Pub Date : 2024-02-02DOI: 10.1016/j.slasd.2024.02.001
Chorom Pak , Kaylene J. Simpson , Andrea D. Weston , Mary Ellen Cvijic , Kenda Evans , Andrew D. Napper
Here we offer perspectives on phenotypic screening based on a wide-ranging discussion entitled “Phenotypic screening, target ID, and multi-omics: enabling more disease relevance in early discovery?” at the Screen Design and Assay Technology Special Interest Group Meeting at the 2023 SLAS Conference. During the session, the authors shared their own experience from within their respective organizations, followed by an open discussion with the audience. It was recognized that while substantial progress has been made towards translating disease-relevant phenotypic early discovery into clinical success, there remain significant operational and scientific challenges to implementing phenotypic screening efforts, and improving translation of screening hits comes with substantial resource demands and organizational commitment. This Perspective assesses progress, highlights pitfalls, and offers possible solutions to help unlock the therapeutic potential of phenotypic drug discovery. Areas explored comprise screening and hit validation strategy, choice of cellular model, moving beyond 2D cell culture into three dimensions, and leveraging high-dimensional data sets downstream of phenotypic screens.
在此,我们根据 2023 年 SLAS 大会筛选设计和检测技术特别兴趣小组会议上题为 "表型筛选、靶点 ID 和多组学:在早期发现中实现更多疾病相关性?会议期间,作者们分享了各自组织内的经验,随后与听众进行了开放式讨论。大家认识到,虽然在将疾病相关的表型早期发现转化为临床成功方面取得了重大进展,但在实施表型筛选工作方面仍存在重大的操作和科学挑战,而且提高筛选结果的转化需要大量的资源需求和组织承诺。本视角评估了进展情况,强调了陷阱,并提供了可能的解决方案,以帮助释放表型药物发现的治疗潜力。探讨的领域包括筛选和新药验证策略、细胞模型的选择、从二维细胞培养到三维细胞培养,以及利用表型筛选下游的高维数据集。
{"title":"Perspectives on phenotypic screening−Screen Design and Assay Technology Special Interest Group","authors":"Chorom Pak , Kaylene J. Simpson , Andrea D. Weston , Mary Ellen Cvijic , Kenda Evans , Andrew D. Napper","doi":"10.1016/j.slasd.2024.02.001","DOIUrl":"10.1016/j.slasd.2024.02.001","url":null,"abstract":"<div><p>Here we offer perspectives on phenotypic screening based on a wide-ranging discussion entitled “Phenotypic screening, target ID, and multi-omics: enabling more disease relevance in early discovery?” at the Screen Design and Assay Technology Special Interest Group Meeting at the 2023 SLAS Conference. During the session, the authors shared their own experience from within their respective organizations, followed by an open discussion with the audience. It was recognized that while substantial progress has been made towards translating disease-relevant phenotypic early discovery into clinical success, there remain significant operational and scientific challenges to implementing phenotypic screening efforts, and improving translation of screening hits comes with substantial resource demands and organizational commitment. This Perspective assesses progress, highlights pitfalls, and offers possible solutions to help unlock the therapeutic potential of phenotypic drug discovery. Areas explored comprise screening and hit validation strategy, choice of cellular model, moving beyond 2D cell culture into three dimensions, and leveraging high-dimensional data sets downstream of phenotypic screens.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"29 2","pages":"Article 100146"},"PeriodicalIF":3.1,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S247255522400008X/pdfft?md5=6c8f5d753c3f54536e16525d3c3ab6e0&pid=1-s2.0-S247255522400008X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139678102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.slasd.2024.01.006
Nicole L. Inniss , Margarita Rzhetskaya , Ted Ling-Hu , Ramon Lorenzo-Redondo , Kelly E. Bachta , Karla J.F. Satchell , Judd F. Hultquist
SARS-CoV-2 nsp13 helicase is an essential enzyme for viral replication and a promising target for antiviral drug development. This study compares the double-stranded RNA (dsRNA) unwinding activity of nsp13 and the Omicron nsp13R392C variant, which is predominant in currently circulating lineages. Using in vitro gel- and fluorescence-based assays, we found that both nsp13 and nsp13R392C have dsRNA unwinding activity with equivalent kinetics. Furthermore, the R392C mutation had no effect on the efficiency of the nsp13-specific helicase inhibitor SSYA10-001. We additionally confirmed the activity of several other helicase inhibitors against nsp13, including punicalagin that inhibited dsRNA unwinding at nanomolar concentrations. Overall, this study reveals the utility of using dsRNA unwinding assays to screen small molecules for antiviral activity against nsp13 and the Omicron nsp13R392C variant. Continual monitoring of newly emergent variants will be essential for considering resistance profiles of lead compounds as they are advanced towards next-generation therapeutic development.
