' region of miR-43 substantially reduced EBAX-1 sensitivity, a result that differed from that observed previously for miR-35. Together, these findings broaden the implied biological scope of TDMD-like regulation of miRNA stability in animals, and indicate that a role for miRNA 3' sequences is variable in the worm.
{"title":"Widespread destabilization of <i>C. elegans</i> microRNAs by the E3 ubiquitin ligase EBAX-1.","authors":"Michael W Stubna, Aditi Shukla, David P Bartel","doi":"10.1261/rna.080276.124","DOIUrl":"https://doi.org/10.1261/rna.080276.124","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) associate with Argonaute (AGO) proteins to form complexes that direct mRNA repression. miRNAs are also the subject of regulation. For example, some miRNAs are destabilized through a pathway in which pairing to specialized transcripts recruits the ZSWIM8 E3 ubiquitin ligase, which polyubiquitinates AGO, leading to its degradation and exposure of the miRNA to cellular nucleases. Here, we found that 22 miRNAs in <i>C. elegans</i> are sensitive to loss of EBAX-1, the ZSWIM8 ortholog in nematodes, implying that these 22 miRNAs might be subject to this pathway of target-directed miRNA degradation (TDMD). The impact of EBAX-1 depended on the developmental stage, with the greatest effect on the miRNA pool (14.5%) observed in L1 larvae and the greatest number of different miRNAs affected (17) observed in germline-depleted adults. The affected miRNAs included the miR-35-42 family, as well as other miRNAs among the least stable in the worm, suggesting that TDMD is a major miRNA destabilization pathway in the worm. The excess miR-35-42 molecules that accumulated in <i>ebax-1</i> mutants caused increased repression of their predicted target mRNAs and underwent 3' trimming over time. In general, however, miRNAs sensitive to EBAX-1 loss had no consistent pattern of either trimming or tailing. Replacement of the 3' region of miR-43 substantially reduced EBAX-1 sensitivity, a result that differed from that observed previously for miR-35. Together, these findings broaden the implied biological scope of TDMD-like regulation of miRNA stability in animals, and indicate that a role for miRNA 3' sequences is variable in the worm.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cold shock proteins (Csps), of around 70 amino acids, share a protein fold for the cold shock domain (CSD) that contains RNA binding motifs, RNP1 and RNP2, and constitute one family of bacterial RNA-binding proteins. Despite similar amino acid composition, Csps have been shown to individually possess inherent specific functions. Here we identify the molecular differences in Csps that allow selective recognition of RNA targets. Using chimeras and mutants of Escherichia coli CspD and CspA, we demonstrate that Lys43-Ala44 in an internal loop of CspD and the N-terminal portion with Lys4 of CspA are important for determining their target specificities. Pull-down assays suggest these distinct specificities reflect differences in the ability to act on the target RNAs rather than differences in binding to the RNA targets. A phylogenetic tree constructed from 1,573 Csps reveals that the Csps containing Lys-Ala in the loop form a monophyletic clade, and the members in this clade are shown to have target specificities similar to E. coli CspD. The phylogenetic tree also finds a small cluster of Csps containing Lys-Glu in the loop, and these exhibit different specificity than E. coli CspD. Examination of this difference suggests a role of the loop of CspD type proteins in recognition of specific targets. Additionally, each identified type of Csp shows a different distribution pattern among bacteria. Our findings provide a basis for subclassification of Csps based on target RNA specificity, which will be useful for understanding of the functional specialization of Csps.
