Pub Date : 2024-04-09DOI: 10.1126/scisignal.adh1922
Caroline Fidalgo Ribeiro, Silvia Rodrigues, Debora Campanella Bastos, Giuseppe Nicolò Fanelli, Hubert Pakula, Marco Foiani, Giorgia Zadra, Massimo Loda
Androgen deprivation therapy (ADT) is the primary treatment for prostate cancer; however, resistance to ADT invariably develops, leading to castration-resistant prostate cancer (CRPC). Prostate cancer progression is marked by increased de novo synthesis of fatty acids due to overexpression of fatty acid synthase (FASN), making this enzyme a therapeutic target for prostate cancer. Inhibition of FASN results in increased intracellular amounts of ceramides and sphingomyelin, leading to DNA damage through the formation of DNA double-strand breaks and cell death. We found that combining a FASNi with the poly-ADP ribose polymerase (PARP) inhibitor olaparib, which induces cell death by blocking DNA damage repair, resulted in a more pronounced reduction in cell growth than that caused by either drug alone. Human CRPC organoids treated with a combination of PARP and FASNi were smaller, had decreased cell proliferation, and showed increased apoptosis and necrosis. Together, these data indicate that targeting FASN increases the therapeutic efficacy of PARP inhibitors by impairing DNA damage repair, suggesting that combination therapies should be explored for CRPC.
雄激素剥夺疗法(ADT)是治疗前列腺癌的主要方法;然而,ADT总会产生耐药性,导致阉割耐药前列腺癌(CRPC)。由于脂肪酸合成酶(FASN)的过度表达,脂肪酸的从头合成增加,从而使这种酶成为前列腺癌的治疗靶点。抑制 FASN 会导致细胞内神经酰胺和鞘磷脂的含量增加,从而形成 DNA 双链断裂,导致 DNA 损伤和细胞死亡。我们发现,将 FASNi 与聚-ADP 核糖聚合酶(PARP)抑制剂奥拉帕利(奥拉帕利通过阻断 DNA 损伤修复诱导细胞死亡)结合使用,会比单独使用其中一种药物更明显地减少细胞生长。用PARP和FASNi联合治疗的人类CRPC器官组织体积更小,细胞增殖减少,细胞凋亡和坏死增加。这些数据共同表明,以FASN为靶点会损害DNA损伤修复,从而提高PARP抑制剂的疗效,这表明应该探索CRPC的联合疗法。
{"title":"Blocking lipid synthesis induces DNA damage in prostate cancer and increases cell death caused by PARP inhibition","authors":"Caroline Fidalgo Ribeiro, Silvia Rodrigues, Debora Campanella Bastos, Giuseppe Nicolò Fanelli, Hubert Pakula, Marco Foiani, Giorgia Zadra, Massimo Loda","doi":"10.1126/scisignal.adh1922","DOIUrl":"10.1126/scisignal.adh1922","url":null,"abstract":"<div >Androgen deprivation therapy (ADT) is the primary treatment for prostate cancer; however, resistance to ADT invariably develops, leading to castration-resistant prostate cancer (CRPC). Prostate cancer progression is marked by increased de novo synthesis of fatty acids due to overexpression of fatty acid synthase (FASN), making this enzyme a therapeutic target for prostate cancer. Inhibition of FASN results in increased intracellular amounts of ceramides and sphingomyelin, leading to DNA damage through the formation of DNA double-strand breaks and cell death. We found that combining a FASNi with the poly-ADP ribose polymerase (PARP) inhibitor olaparib, which induces cell death by blocking DNA damage repair, resulted in a more pronounced reduction in cell growth than that caused by either drug alone. Human CRPC organoids treated with a combination of PARP and FASNi were smaller, had decreased cell proliferation, and showed increased apoptosis and necrosis. Together, these data indicate that targeting FASN increases the therapeutic efficacy of PARP inhibitors by impairing DNA damage repair, suggesting that combination therapies should be explored for CRPC.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"17 831","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scisignal.adh1922","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140541212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-02DOI: 10.1126/scisignal.ade4335
Manuel A. Fernandez-Rojo, Michael A. Pearen, Anita G. Burgess, Maria P. Ikonomopoulou, Diem Hoang-Le, Berit Genz, Silvia L. Saggiomo, Sujeevi S. K. Nawaratna, Maura Poli, Regina Reissmann, Geoffrey N. Gobert, Urban Deutsch, Britta Engelhardt, Andrew J. Brooks, Alun Jones, Paolo Arosio, Grant A. Ramm
