Background: Cutaneous neurofibromas (cNFs) are a major cause of disfigurement in patients with Neurofibromatosis Type 1 (NF1). However, clinical trials investigating cNF treatments lack standardised outcome measures to objectively evaluate changes in cNF size and appearance. 3D imaging has been proposed as an objective standardised outcome measure however various systems exist with different features that affect useability in clinical settings. The aim of this study was to compare the accuracy, precision, feasibility, reliability and accessibility of three imaging systems.
Materials and methods: We compared the Vectra-H1, LifeViz-Micro and Cherry-Imaging systems. A total of 58 cNFs from 13 participants with NF1 were selected for imaging and analysis. The primary endpoint was accuracy as measured by comparison of measurements between imaging systems. Secondary endpoints included reliability between two operators, precision as measured with the average coefficient of variation, feasibility as determined by time to capture and analyse an image and accessibility as determined by cost.
Results: There was no significant difference in accuracy between the three devices for length or surface area measurements (p > 0.05), and reliability and precision were similar. Volume measurements demonstrated the most variability compared to other measurements; LifeViz-Micro demonstrated the least measurement variability for surface area and image capture and analysis were fastest with LifeViz-Micro. LifeViz-Micro was better for imaging smaller number of cNFs (1-3), Vectra-H1 better for larger areas and Cherry for uneven surfaces.
Conclusions: All systems demonstrated excellent reliability but possess distinct advantages and limitations. Surface area is the most consistent and reliable parameter for measuring cNF size in clinical trials.
Introduction: Porokeratosis (PK) is an autoinflammatory keratinization disease (AIKD) characterized by circular or annular skin lesions with a hyperkeratotic rim, pathologically shown as the cornoid lamella. Four genes that cause PK are associated with the mevalonate (MV) pathway. In Chinese PK patients, mevalonate diphosphate decarboxylase (MVD) is the most common causative gene. The lack of an animal model has greatly limited research on PK pathogenesis.
Materials and methods: In this research, we constructed K14-CreERT2-Mvdfl/fl mice using the Cre-LoxP system to create a mouse model for in-depth studies of PK. The Epidermal Mvd gene was knocked out by intraperitoneal injection of Tamoxifen (TAM). Pathology, immunohistochemistry, RNA-seq, and Western Blot analysis were performed.
Results: Skin lesions appeared following Mvd deficiency, and pathological examination revealed the characteristic cornoid lamella, as well as cutaneous inflammation. Furthermore, we observed elevated levels of IL-17A and IL-1β, and a decreased Loricrin level in epidermal Mvd-deficient mice. Compared with the wild-type (WT) group, Mvd deficiency activated the expression of lipid metabolism-related proteins.
Conclusion: We developed the first mouse model for PK research, enabling further studies on disease development and treatment approaches.
Purpose: The study explored the enhanced skin moisturizing capabilities and moisture retention effects achieved by forming a polyion complex using sulfated glycosaminoglycan (GAG), specifically chondroitin sulfate (CS), and amino acids (AA) such as glutamine (Q) and arginine (R). The overall hydration effect of this CS-AA complex was examined.
Methods: After analyzing the CS-AA polyion complex structure using spectroscopic methods, the ex vivo moisture retention ability was assessed under dry conditions using porcine skin samples. Additionally, the efficacy of the CS-AA polyion complex in reducing transepidermal water loss (TEWL) and improving skin hydration was evaluated on human subjects using a digital evaporimeter and a corneometer, respectively.
Results: Validating a systematic reduction in particle size, the following order was observed: CS > CS/AA simple mixture > CS-AA complex based on dynamic light scattering (DLS) and transmission electron microscopy (TEM) analysis. Furthermore, observations revealed that the CS-AA complex exhibits negligible surface charge. Additionally, Fourier-transform infrared spectroscopy (FT-IR) analysis demonstrated a distinct peak shift in the complex, confirming the successful formation of the CS-AA complex. Subsequently, the water-holding effect through porcine skin was assessed, revealing a notable improvement in moisture retention (weight loss) for the CS-Q complex: 40.6% (1 h), 20.5% (2 h), and 18.7% (4 h) compared to glycerin. Similarly, the CS-R complex demonstrated enhancements of 50.2% (1 h), 37.5% (2 h), and 33% (4 h) compared to glycerin. Furthermore, TEWL improvement efficacy on human skin demonstrated approximately 25% improvement for both the CS-Q complex and CS-R complex, surpassing the modest 12.5% and 18% improvements witnessed with water and glycerin applications, respectively. Finally, employing a corneometer, hydration changes in the skin were monitored over 4 weeks. Although CS alone exhibited nominal alterations, the CS-Q complex and CS-R complex showed a significant increase in moisture levels after 4 weeks of application.
Conclusion: In this study, polyion complexes were successfully formed between CS, a sulfated GAG, and AA. Comparisons with glycerin, a well-known moisturizing agent, confirmed that the CS-AA complex exhibits superior moisturizing effects in various aspects. These findings suggest that the CS-AA complex is a more effective ingredient than CS or AA alone in terms of efficacy.
Background: Solar lentigo, a common epidermal hyperpigmented lesion found in sun-exposed areas, results from the proliferation of melanocytes and the accumulation of melanin. Although various treatments for solar lentigo have been explored, they often lead to complications, including prolonged erythema and post-inflammatory hyperpigmentation (PIH), posing significant concerns.
Objectives and methods: This study evaluated the safety and efficacy of the Vasculature Salvage Laser Surgery (VSLS) system. We treated six Korean patients, each with solar lentigo, in a single session using the 532-nm nanosecond neodymium-doped yttrium aluminum garnet (Nd:YAG) VSLS system, with follow-up periods ranging from 3 to 10 weeks.
Results: The treatment led to the complete removal of pigmented lesions in all patients without resulting in PIH, even in cases where previous laser treatments had failed. The only side effect observed was mild erythema, which resolved over the long term in most instances.
Conclusions: The VSLS system emerges as a safe and effective treatment for pigmented lesions, including refractory solar lentigines. Nonetheless, additional studies are required to verify its long-term efficacy.