首页 > 最新文献

RNA最新文献

英文 中文
NMDtxDB: data-driven identification and annotation of human NMD target transcripts. NMDtxDB:人类 NMD 目标转录本的数据驱动识别和注释。
IF 4.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA
Pub Date : 2024-09-16 DOI: 10.1261/rna.080066.124
Thiago Britto-Borges, Niels H Gehring, Volker Boehm, Christoph Dieterich

The nonsense-mediated RNA decay (NMD) pathway is a crucial mechanism of mRNA quality control. Current annotations of NMD substrate RNAs are rarely data-driven, but use generally established rules. We present a data set with four cell lines and combinations for SMG5, SMG6, and SMG7 knockdowns or SMG7 knockout. Based on this data set, we implemented a workflow that combines Nanopore and Illumina sequencing to assemble a transcriptome, which is enriched for NMD target transcripts. Moreover, we use coding sequence information (CDS) from Ensembl, Gencode consensus Ribo-seq ORFs, and OpenProt to enhance the CDS annotation of novel transcript isoforms. In summary, 302,889 transcripts were obtained from the transcriptome assembly process, out of which 24% are absent from Ensembl database annotations, 48,213 contain a premature stop codon, and 6433 are significantly upregulated in three or more comparisons of NMD active versus deficient cell lines. We present an in-depth view of these results through the NMDtxDB database, which is available at https://shiny.dieterichlab.org/app/NMDtxDB, and supports the study of NMD-sensitive transcripts. We open sourced our implementation of the respective web-application and analysis workflow at https://github.com/dieterich-lab/NMDtxDB and https://github.com/dieterich-lab/nmd-wf.

无义介导的 RNA 衰变(NMD)途径是 mRNA 质量控制的重要机制。目前对 NMD 底物 RNA 的注释很少由数据驱动,而是使用一般的既定规则。我们展示了一个包含 4 个细胞系和 SMG5、SMG6 和 SMG7 基因敲除或 SMG7 基因敲除组合的数据集。在此数据集的基础上,我们实施了一个结合 Nanopore 和 Illumina 测序的工作流程,以组装转录组,其中富含 NMD 目标转录本。此外,我们还利用来自 Ensembl、Gencode 共识 RiboSeq ORFs 和 OpenProt 的编码序列信息来加强对新型转录本异构体的 CDS 注释。总之,在转录组组装过程中获得了 302,889 个转录本,其中 24% 的转录本在 Ensembl 数据库注释中缺失,48,213 个转录本含有过早终止密码子,6,433 个转录本在 NMD 活性与缺陷细胞系的三次或三次以上比较中显著上调。我们通过 https://shiny.dieterichlab.org/app/NMDtxDB 上的 NMDtxDB 数据库对这些结果进行了深入分析,该数据库支持对 NMD 敏感转录本的研究。我们将各自的网络应用程序和分析工作流程的实施开源,网址是 https://github.com/dieterich-lab/NMDtxDB 和 https://github.com/dieterich-lab/nmd-wf。
{"title":"NMDtxDB: data-driven identification and annotation of human NMD target transcripts.","authors":"Thiago Britto-Borges, Niels H Gehring, Volker Boehm, Christoph Dieterich","doi":"10.1261/rna.080066.124","DOIUrl":"10.1261/rna.080066.124","url":null,"abstract":"<p><p>The nonsense-mediated RNA decay (NMD) pathway is a crucial mechanism of mRNA quality control. Current annotations of NMD substrate RNAs are rarely data-driven, but use generally established rules. We present a data set with four cell lines and combinations for <i>SMG5</i>, <i>SMG6</i>, and <i>SMG7</i> knockdowns or <i>SMG7</i> knockout. Based on this data set, we implemented a workflow that combines Nanopore and Illumina sequencing to assemble a transcriptome, which is enriched for NMD target transcripts. Moreover, we use coding sequence information (CDS) from Ensembl, Gencode consensus Ribo-seq ORFs, and OpenProt to enhance the CDS annotation of novel transcript isoforms. In summary, 302,889 transcripts were obtained from the transcriptome assembly process, out of which 24% are absent from Ensembl database annotations, 48,213 contain a premature stop codon, and 6433 are significantly upregulated in three or more comparisons of NMD active versus deficient cell lines. We present an in-depth view of these results through the NMDtxDB database, which is available at https://shiny.dieterichlab.org/app/NMDtxDB, and supports the study of NMD-sensitive transcripts. We open sourced our implementation of the respective web-application and analysis workflow at https://github.com/dieterich-lab/NMDtxDB and https://github.com/dieterich-lab/nmd-wf.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"1277-1291"},"PeriodicalIF":4.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404449/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cap-related modifications of RNA regulate binding to IFIT proteins. RNA 的帽相关修饰可调节与 IFIT 蛋白的结合。
IF 4.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA
Pub Date : 2024-09-16 DOI: 10.1261/rna.080011.124
Jingping Geng, Magdalena Chrabaszczewska, Karol Kurpiejewski, Anna Stankiewicz-Drogon, Marzena Jankowska-Anyszka, Edward Darzynkiewicz, Renata Grzela

All cells in our body are equipped with receptors to recognize pathogens and trigger a rapid defense response. As a result, foreign molecules are blocked, and cells are alerted to the danger. Among the many molecules produced in response to viral infection are interferon-induced proteins with tetratricopeptide repeats (IFITs). Their role is to recognize foreign mRNA and eliminate it from the translational pool of transcripts. In the present study, we used biophysical methods to characterize the interactions between the IFIT1 protein and its partners IFIT2 and IFIT3. IFIT1 interacts with IFIT3 with nanomolar binding affinity, which did not change significantly in the presence of the preformed IFIT2/3 complex. The interactions between IFIT2 and IFIT3 and IFIT1 and IFIT2 were one order of magnitude weaker. We also present kinetic data of the interactions between the IFIT protein complex and short RNA bearing various modifications at the 5' end. We show kinetic parameters for interaction between the IFIT complex and RNA with m6Am modification. The results show that the cap-adjacent m6Am modification is a stronger signature than cap1 alone. It blocks the formation of a complex between IFIT proteins and m7Gpppm6Am-RNA much more effectively than other cap modifications. In contrast, m6A in the 5'UTR is not recognized by IFIT proteins and does not contribute to translation repression by IFIT proteins. The data obtained are important for understanding the regulation of expression of genetic information. They indicate that 2'-O and m6Am modifications modulate the availability of mRNA molecules for proteins of innate immune response.