Serum ferritin concentrations increase during hepatic inflammation and correlate with the severity of chronic liver disease. Here, we report a molecular mechanism whereby the heavy subunit of ferritin (FTH) contributes to hepatic inflammation. We found that FTH induced activation of the NLRP3 inflammasome and secretion of the proinflammatory cytokine interleukin-1β (IL-1β) in primary rat hepatic stellate cells (HSCs) through intercellular adhesion molecule–1 (ICAM-1). FTH–ICAM-1 stimulated the expression of Il1b, NLRP3 inflammasome activation, and the processing and secretion of IL-1β in a manner that depended on plasma membrane remodeling, clathrin-mediated endocytosis, and lysosomal destabilization. FTH–ICAM-1 signaling at early endosomes stimulated Il1b expression, implying that this endosomal signaling primed inflammasome activation in HSCs. In contrast, lysosomal destabilization was required for FTH-induced IL-1β secretion, suggesting that lysosomal damage activated inflammasomes. FTH induced IL-1β production in liver slices from wild-type mice but not in those from Icam1−/− or Nlrp3−/− mice. Thus, FTH signals through its receptor ICAM-1 on HSCs to activate the NLRP3 inflammasome. We speculate that this pathway contributes to hepatic inflammation, a key process that stimulates hepatic fibrogenesis associated with chronic liver disease.
{"title":"The heavy subunit of ferritin stimulates NLRP3 inflammasomes in hepatic stellate cells through ICAM-1 to drive hepatic inflammation","authors":"Manuel A. Fernandez-Rojo, Michael A. Pearen, Anita G. Burgess, Maria P. Ikonomopoulou, Diem Hoang-Le, Berit Genz, Silvia L. Saggiomo, Sujeevi S. K. Nawaratna, Maura Poli, Regina Reissmann, Geoffrey N. Gobert, Urban Deutsch, Britta Engelhardt, Andrew J. Brooks, Alun Jones, Paolo Arosio, Grant A. Ramm","doi":"10.1126/scisignal.ade4335","DOIUrl":"10.1126/scisignal.ade4335","url":null,"abstract":"<div >Serum ferritin concentrations increase during hepatic inflammation and correlate with the severity of chronic liver disease. Here, we report a molecular mechanism whereby the heavy subunit of ferritin (FTH) contributes to hepatic inflammation. We found that FTH induced activation of the NLRP3 inflammasome and secretion of the proinflammatory cytokine interleukin-1β (IL-1β) in primary rat hepatic stellate cells (HSCs) through intercellular adhesion molecule–1 (ICAM-1). FTH–ICAM-1 stimulated the expression of <i>Il1b</i>, NLRP3 inflammasome activation, and the processing and secretion of IL-1β in a manner that depended on plasma membrane remodeling, clathrin-mediated endocytosis, and lysosomal destabilization. FTH–ICAM-1 signaling at early endosomes stimulated <i>Il1b</i> expression, implying that this endosomal signaling primed inflammasome activation in HSCs. In contrast, lysosomal destabilization was required for FTH-induced IL-1β secretion, suggesting that lysosomal damage activated inflammasomes. FTH induced IL-1β production in liver slices from wild-type mice but not in those from <i>Icam1<sup>−/−</sup></i> or <i>Nlrp3<sup>−/−</sup></i> mice. Thus, FTH signals through its receptor ICAM-1 on HSCs to activate the NLRP3 inflammasome. We speculate that this pathway contributes to hepatic inflammation, a key process that stimulates hepatic fibrogenesis associated with chronic liver disease.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"17 830","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140343125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-02DOI: https://www.science.org/doi/10.1126/scisignal.ade4335
Manuel A. Fernandez-Rojo, Michael A. Pearen, Anita G. Burgess, Maria P. Ikonomopoulou, Diem Hoang-Le, Berit Genz, Silvia L. Saggiomo, Sujeevi S. K. Nawaratna, Maura Poli, Regina Reissmann, Geoffrey N. Gobert, Urban Deutsch, Britta Engelhardt, Andrew J. Brooks, Alun Jones, Paolo Arosio, Grant A. Ramm