{"title":"An internal loop region is responsible for inherent target specificity of bacterial Cold-shock proteins.","authors":"Satoshi Hasegawa, Rerina Inose, Mizuki Igarashi, Megumi Tsurumaki, Motofumi Saito, Tatsuo Yanagisawa, Akio Kanai, Teppei Morita","doi":"10.1261/rna.080163.124","DOIUrl":"https://doi.org/10.1261/rna.080163.124","url":null,"abstract":"<p><p>Cold shock proteins (Csps), of around 70 amino acids, share a protein fold for the cold shock domain (CSD) that contains RNA binding motifs, RNP1 and RNP2, and constitute one family of bacterial RNA-binding proteins. Despite similar amino acid composition, Csps have been shown to individually possess inherent specific functions. Here we identify the molecular differences in Csps that allow selective recognition of RNA targets. Using chimeras and mutants of Escherichia coli CspD and CspA, we demonstrate that Lys43-Ala44 in an internal loop of CspD and the N-terminal portion with Lys4 of CspA are important for determining their target specificities. Pull-down assays suggest these distinct specificities reflect differences in the ability to act on the target RNAs rather than differences in binding to the RNA targets. A phylogenetic tree constructed from 1,573 Csps reveals that the Csps containing Lys-Ala in the loop form a monophyletic clade, and the members in this clade are shown to have target specificities similar to E. coli CspD. The phylogenetic tree also finds a small cluster of Csps containing Lys-Glu in the loop, and these exhibit different specificity than E. coli CspD. Examination of this difference suggests a role of the loop of CspD type proteins in recognition of specific targets. Additionally, each identified type of Csp shows a different distribution pattern among bacteria. Our findings provide a basis for subclassification of Csps based on target RNA specificity, which will be useful for understanding of the functional specialization of Csps.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caitlin Lamb, Emmanuelle Pitre, Sean Ajufo, Charlotte Rigby, Karishma Bisht, Michael Oade, Hamid Jalal, Cameron Myhrvold, Aartjan J W Te Velthuis
Influenza A virus (IAV) RNA synthesis produces full-length and deletion-containing RNA molecules, which include defective viral genomes (DVG) and mini viral RNAs (mvRNA). Sequencing approaches have shown that DVG and mvRNA species may be present during infection, and that they can vary in size, segment origin, and sequence. Moreover, a subset of aberrant RNA molecules can bind and activate host pathogen receptor retinoic acid-inducible gene I (RIG-I), leading to innate immune signaling and the expression of type I and III interferons. Measuring the kinetics and distribution of these immunostimulatory aberrant RNA sequences is important for understanding their function in IAV infection. Here, we explored if IAV mvRNA molecules can be detected and quantified using amplification-free, CRISPR-LbuCas13a-based detection. We show that CRISPR-LbuCas13a can be used to measure the copy numbers of specific mvRNAs in samples from infected tissue culture cells. However, to efficiently detect mvRNAs in other samples, promiscuous CRISPR guide RNAs are required that activate LbuCas13a in the presence of multiple mvRNA sequences. One crRNA was able to detect full-length IAV segment 5 without amplification, allowing it to be used for general IAV infection detection nasopharyngeal swabs. Using CRISPR-LbuCas13a, we confirm that mvRNAs are present in ferret upper and lower respiratory tract tissue, as well as clinical nasopharyngeal swab extracts of hospitalized patients. Overall, CRISPR-LbuCas13a-based RNA detection is a useful tool for studying deletion-containing viral RNAs and it complements existing amplification-based approaches.