我们体内的所有细胞都配备有受体,可以识别病原体并触发快速防御反应。因此,外来分子会被阻断,细胞也会对危险发出警报。在应对病毒感染时产生的众多分子中,有一种是具有四重肽重复序列的干扰素诱导蛋白(IFITs)。它们的作用是识别外来的 mRNA,并将其从转录本的翻译池中剔除。在本研究中,我们使用生物物理方法描述了 IFIT1 蛋白与其伙伴 IFIT2 和 IFIT3 之间的相互作用。IFIT1 与 IFIT3 的相互作用具有纳摩尔级的结合亲和力,这种亲和力在预形成的 IFIT2/3 复合物存在时没有显著变化。IFIT2 和 IFIT3 以及 IFIT1 和 IFIT2 之间的相互作用要弱一个数量级。我们还提供了 IFIT 蛋白复合物与 5' 端带有各种修饰的短 RNA 之间相互作用的动力学数据。我们展示了 IFIT 复合物与带有 m6Am 修饰的 RNA 之间相互作用的动力学参数。结果表明,cap 相邻的 m6Am 修饰是比单独的 cap1 更强的特征。与其他帽修饰相比,它能更有效地阻止 IFIT 蛋白与 m7Gpppm6Am-RNA 之间形成复合物。相比之下,5'UTR 中的 m6A 不会被 IFIT 蛋白识别,也不会导致 IFIT 蛋白的翻译抑制。所获得的数据对于理解遗传信息的表达调控非常重要。它们表明,2'-O 和 m6Am 修饰调节了先天免疫反应蛋白对 mRNA 分子的可用性。
{"title":"Cap-related modifications of RNA regulate binding to IFIT proteins.","authors":"Jingping Geng, Magdalena Chrabaszczewska, Karol Kurpiejewski, Anna Stankiewicz-Drogon, Marzena Jankowska-Anyszka, Edward Darzynkiewicz, Renata Grzela","doi":"10.1261/rna.080011.124","DOIUrl":"10.1261/rna.080011.124","url":null,"abstract":"<p><p>All cells in our body are equipped with receptors to recognize pathogens and trigger a rapid defense response. As a result, foreign molecules are blocked, and cells are alerted to the danger. Among the many molecules produced in response to viral infection are interferon-induced proteins with tetratricopeptide repeats (IFITs). Their role is to recognize foreign mRNA and eliminate it from the translational pool of transcripts. In the present study, we used biophysical methods to characterize the interactions between the IFIT1 protein and its partners IFIT2 and IFIT3. IFIT1 interacts with IFIT3 with nanomolar binding affinity, which did not change significantly in the presence of the preformed IFIT2/3 complex. The interactions between IFIT2 and IFIT3 and IFIT1 and IFIT2 were one order of magnitude weaker. We also present kinetic data of the interactions between the IFIT protein complex and short RNA bearing various modifications at the 5' end. We show kinetic parameters for interaction between the IFIT complex and RNA with m<sup>6</sup>A<sub>m</sub> modification. The results show that the cap-adjacent m<sup>6</sup>A<sub>m</sub> modification is a stronger signature than cap1 alone. It blocks the formation of a complex between IFIT proteins and m<sup>7</sup>Gpppm<sup>6</sup>A<sub>m</sub>-RNA much more effectively than other cap modifications. In contrast, m<sup>6</sup>A in the 5'UTR is not recognized by IFIT proteins and does not contribute to translation repression by IFIT proteins. The data obtained are important for understanding the regulation of expression of genetic information. They indicate that 2'-<i>O</i> and m<sup>6</sup>A<sub>m</sub> modifications modulate the availability of mRNA molecules for proteins of innate immune response.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"1292-1305"},"PeriodicalIF":4.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404448/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of the RNA splicing kinetics via in vivo 5-EU labeling. 通过体内 5-乙炔尿苷标记研究 RNA 剪接动力学。
IF 4.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA
Pub Date : 2024-09-16 DOI: 10.1261/rna.079937.123
Anastasiia K Bolikhova, Andrey I Buyan, Sofia S Mariasina, Alexander Y Rudenko, Daria S Chekh, Alexander M Mazur, Egor B Prokhortchouk, Olga A Dontsova, Petr V Sergiev

Splicing is an important step of gene expression in all eukaryotes. Splice sites might be used with different efficiency, giving rise to alternative splicing products. At the same time, splice sites might be used at a variable rate. We used 5-ethynyl uridine labeling to sequence a nascent transcriptome of HeLa cells and deduced the rate of splicing for each donor and acceptor splice site. The following correlation analysis showed a correspondence of primary transcript features with the rate of splicing. Some dependencies we revealed were anticipated, such as a splicing rate decrease with a decreased complementarity of the donor splice site to U1 and acceptor sites to U2 snRNAs. Other dependencies were more surprising, like a negative influence of a distance to the 5' end on the rate of the acceptor splicing site utilization, or the differences in splicing rate between long, short, and RBM17-dependent introns. We also observed a deceleration of last intron splicing with an increase of the distance to the poly(A) site, which might be explained by the cooperativity of the splicing and polyadenylation. Additional analysis of splicing kinetics of SF3B4 knockdown cells suggested the impairment of a U2 snRNA recognition step. As a result, we deconvoluted the effects of several examined features on the splicing rate into a single regression model. The data obtained here are useful for further studies in the field, as they provide general splicing rate dependencies as well as help to justify the existence of slowly removed splice sites.