Serum ferritin concentrations increase during hepatic inflammation and correlate with the severity of chronic liver disease. Here, we report a molecular mechanism whereby the heavy subunit of ferritin (FTH) contributes to hepatic inflammation. We found that FTH induced activation of the NLRP3 inflammasome and secretion of the proinflammatory cytokine interleukin-1β (IL-1β) in primary rat hepatic stellate cells (HSCs) through intercellular adhesion molecule–1 (ICAM-1). FTH–ICAM-1 stimulated the expression of Il1b, NLRP3 inflammasome activation, and the processing and secretion of IL-1β in a manner that depended on plasma membrane remodeling, clathrin-mediated endocytosis, and lysosomal destabilization. FTH–ICAM-1 signaling at early endosomes stimulated Il1b expression, implying that this endosomal signaling primed inflammasome activation in HSCs. In contrast, lysosomal destabilization was required for FTH-induced IL-1β secretion, suggesting that lysosomal damage activated inflammasomes. FTH induced IL-1β production in liver slices from wild-type mice but not in those from Icam1−/− or Nlrp3−/− mice. Thus, FTH signals through its receptor ICAM-1 on HSCs to activate the NLRP3 inflammasome. We speculate that this pathway contributes to hepatic inflammation, a key process that stimulates hepatic fibrogenesis associated with chronic liver disease.
{"title":"The heavy subunit of ferritin stimulates NLRP3 inflammasomes in hepatic stellate cells through ICAM-1 to drive hepatic inflammation","authors":"Manuel A. Fernandez-Rojo, Michael A. Pearen, Anita G. Burgess, Maria P. Ikonomopoulou, Diem Hoang-Le, Berit Genz, Silvia L. Saggiomo, Sujeevi S. K. Nawaratna, Maura Poli, Regina Reissmann, Geoffrey N. Gobert, Urban Deutsch, Britta Engelhardt, Andrew J. Brooks, Alun Jones, Paolo Arosio, Grant A. Ramm","doi":"https://www.science.org/doi/10.1126/scisignal.ade4335","DOIUrl":"https://doi.org/https://www.science.org/doi/10.1126/scisignal.ade4335","url":null,"abstract":"Serum ferritin concentrations increase during hepatic inflammation and correlate with the severity of chronic liver disease. Here, we report a molecular mechanism whereby the heavy subunit of ferritin (FTH) contributes to hepatic inflammation. We found that FTH induced activation of the NLRP3 inflammasome and secretion of the proinflammatory cytokine interleukin-1β (IL-1β) in primary rat hepatic stellate cells (HSCs) through intercellular adhesion molecule–1 (ICAM-1). FTH–ICAM-1 stimulated the expression of <i>Il1b</i>, NLRP3 inflammasome activation, and the processing and secretion of IL-1β in a manner that depended on plasma membrane remodeling, clathrin-mediated endocytosis, and lysosomal destabilization. FTH–ICAM-1 signaling at early endosomes stimulated <i>Il1b</i> expression, implying that this endosomal signaling primed inflammasome activation in HSCs. In contrast, lysosomal destabilization was required for FTH-induced IL-1β secretion, suggesting that lysosomal damage activated inflammasomes. FTH induced IL-1β production in liver slices from wild-type mice but not in those from <i>Icam1<sup>−/−</sup></i> or <i>Nlrp3<sup>−/−</sup></i> mice. Thus, FTH signals through its receptor ICAM-1 on HSCs to activate the NLRP3 inflammasome. We speculate that this pathway contributes to hepatic inflammation, a key process that stimulates hepatic fibrogenesis associated with chronic liver disease.","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"298 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-02DOI: 10.1126/scisignal.adp4951
Amy E. Baek
Microglial lipid droplet accumulation leads to increased neurotoxicity in an APOE-dependent manner.