{"title":"Quantification of influenza virus mini viral RNAs using Cas13.","authors":"Caitlin Lamb, Emmanuelle Pitre, Sean Ajufo, Charlotte Rigby, Karishma Bisht, Michael Oade, Hamid Jalal, Cameron Myhrvold, Aartjan J W Te Velthuis","doi":"10.1261/rna.080174.124","DOIUrl":"10.1261/rna.080174.124","url":null,"abstract":"<p><p>Influenza A virus (IAV) RNA synthesis produces full-length and deletion-containing RNA molecules, which include defective viral genomes (DVG) and mini viral RNAs (mvRNA). Sequencing approaches have shown that DVG and mvRNA species may be present during infection, and that they can vary in size, segment origin, and sequence. Moreover, a subset of aberrant RNA molecules can bind and activate host pathogen receptor retinoic acid-inducible gene I (RIG-I), leading to innate immune signaling and the expression of type I and III interferons. Measuring the kinetics and distribution of these immunostimulatory aberrant RNA sequences is important for understanding their function in IAV infection. Here, we explored if IAV mvRNA molecules can be detected and quantified using amplification-free, CRISPR-LbuCas13a-based detection. We show that CRISPR-LbuCas13a can be used to measure the copy numbers of specific mvRNAs in samples from infected tissue culture cells. However, to efficiently detect mvRNAs in other samples, promiscuous CRISPR guide RNAs are required that activate LbuCas13a in the presence of multiple mvRNA sequences. One crRNA was able to detect full-length IAV segment 5 without amplification, allowing it to be used for general IAV infection detection nasopharyngeal swabs. Using CRISPR-LbuCas13a, we confirm that mvRNAs are present in ferret upper and lower respiratory tract tissue, as well as clinical nasopharyngeal swab extracts of hospitalized patients. Overall, CRISPR-LbuCas13a-based RNA detection is a useful tool for studying deletion-containing viral RNAs and it complements existing amplification-based approaches.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enisha Sehgal, Chloe Wohlenberg, Evan M Soukup, Marcus J Viscardi, Vitor Hugo Balasco Serrão, Joshua A Arribere
Caenorhabditis elegans is an important model organism for human health and disease, with foundational contributions to the understanding of gene expression and tissue patterning in animals. An invaluable tool in modern gene expression research is the presence of a high-resolution ribosome structure, though no such structure exists for C. elegans Here, we present a high-resolution single-particle cryogenic electron microscopy (cryo-EM) reconstruction and molecular model of a C. elegans ribosome, revealing a significantly streamlined animal ribosome. Many facets of ribosome structure are conserved in C. elegans, including overall ribosomal architecture and the mechanism of cycloheximide, whereas other facets, such as expansion segments and eL28, are rapidly evolving. We identify uL5 and uL23 as two instances of tissue-specific ribosomal protein paralog expression conserved in Caenorhabditis, suggesting that C. elegans ribosomes vary across tissues. The C. elegans ribosome structure will provide a basis for future structural, biochemical, and genetic studies of translation in this important animal system.
{"title":"High-resolution reconstruction of a <i>C. elegans</i> ribosome sheds light on evolutionary dynamics and tissue specificity.","authors":"Enisha Sehgal, Chloe Wohlenberg, Evan M Soukup, Marcus J Viscardi, Vitor Hugo Balasco Serrão, Joshua A Arribere","doi":"10.1261/rna.080103.124","DOIUrl":"10.1261/rna.080103.124","url":null,"abstract":"<p><p><i>Caenorhabditis elegans</i> is an important model organism for human health and disease, with foundational contributions to the understanding of gene expression and tissue patterning in animals. An invaluable tool in modern gene expression research is the presence of a high-resolution ribosome structure, though no such structure exists for <i>C. elegans</i> Here, we present a high-resolution single-particle cryogenic electron microscopy (cryo-EM) reconstruction and molecular model of a <i>C. elegans</i> ribosome, revealing a significantly streamlined animal ribosome. Many facets of ribosome structure are conserved in <i>C. elegans</i>, including overall ribosomal architecture and the mechanism of cycloheximide, whereas other facets, such as expansion segments and eL28, are rapidly evolving. We identify uL5 and uL23 as two instances of tissue-specific ribosomal protein paralog expression conserved in <i>Caenorhabditis</i>, suggesting that <i>C. elegans</i> ribosomes vary across tissues. The <i>C. elegans</i> ribosome structure will provide a basis for future structural, biochemical, and genetic studies of translation in this important animal system.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"1513-1528"},"PeriodicalIF":4.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Internal ribosomal entry sites (IRESs) recruit the ribosome to promote translation, typically in an m7G cap-independent manner. Although IRESs are well-documented in viral genomes, they have also been reported in mammalian transcriptomes, where they have been proposed to mediate cap-independent translation of mRNAs. However, subsequent studies have challenged the idea of these "cellular" IRESs. Current methods for screening and discovering IRES activity rely on a bicistronic reporter assay, which is prone to producing false positive signals if the putative IRES sequence has a cryptic promoter or cryptic splicing sites. Here, we report an assay for screening IRES activity using a genetically encoded circular RNA comprising a split nanoluciferase (nLuc) reporter. The circular split nLuc reporter is less susceptible to the various sources of false positives that adversely affect the bicistronic IRES reporter assay and provides a streamlined method for screening IRES activity. Using the circular split nLuc reporter, we find that nine reported cellular IRESs have minimal IRES activity. Overall, the circular split nLuc reporter offers a simplified approach for identifying and validating IRESs and exhibits reduced propensity for producing the types of false positives that can occur with the bicistronic reporter assay.