剪接是从真核生物 RNA 转录本中去除内含子的过程,是所有真核生物基因表达的一个重要步骤。剪接位点的使用效率可能不同,从而产生不同的剪接产物。同时,剪接位点的利用率也可能不同。我们使用 5- 乙炔尿苷标记法对 HeLa 细胞的新生转录组进行测序,并推断出每个供体和受体剪接位点的剪接率。接下来的相关分析使我们能够评估主要转录本特征与剪接率之间的对应关系。我们发现的一些相关性是预料之中的,例如剪接率会随着供体剪接位点与 U1 和受体位点与 U2 snRNA 的互补性降低而降低,或者如果上游受体位点的距离较短,供体位点的使用就会加快。其他一些依赖关系则更令人惊讶,例如到 5' 端的距离对受体剪接位点利用率的负面影响,或者长、短内含子和依赖 RBM17 的内含子之间剪接率的差异。我们还观察到,随着与聚A位点距离的增加,最后一个内含子的剪接速度减慢,这可能是由于剪接和多腺苷酸化的合作作用。此外,我们还对敲除 SF3B4 的细胞进行了剪接动力学分析,结果表明 U2 snRNA 识别步骤受损。因此,我们将多个检测特征对剪接率的影响分解为一个回归模型。这里获得的数据对该领域的进一步研究很有帮助,因为它提供了一般的剪接率依赖关系,并有助于证明缓慢移除剪接位点的存在是合理的,例如可以确保替代剪接。
{"title":"Study of the RNA splicing kinetics via in vivo 5-EU labeling.","authors":"Anastasiia K Bolikhova, Andrey I Buyan, Sofia S Mariasina, Alexander Y Rudenko, Daria S Chekh, Alexander M Mazur, Egor B Prokhortchouk, Olga A Dontsova, Petr V Sergiev","doi":"10.1261/rna.079937.123","DOIUrl":"10.1261/rna.079937.123","url":null,"abstract":"<p><p>Splicing is an important step of gene expression in all eukaryotes. Splice sites might be used with different efficiency, giving rise to alternative splicing products. At the same time, splice sites might be used at a variable rate. We used 5-ethynyl uridine labeling to sequence a nascent transcriptome of HeLa cells and deduced the rate of splicing for each donor and acceptor splice site. The following correlation analysis showed a correspondence of primary transcript features with the rate of splicing. Some dependencies we revealed were anticipated, such as a splicing rate decrease with a decreased complementarity of the donor splice site to U1 and acceptor sites to U2 snRNAs. Other dependencies were more surprising, like a negative influence of a distance to the 5' end on the rate of the acceptor splicing site utilization, or the differences in splicing rate between long, short, and RBM17-dependent introns. We also observed a deceleration of last intron splicing with an increase of the distance to the poly(A) site, which might be explained by the cooperativity of the splicing and polyadenylation. Additional analysis of splicing kinetics of <i>SF3B4</i> knockdown cells suggested the impairment of a U2 snRNA recognition step. As a result, we deconvoluted the effects of several examined features on the splicing rate into a single regression model. The data obtained here are useful for further studies in the field, as they provide general splicing rate dependencies as well as help to justify the existence of slowly removed splice sites.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"1356-1373"},"PeriodicalIF":4.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting the toolbox for live imaging of translation. 改进翻译实时成像工具箱。
IF 4.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA
Pub Date : 2024-09-16 DOI: 10.1261/rna.080140.124
Maëlle Bellec, Ruoyu Chen, Jana Dhayni, Antonello Trullo, Damien Avinens, Hussein Karaki, Flavia Mazzarda, Helene Lenden-Hasse, Cyril Favard, Ruth Lehmann, Edouard Bertrand, Mounia Lagha, Jeremy Dufourt

Live imaging of translation based on tag recognition by a single-chain antibody is a powerful technique to assess translation regulation in living cells. However, this approach is challenging and requires optimization in terms of expression level and detection sensitivity of the system, especially in a multicellular organism. Here, we improved existing fluorescent tools and developed new ones to image and quantify nascent translation in the living Drosophila embryo and in mammalian cells. We tested and characterized five different green fluorescent protein variants fused to the single-chain fragment variable (scFv) and uncovered photobleaching, aggregation, and intensity disparities. Using different strengths of germline and somatic drivers, we determined that the availability of the scFv is critical in order to detect translation throughout development. We introduced a new translation imaging method based on a nanobody/tag system named ALFA-array, allowing the sensitive and simultaneous detection of the translation of several distinct mRNA species. Finally, we developed a largely improved RNA imaging system based on an MCP-tdStaygold fusion.

基于单链抗体标签识别的翻译实时成像技术是评估活细胞翻译调控的一项强大技术。然而,特别是在多细胞生物体中,这种方法具有挑战性,需要对系统的表达水平和检测灵敏度进行优化。在这里,我们改进了现有的荧光工具,并开发了新的工具来对果蝇胚胎和哺乳动物细胞中的新生翻译进行成像和量化。我们测试并鉴定了与单链片段变量(scFv)融合的五种不同的绿色荧光蛋白变体,发现了光漂白、聚集和强度差异。通过使用不同强度的种系和体细胞驱动器,我们确定了 scFv 的可用性对于检测整个发育过程中的翻译至关重要。我们引入了一种新的翻译成像方法,该方法基于一种名为 ALFA-array 的纳米抗体/标签系统,可灵敏地同时检测几种不同 mRNA 的翻译。最后,我们开发了一种基于 MCP-tdStaygold 融合技术的 RNA 成像系统,该系统在很大程度上得到了改进。
{"title":"Boosting the toolbox for live imaging of translation.","authors":"Maëlle Bellec, Ruoyu Chen, Jana Dhayni, Antonello Trullo, Damien Avinens, Hussein Karaki, Flavia Mazzarda, Helene Lenden-Hasse, Cyril Favard, Ruth Lehmann, Edouard Bertrand, Mounia Lagha, Jeremy Dufourt","doi":"10.1261/rna.080140.124","DOIUrl":"10.1261/rna.080140.124","url":null,"abstract":"<p><p>Live imaging of translation based on tag recognition by a single-chain antibody is a powerful technique to assess translation regulation in living cells. However, this approach is challenging and requires optimization in terms of expression level and detection sensitivity of the system, especially in a multicellular organism. Here, we improved existing fluorescent tools and developed new ones to image and quantify nascent translation in the living <i>Drosophila</i> embryo and in mammalian cells. We tested and characterized five different green fluorescent protein variants fused to the single-chain fragment variable (scFv) and uncovered photobleaching, aggregation, and intensity disparities. Using different strengths of germline and somatic drivers, we determined that the availability of the scFv is critical in order to detect translation throughout development. We introduced a new translation imaging method based on a nanobody/tag system named ALFA-array, allowing the sensitive and simultaneous detection of the translation of several distinct mRNA species. Finally, we developed a largely improved RNA imaging system based on an MCP-tdStaygold fusion.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"1374-1394"},"PeriodicalIF":4.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404453/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141767178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetic dissection of pre-crRNA binding and processing by CRISPR-Cas12a. CRISPR-Cas12a结合和处理前crRNA的动力学剖析。
IF 4.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA
Pub Date : 2024-09-16 DOI: 10.1261/rna.080088.124
Selma Sinan, Nathan M Appleby, Chia-Wei Chou, Ilya J Finkelstein, Rick Russell