小胶质细胞脂滴积聚以 APOE 依赖性方式导致神经毒性增加。
{"title":"Lipid drops in on Alzheimer’s disease","authors":"Amy E. Baek","doi":"10.1126/scisignal.adp4951","DOIUrl":"10.1126/scisignal.adp4951","url":null,"abstract":"<div >Microglial lipid droplet accumulation leads to increased neurotoxicity in an APOE-dependent manner.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"17 830","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140343126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-26DOI: 10.1126/scisignal.adp3241
Leslie K. Ferrarelli
Blocking complement signaling biases microglia to destroy amyloid aggregates, not neuronal synapses.
阻断补体信号会使小胶质细胞偏向于破坏淀粉样蛋白聚集体,而不是神经元突触。
{"title":"Biasing microglia to help, not hurt","authors":"Leslie K. Ferrarelli","doi":"10.1126/scisignal.adp3241","DOIUrl":"10.1126/scisignal.adp3241","url":null,"abstract":"<div >Blocking complement signaling biases microglia to destroy amyloid aggregates, not neuronal synapses.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"17 829","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-26DOI: https://www.science.org/doi/10.1126/scisignal.adk8249
Rui Wang, Hongyang Sun, Yifan Cao, Zhixiong Zhang, Yajing Chen, Xiying Wang, Lele Liu, Jin Wu, Hao Xu, Dan Wu, Chenchen Mu, Zongbing Hao, Song Qin, Haigang Ren, Junhai Han, Ming Fang, Guanghui Wang
Mutations in the gene encoding the lysosomal enzyme glucocerebrosidase (GCase) are responsible for Gaucher disease (GD) and are considered the strongest genetic risk factor for Parkinson’s disease (PD) and Lewy body dementia (LBD). GCase deficiency leads to extensive accumulation of glucosylceramides (GCs) in cells and contributes to the neuropathology of GD, PD, and LBD by triggering chronic neuroinflammation. Here, we investigated the mechanisms by which GC accumulation induces neuroinflammation. We found that GC accumulation within microglia induced by pharmacological inhibition of GCase triggered STING-dependent inflammation, which contributed to neuronal loss both in vitro and in vivo. GC accumulation in microglia induced mitochondrial DNA (mtDNA) leakage to the cytosol to trigger STING-dependent inflammation. Rapamycin, a compound that promotes lysosomal activity, improved mitochondrial function, thereby decreasing STING signaling. Furthermore, lysosomal damage caused by GC accumulation led to defects in the degradation of activated STING, further exacerbating inflammation mediated by microglia. Thus, limiting STING activity may be a strategy to suppress neuroinflammation caused by GCase deficiency.