{"title":"A circular split nanoluciferase reporter for validating and screening putative internal ribosomal entry site elements.","authors":"Mildred J Unti, Lisa Doetsch, Samie R Jaffrey","doi":"10.1261/rna.080008.124","DOIUrl":"10.1261/rna.080008.124","url":null,"abstract":"<p><p>Internal ribosomal entry sites (IRESs) recruit the ribosome to promote translation, typically in an m7G cap-independent manner. Although IRESs are well-documented in viral genomes, they have also been reported in mammalian transcriptomes, where they have been proposed to mediate cap-independent translation of mRNAs. However, subsequent studies have challenged the idea of these \"cellular\" IRESs. Current methods for screening and discovering IRES activity rely on a bicistronic reporter assay, which is prone to producing false positive signals if the putative IRES sequence has a cryptic promoter or cryptic splicing sites. Here, we report an assay for screening IRES activity using a genetically encoded circular RNA comprising a split nanoluciferase (nLuc) reporter. The circular split nLuc reporter is less susceptible to the various sources of false positives that adversely affect the bicistronic IRES reporter assay and provides a streamlined method for screening IRES activity. Using the circular split nLuc reporter, we find that nine reported cellular IRESs have minimal IRES activity. Overall, the circular split nLuc reporter offers a simplified approach for identifying and validating IRESs and exhibits reduced propensity for producing the types of false positives that can occur with the bicistronic reporter assay.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"1529-1540"},"PeriodicalIF":4.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The SARS-CoV-2 frameshifting element (FSE) has been intensely studied and explored as a therapeutic target for coronavirus diseases, including COVID-19. Besides the intriguing virology, this small RNA is known to adopt many length-dependent conformations, as verified by multiple experimental and computational approaches. However, the role these alternative conformations play in the frameshifting mechanism and how to quantify this structural abundance has been an ongoing challenge. Here, we show by DMS and dual-luciferase functional assays that previously predicted FSE mutants (using the RAG graph theory approach) suppress structural transitions and abolish frameshifting. Furthermore, correlated mutation analysis of DMS data by three programs (DREEM, DRACO, and DANCE-MaP) reveals important differences in their estimation of specific RNA conformations, suggesting caution in the interpretation of such complex conformational landscapes. Overall, the abolished frameshifting in three different mutants confirms that all alternative conformations play a role in the pathways of ribosomal transition.
{"title":"Abolished frameshifting for predicted structure-stabilizing SARS-CoV-2 mutants: implications to alternative conformations and their statistical structural analyses.","authors":"Abhishek Dey, Shuting Yan, Tamar Schlick, Alain Laederach","doi":"10.1261/rna.080035.124","DOIUrl":"10.1261/rna.080035.124","url":null,"abstract":"<p><p>The SARS-CoV-2 frameshifting element (FSE) has been intensely studied and explored as a therapeutic target for coronavirus diseases, including COVID-19. Besides the intriguing virology, this small RNA is known to adopt many length-dependent conformations, as verified by multiple experimental and computational approaches. However, the role these alternative conformations play in the frameshifting mechanism and how to quantify this structural abundance has been an ongoing challenge. Here, we show by DMS and dual-luciferase functional assays that previously predicted FSE mutants (using the RAG graph theory approach) suppress structural transitions and abolish frameshifting. Furthermore, correlated mutation analysis of DMS data by three programs (DREEM, DRACO, and DANCE-MaP) reveals important differences in their estimation of specific RNA conformations, suggesting caution in the interpretation of such complex conformational landscapes. Overall, the abolished frameshifting in three different mutants confirms that all alternative conformations play a role in the pathways of ribosomal transition.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"1437-1450"},"PeriodicalIF":4.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}