CRISPR-Cas12a binds and processes a single pre-crRNA during maturation, providing a simple tool for genome editing applications. Here, we constructed a kinetic and thermodynamic framework for pre-crRNA processing by Cas12a in vitro, and we measured the contributions of distinct regions of the pre-crRNA to this reaction. We find that the pre-crRNA binds rapidly and extraordinarily tightly to Cas12a (K d = 0.6 pM), such that pre-crRNA binding is fully rate limiting for processing and therefore determines the specificity of Cas12a for different pre-crRNAs. The guide sequence contributes 10-fold to the binding affinity of the pre-crRNA, while deletion of an upstream sequence has no significant effect. After processing, the mature crRNA remains very tightly bound to Cas12a with a comparable affinity. Strikingly, the affinity contribution of the guide region increases to 600-fold after processing, suggesting that additional contacts are formed and may preorder the crRNA for efficient DNA target recognition. Using a direct competition assay, we find that pre-crRNA-binding specificity is robust to changes in the guide sequence, addition of a 3' extension, and secondary structure within the guide region. However, stable secondary structure in the guide region can strongly inhibit DNA targeting, indicating that care should be taken in crRNA design. Together, our results provide a quantitative framework for pre-crRNA binding and processing by Cas12a and suggest strategies for optimizing crRNA design in genome editing applications.

CRISPR-Cas12a在成熟过程中结合并处理单个前crRNA,为基因组编辑应用提供了一种简单的工具。在这里,我们构建了 Cas12a 在体外处理前-crRNA 的动力学和热力学框架,并测量了前-crRNA 不同区域对这一反应的贡献。我们发现,pre-crRNA与Cas12a的结合迅速且异常紧密(Kd = 0.6 pM),因此pre-crRNA的结合完全限制了处理的速率,从而决定了Cas12a对不同pre-crRNA的特异性。引导序列对预-crRNA 的结合亲和力有 10 倍的影响,而上游序列的缺失没有显著影响。经过处理后,成熟的 crRNA 仍然与 Cas12a 紧密结合,亲和力相当。令人吃惊的是,在加工之后,引导区的亲和力增加到了 600 倍,这表明形成了额外的接触,并可能对 crRNA 进行预排序,以实现高效的 DNA 目标识别。通过直接竞争试验,我们发现前 crRNA 结合特异性对引导序列的变化、3'延伸部分的添加以及引导区内的二级结构都很稳定。然而,引导区内稳定的二级结构会强烈抑制 DNA 靶向,这表明在设计 crRNA 时应小心谨慎。我们的研究结果为Cas12a结合和处理前crRNA提供了一个定量框架,并为优化基因组编辑应用中的crRNA设计提出了策略建议。
{"title":"Kinetic dissection of pre-crRNA binding and processing by CRISPR-Cas12a.","authors":"Selma Sinan, Nathan M Appleby, Chia-Wei Chou, Ilya J Finkelstein, Rick Russell","doi":"10.1261/rna.080088.124","DOIUrl":"10.1261/rna.080088.124","url":null,"abstract":"<p><p>CRISPR-Cas12a binds and processes a single pre-crRNA during maturation, providing a simple tool for genome editing applications. Here, we constructed a kinetic and thermodynamic framework for pre-crRNA processing by Cas12a in vitro, and we measured the contributions of distinct regions of the pre-crRNA to this reaction. We find that the pre-crRNA binds rapidly and extraordinarily tightly to Cas12a (<i>K</i> <sub>d</sub> = 0.6 pM), such that pre-crRNA binding is fully rate limiting for processing and therefore determines the specificity of Cas12a for different pre-crRNAs. The guide sequence contributes 10-fold to the binding affinity of the pre-crRNA, while deletion of an upstream sequence has no significant effect. After processing, the mature crRNA remains very tightly bound to Cas12a with a comparable affinity. Strikingly, the affinity contribution of the guide region increases to 600-fold after processing, suggesting that additional contacts are formed and may preorder the crRNA for efficient DNA target recognition. Using a direct competition assay, we find that pre-crRNA-binding specificity is robust to changes in the guide sequence, addition of a 3' extension, and secondary structure within the guide region. However, stable secondary structure in the guide region can strongly inhibit DNA targeting, indicating that care should be taken in crRNA design. Together, our results provide a quantitative framework for pre-crRNA binding and processing by Cas12a and suggest strategies for optimizing crRNA design in genome editing applications.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"1345-1355"},"PeriodicalIF":4.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404446/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetic and structural insights into the requirement of fungal tRNA ligase for a 2'-phosphate end. 真菌 tRNA 连接酶对 2'-磷酸末端要求的动力学和结构见解。
IF 4.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA
Pub Date : 2024-09-16 DOI: 10.1261/rna.080120.124
Shreya Ghosh, Stewart Shuman

Fungal RNA ligase (LIG) is an essential tRNA splicing enzyme that joins 3'-OH,2'-PO4 and 5'-PO4 RNA ends to form a 2'-PO4,3'-5' phosphodiester splice junction. Sealing entails three divalent cation-dependent adenylate transfer steps. First, LIG reacts with ATP to form a covalent ligase-(lysyl-Nζ)-AMP intermediate and displace pyrophosphate. Second, LIG transfers AMP to the 5'-PO4 RNA terminus to form an RNA-adenylate intermediate (A5'pp5'RNA). Third, LIG directs the attack of an RNA 3'-OH on AppRNA to form the splice junction and displace AMP. A defining feature of fungal LIG vis-à-vis canonical polynucleotide ligases is the requirement for a 2'-PO4 to synthesize a 3'-5' phosphodiester bond. Fungal LIG consists of an N-terminal adenylyltransferase domain and a unique C-terminal domain. The C-domain of Chaetomium thermophilum LIG (CthLIG) engages a sulfate anion thought to be a mimetic of the terminal 2'-PO4 Here, we interrogated the contributions of the C-domain and the conserved sulfate ligands (His227, Arg334, Arg337) to ligation of a pRNA2'p substrate. We find that the C-domain is essential for end-joining but dispensable for ligase adenylylation. Mutations H227A, R334A, and R337A slowed the rate of step 2 RNA adenylation by 420-fold, 120-fold, and 60-fold, respectively, vis-à-vis wild-type CthLIG. An R334A-R337A double-mutation slowed step 2 by 580-fold. These results fortify the case for the strictly conserved His-Arg-Arg triad as the enforcer of the 2'-PO4 end-specificity of fungal tRNA ligases and as a target for small molecule interdiction of fungal tRNA splicing.