{"title":"Glucosylceramide accumulation in microglia triggers STING-dependent neuroinflammation and neurodegeneration in mice","authors":"Rui Wang, Hongyang Sun, Yifan Cao, Zhixiong Zhang, Yajing Chen, Xiying Wang, Lele Liu, Jin Wu, Hao Xu, Dan Wu, Chenchen Mu, Zongbing Hao, Song Qin, Haigang Ren, Junhai Han, Ming Fang, Guanghui Wang","doi":"https://www.science.org/doi/10.1126/scisignal.adk8249","DOIUrl":"https://doi.org/https://www.science.org/doi/10.1126/scisignal.adk8249","url":null,"abstract":"Mutations in the gene encoding the lysosomal enzyme glucocerebrosidase (GCase) are responsible for Gaucher disease (GD) and are considered the strongest genetic risk factor for Parkinson’s disease (PD) and Lewy body dementia (LBD). GCase deficiency leads to extensive accumulation of glucosylceramides (GCs) in cells and contributes to the neuropathology of GD, PD, and LBD by triggering chronic neuroinflammation. Here, we investigated the mechanisms by which GC accumulation induces neuroinflammation. We found that GC accumulation within microglia induced by pharmacological inhibition of GCase triggered STING-dependent inflammation, which contributed to neuronal loss both in vitro and in vivo. GC accumulation in microglia induced mitochondrial DNA (mtDNA) leakage to the cytosol to trigger STING-dependent inflammation. Rapamycin, a compound that promotes lysosomal activity, improved mitochondrial function, thereby decreasing STING signaling. Furthermore, lysosomal damage caused by GC accumulation led to defects in the degradation of activated STING, further exacerbating inflammation mediated by microglia. Thus, limiting STING activity may be a strategy to suppress neuroinflammation caused by GCase deficiency.","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"298 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-26DOI: 10.1126/scisignal.adk8249
Rui Wang, Hongyang Sun, Yifan Cao, Zhixiong Zhang, Yajing Chen, Xiying Wang, Lele Liu, Jin Wu, Hao Xu, Dan Wu, Chenchen Mu, Zongbing Hao, Song Qin, Haigang Ren, Junhai Han, Ming Fang, Guanghui Wang
Mutations in the gene encoding the lysosomal enzyme glucocerebrosidase (GCase) are responsible for Gaucher disease (GD) and are considered the strongest genetic risk factor for Parkinson’s disease (PD) and Lewy body dementia (LBD). GCase deficiency leads to extensive accumulation of glucosylceramides (GCs) in cells and contributes to the neuropathology of GD, PD, and LBD by triggering chronic neuroinflammation. Here, we investigated the mechanisms by which GC accumulation induces neuroinflammation. We found that GC accumulation within microglia induced by pharmacological inhibition of GCase triggered STING-dependent inflammation, which contributed to neuronal loss both in vitro and in vivo. GC accumulation in microglia induced mitochondrial DNA (mtDNA) leakage to the cytosol to trigger STING-dependent inflammation. Rapamycin, a compound that promotes lysosomal activity, improved mitochondrial function, thereby decreasing STING signaling. Furthermore, lysosomal damage caused by GC accumulation led to defects in the degradation of activated STING, further exacerbating inflammation mediated by microglia. Thus, limiting STING activity may be a strategy to suppress neuroinflammation caused by GCase deficiency.
{"title":"Glucosylceramide accumulation in microglia triggers STING-dependent neuroinflammation and neurodegeneration in mice","authors":"Rui Wang, Hongyang Sun, Yifan Cao, Zhixiong Zhang, Yajing Chen, Xiying Wang, Lele Liu, Jin Wu, Hao Xu, Dan Wu, Chenchen Mu, Zongbing Hao, Song Qin, Haigang Ren, Junhai Han, Ming Fang, Guanghui Wang","doi":"10.1126/scisignal.adk8249","DOIUrl":"10.1126/scisignal.adk8249","url":null,"abstract":"<div >Mutations in the gene encoding the lysosomal enzyme glucocerebrosidase (GCase) are responsible for Gaucher disease (GD) and are considered the strongest genetic risk factor for Parkinson’s disease (PD) and Lewy body dementia (LBD). GCase deficiency leads to extensive accumulation of glucosylceramides (GCs) in cells and contributes to the neuropathology of GD, PD, and LBD by triggering chronic neuroinflammation. Here, we investigated the mechanisms by which GC accumulation induces neuroinflammation. We found that GC accumulation within microglia induced by pharmacological inhibition of GCase triggered STING-dependent inflammation, which contributed to neuronal loss both in vitro and in vivo. GC accumulation in microglia induced mitochondrial DNA (mtDNA) leakage to the cytosol to trigger STING-dependent inflammation. Rapamycin, a compound that promotes lysosomal activity, improved mitochondrial function, thereby decreasing STING signaling. Furthermore, lysosomal damage caused by GC accumulation led to defects in the degradation of activated STING, further exacerbating inflammation mediated by microglia. Thus, limiting STING activity may be a strategy to suppress neuroinflammation caused by GCase deficiency.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"17 829","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-19DOI: 10.1126/scisignal.adp2197
John F. Foley
An itch-associated GPCR on neutrophils controls their activation during bacterial infection.