真菌 RNA 连接酶(LIG)是一种重要的 tRNA 拼接酶,可连接 3'-OH、2'-PO4 和 5'-PO4 RNA 末端,形成 2'-PO4、3'-5' 磷酸二酯拼接接头。封接需要三个依赖二价阳离子的腺苷酸转移步骤。首先,LIG 与 ATP 反应,形成共价连接酶-(赖氨酰-Nζ)-AMP 中间体,并取代焦磷酸。其次,LIG 将 AMP 转移到 5'-PO4 RNA 末端,形成 RNA 腺苷酸中间体(A5'pp5'RNA)。第三,LIG 引导 RNA 3'-OH 攻击 AppRNA,形成剪接接头并取代 AMP。与典型的多核苷酸连接酶相比,真菌 LIG 的一个显著特点是需要 2'-PO4 来合成 3'-5' 磷酸二酯键。真菌 LIG 由一个 N 端腺苷酸转移酶结构域和一个独特的 C 端结构域组成。嗜热链格真菌(Chaetomium thermophilum LIG,CthLIG)的 C-结构域与被认为是末端 2'-PO4 模拟物的硫酸根阴离子结合。在这里,我们研究了 C-domain 和保守的硫酸配体(His227、Arg334、Arg337)对 pRNA2'p 底物连接的贡献。我们发现,C-结构域对于末端连接是必不可少的,但对于连接酶的腺苷酸化则是可有可无的。与野生型 CthLIG 相比,H227A、R334A 和 R337A 突变分别使第 2 步 RNA 腺苷酸化的速度减慢了 420 倍、120 倍和 60 倍。R334A-R337A 双突变使步骤 2 的速度减慢了 580 倍。这些结果证实了严格保守的 His-Arg-Arg 三元组是真菌 tRNA 连接酶 2'-PO4 端特异性的执行者,也是小分子阻断真菌 tRNA 剪接的靶标。
{"title":"Kinetic and structural insights into the requirement of fungal tRNA ligase for a 2'-phosphate end.","authors":"Shreya Ghosh, Stewart Shuman","doi":"10.1261/rna.080120.124","DOIUrl":"10.1261/rna.080120.124","url":null,"abstract":"<p><p>Fungal RNA ligase (LIG) is an essential tRNA splicing enzyme that joins 3'-OH,2'-PO<sub>4</sub> and 5'-PO<sub>4</sub> RNA ends to form a 2'-PO<sub>4</sub>,3'-5' phosphodiester splice junction. Sealing entails three divalent cation-dependent adenylate transfer steps. First, LIG reacts with ATP to form a covalent ligase-(lysyl-Nζ)-AMP intermediate and displace pyrophosphate. Second, LIG transfers AMP to the 5'-PO<sub>4</sub> RNA terminus to form an RNA-adenylate intermediate (A<sub>5'</sub>pp<sub>5'</sub>RNA). Third, LIG directs the attack of an RNA 3'-OH on AppRNA to form the splice junction and displace AMP. A defining feature of fungal LIG vis-à-vis canonical polynucleotide ligases is the requirement for a 2'-PO<sub>4</sub> to synthesize a 3'-5' phosphodiester bond. Fungal LIG consists of an N-terminal adenylyltransferase domain and a unique C-terminal domain. The C-domain of <i>Chaetomium thermophilum</i> LIG (CthLIG) engages a sulfate anion thought to be a mimetic of the terminal 2'-PO<sub>4</sub> Here, we interrogated the contributions of the C-domain and the conserved sulfate ligands (His227, Arg334, Arg337) to ligation of a pRNA<sub>2'</sub>p substrate. We find that the C-domain is essential for end-joining but dispensable for ligase adenylylation. Mutations H227A, R334A, and R337A slowed the rate of step 2 RNA adenylation by 420-fold, 120-fold, and 60-fold, respectively, vis-à-vis wild-type CthLIG. An R334A-R337A double-mutation slowed step 2 by 580-fold. These results fortify the case for the strictly conserved His-Arg-Arg triad as the enforcer of the 2'-PO<sub>4</sub> end-specificity of fungal tRNA ligases and as a target for small molecule interdiction of fungal tRNA splicing.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"1306-1314"},"PeriodicalIF":4.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404444/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural idiosyncrasies of glycyl T-box riboswitches among pathogenic bacteria. 致病细菌中甘氨酰 T-盒核糖开关的结构特异性。
IF 4.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA
Pub Date : 2024-09-16 DOI: 10.1261/rna.080071.124
Nikoleta Giarimoglou, Adamantia Kouvela, Jinwei Zhang, Vassiliki Stamatopoulou, Constantinos Stathopoulos

T-box riboswitches are widespread bacterial regulatory noncoding RNAs that directly interact with tRNAs and switch conformations to regulate the transcription or translation of genes related to amino acid metabolism. Recent studies in Bacilli have revealed the core mechanisms of T-boxes that enable multivalent, specific recognition of both the identity and aminoacylation status of the tRNA substrates. However, in-depth knowledge on a vast number of T-boxes in other bacterial species remains scarce, although a remarkable structural diversity, particularly among pathogens, is apparent. In the present study, analysis of T-boxes that control the transcription of glycyl-tRNA synthetases from four prominent human pathogens revealed significant structural idiosyncrasies. Nonetheless, these diverse T-boxes maintain functional T-box:tRNAGly interactions both in vitro and in vivo. Probing analysis not only validated recent structural observations, but also expanded our knowledge on the substantial diversities among T-boxes and suggest interesting distinctions from the canonical Bacilli T-boxes. Surprisingly, some glycyl T-boxes seem to redirect the T-box trajectory in the absence of recognizable K-turns or contain Stem II modules that are generally absent in glycyl T-boxes. These results consolidate the notion of a lineage-specific diversification and elaboration of the T-box mechanism and corroborate the potential of T-boxes as promising species-specific RNA targets for next-generation antibacterial compounds.

T-box 核糖开关是一种广泛存在的细菌调控性非编码 RNA,可直接与 tRNA 相互作用并转换构象,从而调控与氨基酸代谢相关基因的转录或翻译。最近在芽孢杆菌中进行的研究揭示了 T-盒的核心机制,它能够多价、特异地识别 tRNA 底物的身份和氨基酰化状态。然而,对其他细菌物种中大量 T-box 的深入了解仍然很少,尽管它们在结构上具有显著的多样性,特别是在病原体之间。在本研究中,对来自四种主要人类病原体的控制甘氨酰-tRNA 合成酶转录的 T-box 进行分析后发现,这些 T-box 在结构上存在显著的特异性。然而,这些不同的 T-box 在体外和体内都保持着 T-box:tRNAGly 的功能性相互作用。探究分析不仅验证了最近的结构观察结果,还扩展了我们对 T-box 多样性的认识,并提出了与典型芽孢杆菌 T-box 的有趣区别。令人惊讶的是,一些甘氨酰 T-box 似乎在没有可识别的 K-转折的情况下重定向了 T-box 的轨迹,或者包含甘氨酰 T-box 中通常不存在的干 II 模块。这些结果巩固了T-box机制的品系特异性多样化和精细化的概念,并证实了T-box作为下一代抗菌化合物的物种特异性RNA靶标的潜力。
{"title":"Structural idiosyncrasies of glycyl T-box riboswitches among pathogenic bacteria.","authors":"Nikoleta Giarimoglou, Adamantia Kouvela, Jinwei Zhang, Vassiliki Stamatopoulou, Constantinos Stathopoulos","doi":"10.1261/rna.080071.124","DOIUrl":"10.1261/rna.080071.124","url":null,"abstract":"<p><p>T-box riboswitches are widespread bacterial regulatory noncoding RNAs that directly interact with tRNAs and switch conformations to regulate the transcription or translation of genes related to amino acid metabolism. Recent studies in Bacilli have revealed the core mechanisms of T-boxes that enable multivalent, specific recognition of both the identity and aminoacylation status of the tRNA substrates. However, in-depth knowledge on a vast number of T-boxes in other bacterial species remains scarce, although a remarkable structural diversity, particularly among pathogens, is apparent. In the present study, analysis of T-boxes that control the transcription of glycyl-tRNA synthetases from four prominent human pathogens revealed significant structural idiosyncrasies. Nonetheless, these diverse T-boxes maintain functional T-box:tRNA<sup>Gly</sup> interactions both in vitro and in vivo. Probing analysis not only validated recent structural observations, but also expanded our knowledge on the substantial diversities among T-boxes and suggest interesting distinctions from the canonical Bacilli T-boxes. Surprisingly, some glycyl T-boxes seem to redirect the T-box trajectory in the absence of recognizable K-turns or contain Stem II modules that are generally absent in glycyl T-boxes. These results consolidate the notion of a lineage-specific diversification and elaboration of the T-box mechanism and corroborate the potential of T-boxes as promising species-specific RNA targets for next-generation antibacterial compounds.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"1328-1344"},"PeriodicalIF":4.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404447/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141564192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thg1 family 3'-5' RNA polymerases as tools for targeted RNA synthesis. Thg1 家族 3'-5' RNA 聚合酶是定向 RNA 合成的工具。
IF 4.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA
Pub Date : 2024-09-16 DOI: 10.1261/rna.080156.124
Malithi I Jayasinghe, Krishna J Patel, Jane E Jackman

Members of the 3'-5' RNA polymerase family, comprised of tRNAHis guanylyltransferase (Thg1) and Thg1-like proteins (TLPs), catalyze templated synthesis of RNA in the reverse direction to all other known 5'-3' RNA and DNA polymerases. The discovery of enzymes capable of this reaction raised the possibility of exploiting 3'-5' polymerases for posttranscriptional incorporation of nucleotides to the 5'-end of nucleic acids without ligation, and instead by templated polymerase addition. To date, studies of these enzymes have focused on nucleotide addition to highly structured RNAs, such as tRNA and other noncoding RNAs. Consequently, general principles of RNA substrate recognition and nucleotide preferences that might enable broader application of 3'-5' polymerases have not been elucidated. Here, we investigated the feasibility of using Thg1 or TLPs for multiple nucleotide incorporation to the 5'-end of a short duplex RNA substrate, using a templating RNA oligonucleotide provided in trans to guide 5'-end addition of specific sequences. Using optimized assay conditions, we demonstrated a remarkable capacity of certain TLPs to accommodate short RNA substrate-template duplexes of varying lengths with significantly high affinity, resulting in the ability to incorporate a desired nucleotide sequence of up to eight bases to 5'-ends of the model RNA substrates in a template-dependent manner. This work has further advanced our goals to develop this atypical enzyme family as a versatile nucleic acid 5'-end labeling tool.