细菌感染期间,中性粒细胞上的痒相关 GPCR 可控制其活化。
{"title":"Polarizing itch","authors":"John F. Foley","doi":"10.1126/scisignal.adp2197","DOIUrl":"10.1126/scisignal.adp2197","url":null,"abstract":"<div >An itch-associated GPCR on neutrophils controls their activation during bacterial infection.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"17 828","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140164517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-19DOI: https://www.science.org/doi/10.1126/scisignal.adh2783
Wing Suen Chan, Chun Fai Ng, Brian Pak Shing Pang, Miaojia Hang, Margaret Chui Ling Tse, Elsie Chit Yu Iu, Xin Ci Ooi, Xiuying Yang, Jason K. Kim, Chi Wai Lee, Chi Bun Chan
Post-exercise recovery is essential to resolve metabolic perturbations and promote long-term cellular remodeling in response to exercise. Here, we report that muscle-generated brain-derived neurotrophic factor (BDNF) elicits post-exercise recovery and metabolic reprogramming in skeletal muscle. BDNF increased the post-exercise expression of the gene encoding PPARδ (peroxisome proliferator–activated receptor δ), a transcription factor that is a master regulator of lipid metabolism. After exercise, mice with muscle-specific Bdnf knockout (MBKO) exhibited impairments in PPARδ-regulated metabolic gene expression, decreased intramuscular lipid content, reduced β-oxidation, and dysregulated mitochondrial dynamics. Moreover, MBKO mice required a longer period to recover from a bout of exercise and did not show increases in exercise-induced endurance capacity. Feeding naïve mice with the bioavailable BDNF mimetic 7,8-dihydroxyflavone resulted in effects that mimicked exercise-induced adaptations, including improved exercise capacity. Together, our findings reveal that BDNF is an essential myokine for exercise-induced metabolic recovery and remodeling in skeletal muscle.