3'-5'RNA聚合酶家族成员由tRNAHis鸟苷酸转移酶(Thg1)和Thg1样蛋白(TLPs)组成,与所有其他已知的5'-3'RNA和DNA聚合酶相反,催化RNA的模板合成。能够进行这种反应的酶的发现,为利用 3'-5' 聚合酶将核苷酸转录后加入核酸 5'- 端而不进行连接,而是通过模板化聚合酶加成提供了可能性。迄今为止,对这些酶的研究主要集中在高结构 RNA(如 tRNA 和其他非编码 RNA)的核苷酸添加。因此,可能使 3'-5' 聚合酶得到更广泛应用的 RNA 底物识别和核苷酸偏好的一般原理尚未阐明。在这里,我们研究了使用 Thg1 或 TLPs 将多个核苷酸整合到短双链 RNA 底物 5'- 端的可行性,使用反式提供的模板 RNA 寡核苷酸来引导特定序列的 5'- 端添加。利用优化的检测条件,我们证明了某些 TLPs 具有显著的能力,能够以极高的亲和力容纳不同长度的短 RNA 底物-模板双链,从而能够以模板依赖的方式将最多 8 个碱基的所需核苷酸序列整合到模型 RNA 底物的 5'- 端。这项工作进一步推动了我们将这一非典型酶家族开发成多功能核酸 5'- 端标记工具的目标。
{"title":"Thg1 family 3'-5' RNA polymerases as tools for targeted RNA synthesis.","authors":"Malithi I Jayasinghe, Krishna J Patel, Jane E Jackman","doi":"10.1261/rna.080156.124","DOIUrl":"10.1261/rna.080156.124","url":null,"abstract":"<p><p>Members of the 3'-5' RNA polymerase family, comprised of tRNA<sup>His</sup> guanylyltransferase (Thg1) and Thg1-like proteins (TLPs), catalyze templated synthesis of RNA in the reverse direction to all other known 5'-3' RNA and DNA polymerases. The discovery of enzymes capable of this reaction raised the possibility of exploiting 3'-5' polymerases for posttranscriptional incorporation of nucleotides to the 5'-end of nucleic acids without ligation, and instead by templated polymerase addition. To date, studies of these enzymes have focused on nucleotide addition to highly structured RNAs, such as tRNA and other noncoding RNAs. Consequently, general principles of RNA substrate recognition and nucleotide preferences that might enable broader application of 3'-5' polymerases have not been elucidated. Here, we investigated the feasibility of using Thg1 or TLPs for multiple nucleotide incorporation to the 5'-end of a short duplex RNA substrate, using a templating RNA oligonucleotide provided in <i>trans</i> to guide 5'-end addition of specific sequences. Using optimized assay conditions, we demonstrated a remarkable capacity of certain TLPs to accommodate short RNA substrate-template duplexes of varying lengths with significantly high affinity, resulting in the ability to incorporate a desired nucleotide sequence of up to eight bases to 5'-ends of the model RNA substrates in a template-dependent manner. This work has further advanced our goals to develop this atypical enzyme family as a versatile nucleic acid 5'-end labeling tool.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"1315-1327"},"PeriodicalIF":4.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404450/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141601427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing MicroRNA Abundance by Targeting Biogenesis from the Primary Transcript with Steric-Blocking Antisense Oligonucleotides 利用立体阻断反义寡核苷酸靶向初级转录本的生物生成,提高 MicroRNA 的丰度
IF 4.5 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA
Pub Date : 2024-09-10 DOI: 10.1261/rna.080021.124
Mallory A Havens, Anthony J Hinrich, Frank Rigo, Michelle L Hastings
MicroRNAs (miRNAs) are regulators of gene expression, and their dysregulation is linked to cancer and other diseases, making them important therapeutic targets. Several strategies for targeting and modulating miRNA activity are being explored. For example, steric blocking antisense oligonucleotides (ASOs) can reduce miRNA activity by either blocking binding sites on specific mRNAs or base-pairing to the miRNA itself to prevent its interaction with the target mRNAs. ASOs have been less explored as a tool to elevate miRNA levels, which could also be beneficial for treating disease. In this study, using the PKD1/miR-1225 gene locus as an example, where miR-1225 is located within a PKD1 intron, we demonstrate an ASO-based strategy that increases miRNA abundance by enhancing biogenesis from the primary miRNA transcript. Disruptions in PKD1 and miR-1225 are associated with autosomal dominant polycystic kidney disease (ADPKD) and various cancers, respectively, making them important therapeutic targets. We investigated PKD1 sequence variants reported in ADPKD that are located within the sequence shared by miR-1225 and PKD1, and identified one that causes a reduction in miR-1225 without affecting PKD1. We show that this reduction in miR-1225 can be recovered by treatment with a steric-blocking ASO. The ASO-induced increase in miR-1225 correlates with a decrease in the abundance of predicted miR-1225 cellular mRNA targets. This study demonstrates that miRNA abundance can be elevated using ASOs targeted to the primary transcript. This steric-blocking ASO-based approach has broad potential application as a therapeutic strategy for diseases that could be treated by modulating miRNA biogenesis.
微RNA(miRNA)是基因表达的调控因子,它们的失调与癌症和其他疾病有关,因此成为重要的治疗靶标。目前正在探索几种靶向和调节 miRNA 活性的策略。例如,立体阻断反义寡核苷酸(ASO)可通过阻断特定 mRNA 的结合位点或与 miRNA 本身碱基配对来阻止其与靶 mRNA 的相互作用,从而降低 miRNA 的活性。作为一种提高 miRNA 水平的工具,ASOs 的研究较少,而提高 miRNA 水平也可能有益于治疗疾病。在本研究中,以 miR-1225 位于 PKD1 内含子中的 PKD1/miR-1225 基因位点为例,我们展示了一种基于 ASO 的策略,这种策略通过增强主要 miRNA 转录本的生物生成来提高 miRNA 丰度。PKD1 和 miR-1225 的紊乱分别与常染色体显性多囊肾病(ADPKD)和各种癌症有关,因此成为重要的治疗靶点。我们研究了 ADPKD 中报道的位于 miR-1225 和 PKD1 共享序列内的 PKD1 序列变异,并发现了一种导致 miR-1225 减少而不影响 PKD1 的变异。我们的研究表明,这种 miR-1225 的减少可以通过使用立体阻断型 ASO 来恢复。ASO 诱导的 miR-1225 的增加与预测的 miR-1225 细胞 mRNA 靶标丰度的降低相关。这项研究表明,使用针对主转录本的 ASO 可以提高 miRNA 的丰度。这种基于立体阻断 ASO 的方法具有广泛的潜在应用前景,可作为一种治疗策略,通过调节 miRNA 的生物发生来治疗疾病。
{"title":"Increasing MicroRNA Abundance by Targeting Biogenesis from the Primary Transcript with Steric-Blocking Antisense Oligonucleotides","authors":"Mallory A Havens, Anthony J Hinrich, Frank Rigo, Michelle L Hastings","doi":"10.1261/rna.080021.124","DOIUrl":"https://doi.org/10.1261/rna.080021.124","url":null,"abstract":"MicroRNAs (miRNAs) are regulators of gene expression, and their dysregulation is linked to cancer and other diseases, making them important therapeutic targets. Several strategies for targeting and modulating miRNA activity are being explored. For example, steric blocking antisense oligonucleotides (ASOs) can reduce miRNA activity by either blocking binding sites on specific mRNAs or base-pairing to the miRNA itself to prevent its interaction with the target mRNAs. ASOs have been less explored as a tool to elevate miRNA levels, which could also be beneficial for treating disease. In this study, using the PKD1/miR-1225 gene locus as an example, where miR-1225 is located within a PKD1 intron, we demonstrate an ASO-based strategy that increases miRNA abundance by enhancing biogenesis from the primary miRNA transcript. Disruptions in PKD1 and miR-1225 are associated with autosomal dominant polycystic kidney disease (ADPKD) and various cancers, respectively, making them important therapeutic targets. We investigated PKD1 sequence variants reported in ADPKD that are located within the sequence shared by miR-1225 and PKD1, and identified one that causes a reduction in miR-1225 without affecting PKD1. We show that this reduction in miR-1225 can be recovered by treatment with a steric-blocking ASO. The ASO-induced increase in miR-1225 correlates with a decrease in the abundance of predicted miR-1225 cellular mRNA targets. This study demonstrates that miRNA abundance can be elevated using ASOs targeted to the primary transcript. This steric-blocking ASO-based approach has broad potential application as a therapeutic strategy for diseases that could be treated by modulating miRNA biogenesis.","PeriodicalId":21401,"journal":{"name":"RNA","volume":"169 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
tRNAVal allows four-way decoding with unmodified uridine at the wobble position in Lactobacillus casei 在干酪乳杆菌中,tRNAVal 可与位于摆动位置的未修饰尿苷进行四向解码
IF 4.5 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA
Pub Date : 2024-09-10 DOI: 10.1261/rna.080155.124
Riko Sugita, Vincent Guérineau, David Touboul, Satoko Yoshizawa, Kazuyuki Takai, Chie Tomikawa
Modifications at the wobble position (position 34) of tRNA facilitate interactions that enable or stabilize non-Watson-Crick basepairs. In bacterial tRNA, 5-hydroxyuridine (ho5U) derivatives xo5U [x: methyl (mo5U), carboxymethyl (cmo5U), and methoxycarbonylmethyl (mcmo5U)] present at the wobble positions of tRNAs are responsible for recognition of NYN codon families. These modifications of U34 allow basepairing not only with A and G but also with U and in some cases C. mo5U was originally found in Gram-positive bacteria, and cmo5U and mcmo5U were found in Gram-negative bacteria. tRNAs of Mycoplasma species, mitochondria, and chloroplasts adopt four-way decoding in which unmodified U34 recognizes codons ending in A, G, C, and U. Lactobacillus casei, Gram-positive bacteria and lactic acid bacteria, lacks the modification enzyme genes for xo5U biosynthesis. Nevertheless, L. casei has only one type of tRNAVal with the anticodon UAC [tRNAVal(UAC)]. However, the genome of L. casei encodes an undetermined tRNA (tRNAUnd) gene, and the sequence corresponding to the anticodon region is GAC. Here, we confirm that U34 in L. casei tRNAVal is unmodified and that there is no tRNAUnd expression in the cells. In addition, in vitro transcribed tRNAUnd was not aminoacylated by L. casei valyl-tRNA synthetase suggesting that tRNAUnd is not able to accept valine, even if expressed in cells. Correspondingly, native tRNAVal(UAC) with unmodified U34 bound to all four valine codons in the ribosome A site. This suggests that L. casei tRNAVal decodes all valine codons by four-way decoding, similarly to tRNAs from Mycoplasma species, mitochondria, and chloroplasts.
tRNA 的摆动位置(第 34 位)上的修饰有助于产生或稳定非沃森克里克碱基对的相互作用。在细菌 tRNA 中,tRNA 的摆动位置上的 5-羟基尿苷(ho5U)衍生物 xo5U [x:甲基(mo5U)、羧甲基(cmo5U)和甲氧羰基甲基(mcmo5U)]负责识别 NYN 密码子家族。mo5U 最初出现在革兰氏阳性细菌中,而 cmo5U 和 mcmo5U 则出现在革兰氏阴性细菌中。支原体、线粒体和叶绿体的 tRNA 采用四向解码,其中未修饰的 U34 可识别以 A、G、C 和 U 结尾的密码子。革兰氏阳性菌和乳酸菌干酪乳杆菌缺乏用于 xo5U 生物合成的修饰酶基因。不过,干酪乳杆菌只有一种反密码子为 UAC 的 tRNAVal [tRNAVal(UAC)]。然而,干酪乳杆菌的基因组编码一种未确定的 tRNA(tRNAUnd)基因,其反密码子区域对应的序列是 GAC。在此,我们证实 L. casei tRNAVal 中的 U34 未被修饰,细胞中没有 tRNAUnd 表达。此外,体外转录的 tRNAUnd 不能被 L. casei 缬氨酰-tRNA 合成酶氨基化,这表明 tRNAUnd 即使在细胞中表达,也不能接受缬氨酸。相应地,未修饰 U34 的原生 tRNAVal(UAC) 与核糖体 A 位点的所有四个缬氨酸密码子结合。这表明 L. casei tRNAVal 通过四向解码对所有缬氨酸密码子进行解码,与来自支原体、线粒体和叶绿体的 tRNA 相似。
{"title":"tRNAVal allows four-way decoding with unmodified uridine at the wobble position in Lactobacillus casei","authors":"Riko Sugita, Vincent Guérineau, David Touboul, Satoko Yoshizawa, Kazuyuki Takai, Chie Tomikawa","doi":"10.1261/rna.080155.124","DOIUrl":"https://doi.org/10.1261/rna.080155.124","url":null,"abstract":"Modifications at the wobble position (position 34) of tRNA facilitate interactions that enable or stabilize non-Watson-Crick basepairs. In bacterial tRNA, 5-hydroxyuridine (ho<sup>5</sup>U) derivatives xo<sup>5</sup>U [x: methyl (mo<sup>5</sup>U), carboxymethyl (cmo<sup>5</sup>U), and methoxycarbonylmethyl (mcmo<sup>5</sup>U)] present at the wobble positions of tRNAs are responsible for recognition of NYN codon families. These modifications of U34 allow basepairing not only with A and G but also with U and in some cases C. mo<sup>5</sup>U was originally found in Gram-positive bacteria, and cmo<sup>5</sup>U and mcmo<sup>5</sup>U were found in Gram-negative bacteria. tRNAs of <em>Mycoplasma</em> species, mitochondria, and chloroplasts adopt four-way decoding in which unmodified U34 recognizes codons ending in A, G, C, and U. <em>Lactobacillus casei</em>, Gram-positive bacteria and lactic acid bacteria, lacks the modification enzyme genes for xo<sup>5</sup>U biosynthesis. Nevertheless, <em>L. casei</em> has only one type of tRNA<sup>Val</sup> with the anticodon UAC [tRNA<sup>Val</sup>(UAC)]. However, the genome of <em>L. casei</em> encodes an undetermined tRNA (tRNA<sup>Und</sup>) gene, and the sequence corresponding to the anticodon region is GAC. Here, we confirm that U34 in <em>L. casei</em> tRNA<sup>Val</sup> is unmodified and that there is no tRNA<sup>Und</sup> expression in the cells. In addition, <em>in vitro</em> transcribed tRNA<sup>Und</sup> was not aminoacylated by <em>L. casei</em> valyl-tRNA synthetase suggesting that tRNA<sup>Und</sup> is not able to accept valine, even if expressed in cells. Correspondingly, native tRNA<sup>Val</sup>(UAC) with unmodified U34 bound to all four valine codons in the ribosome A site. This suggests that <em>L. casei</em> tRNA<sup>Val</sup> decodes all valine codons by four-way decoding, similarly to tRNAs from <em>Mycoplasma</em> species, mitochondria, and chloroplasts.","PeriodicalId":21401,"journal":{"name":"RNA","volume":"42 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
RNA
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1