{"title":"Exercise-induced BDNF promotes PPARδ-dependent reprogramming of lipid metabolism in skeletal muscle during exercise recovery","authors":"Wing Suen Chan, Chun Fai Ng, Brian Pak Shing Pang, Miaojia Hang, Margaret Chui Ling Tse, Elsie Chit Yu Iu, Xin Ci Ooi, Xiuying Yang, Jason K. Kim, Chi Wai Lee, Chi Bun Chan","doi":"https://www.science.org/doi/10.1126/scisignal.adh2783","DOIUrl":"https://doi.org/https://www.science.org/doi/10.1126/scisignal.adh2783","url":null,"abstract":"Post-exercise recovery is essential to resolve metabolic perturbations and promote long-term cellular remodeling in response to exercise. Here, we report that muscle-generated brain-derived neurotrophic factor (BDNF) elicits post-exercise recovery and metabolic reprogramming in skeletal muscle. BDNF increased the post-exercise expression of the gene encoding PPARδ (peroxisome proliferator–activated receptor δ), a transcription factor that is a master regulator of lipid metabolism. After exercise, mice with muscle-specific <i>Bdnf</i> knockout (<i>MBKO</i>) exhibited impairments in PPARδ-regulated metabolic gene expression, decreased intramuscular lipid content, reduced β-oxidation, and dysregulated mitochondrial dynamics. Moreover, <i>MBKO</i> mice required a longer period to recover from a bout of exercise and did not show increases in exercise-induced endurance capacity. Feeding naïve mice with the bioavailable BDNF mimetic 7,8-dihydroxyflavone resulted in effects that mimicked exercise-induced adaptations, including improved exercise capacity. Together, our findings reveal that BDNF is an essential myokine for exercise-induced metabolic recovery and remodeling in skeletal muscle.","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"26 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-19DOI: 10.1126/scisignal.adh2783
Wing Suen Chan, Chun Fai Ng, Brian Pak Shing Pang, Miaojia Hang, Margaret Chui Ling Tse, Elsie Chit Yu Iu, Xin Ci Ooi, Xiuying Yang, Jason K. Kim, Chi Wai Lee, Chi Bun Chan
Post-exercise recovery is essential to resolve metabolic perturbations and promote long-term cellular remodeling in response to exercise. Here, we report that muscle-generated brain-derived neurotrophic factor (BDNF) elicits post-exercise recovery and metabolic reprogramming in skeletal muscle. BDNF increased the post-exercise expression of the gene encoding PPARδ (peroxisome proliferator–activated receptor δ), a transcription factor that is a master regulator of lipid metabolism. After exercise, mice with muscle-specific Bdnf knockout (MBKO) exhibited impairments in PPARδ-regulated metabolic gene expression, decreased intramuscular lipid content, reduced β-oxidation, and dysregulated mitochondrial dynamics. Moreover, MBKO mice required a longer period to recover from a bout of exercise and did not show increases in exercise-induced endurance capacity. Feeding naïve mice with the bioavailable BDNF mimetic 7,8-dihydroxyflavone resulted in effects that mimicked exercise-induced adaptations, including improved exercise capacity. Together, our findings reveal that BDNF is an essential myokine for exercise-induced metabolic recovery and remodeling in skeletal muscle.
{"title":"Exercise-induced BDNF promotes PPARδ-dependent reprogramming of lipid metabolism in skeletal muscle during exercise recovery","authors":"Wing Suen Chan, Chun Fai Ng, Brian Pak Shing Pang, Miaojia Hang, Margaret Chui Ling Tse, Elsie Chit Yu Iu, Xin Ci Ooi, Xiuying Yang, Jason K. Kim, Chi Wai Lee, Chi Bun Chan","doi":"10.1126/scisignal.adh2783","DOIUrl":"10.1126/scisignal.adh2783","url":null,"abstract":"<div >Post-exercise recovery is essential to resolve metabolic perturbations and promote long-term cellular remodeling in response to exercise. Here, we report that muscle-generated brain-derived neurotrophic factor (BDNF) elicits post-exercise recovery and metabolic reprogramming in skeletal muscle. BDNF increased the post-exercise expression of the gene encoding PPARδ (peroxisome proliferator–activated receptor δ), a transcription factor that is a master regulator of lipid metabolism. After exercise, mice with muscle-specific <i>Bdnf</i> knockout (<i>MBKO</i>) exhibited impairments in PPARδ-regulated metabolic gene expression, decreased intramuscular lipid content, reduced β-oxidation, and dysregulated mitochondrial dynamics. Moreover, <i>MBKO</i> mice required a longer period to recover from a bout of exercise and did not show increases in exercise-induced endurance capacity. Feeding naïve mice with the bioavailable BDNF mimetic 7,8-dihydroxyflavone resulted in effects that mimicked exercise-induced adaptations, including improved exercise capacity. Together, our findings reveal that BDNF is an essential myokine for exercise-induced metabolic recovery and remodeling in skeletal muscle.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"17 828","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140164519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}