{"title":"Activity and inhibition of the SARS-CoV-2 Omicron nsp13 R392C variant using RNA duplex unwinding assays","authors":"Nicole L. Inniss , Margarita Rzhetskaya , Ted Ling-Hu , Ramon Lorenzo-Redondo , Kelly E. Bachta , Karla J.F. Satchell , Judd F. Hultquist","doi":"10.1016/j.slasd.2024.01.006","DOIUrl":"10.1016/j.slasd.2024.01.006","url":null,"abstract":"<div><p>SARS-CoV-2 nsp13 helicase is an essential enzyme for viral replication and a promising target for antiviral drug development. This study compares the double-stranded RNA (dsRNA) unwinding activity of nsp13 and the Omicron nsp13<sup>R392C</sup> variant, which is predominant in currently circulating lineages. Using <em>in vitro</em> gel- and fluorescence-based assays, we found that both nsp13 and nsp13<sup>R392C</sup> have dsRNA unwinding activity with equivalent kinetics. Furthermore, the R392C mutation had no effect on the efficiency of the nsp13-specific helicase inhibitor SSYA10-001. We additionally confirmed the activity of several other helicase inhibitors against nsp13, including punicalagin that inhibited dsRNA unwinding at nanomolar concentrations. Overall, this study reveals the utility of using dsRNA unwinding assays to screen small molecules for antiviral activity against nsp13 and the Omicron nsp13<sup>R392C</sup> variant. Continual monitoring of newly emergent variants will be essential for considering resistance profiles of lead compounds as they are advanced towards next-generation therapeutic development.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"29 3","pages":"Article 100145"},"PeriodicalIF":3.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555224000078/pdfft?md5=f7dc6d1a4af32c1d663782fff14897d5&pid=1-s2.0-S2472555224000078-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139673776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-26DOI: 10.1016/j.slasd.2024.01.004
Zhi-Bin Tong, Ruili Huang, John Braisted, Pei-Hsuan Chu, Anton Simeonov, David L. Gerhold
Three-dimensional (3D) cell culture in vitro promises to improve representation of neuron physiology in vivo. This inspired development of a 3D culture platform for LUHMES (Lund Human Mesencephalic) dopaminergic neurons for high-throughput screening (HTS) of chemicals for neurotoxicity. Three culture platforms, adhesion (2D-monolayer), 3D-suspension, and 3D-shaken, were compared to monitor mRNA expression of seven neuronal marker genes, DCX, DRD2, ENO2, NEUROD4, SYN1, TH, and TUBB3. These seven marker genes reached similar maxima in all three formats, with the two 3D platforms showing similar kinetics, whereas several markers peaked earlier in 2D adhesion compared to both 3D culture platforms. The differentiated LUHMES (dLUHMES) neurons treated with ziram, methylmercury or thiram dynamically increased expression of metallothionein biomarker genes MT1G, MT1E and MT2A at 6 h. These gene expression increases were generally more dynamic in 2D adhesion cultures than in 3D cultures, but were generally comparable between 3D-suspension and 3D-u plate (low binding) platforms. Finally, we adapted 3D-suspension culture of dLUHMES and neural stem cells to 1536 well plates with a HTS cytotoxicity assay. This HTS assay revealed that cytotoxicity IC50 values were not significantly different between adhesion and 3D-suspension platforms for 31 of 34 (91%) neurotoxicants tested, whereas IC50 values were significantly different for at least two toxicants. In summary, the 3D-suspension culture platform for LUHMES dopaminergic neurons supported full differentiation and reproducible assay results, enabling quantitative HTS (qHTS) for cytotoxicity in 1536 well format with a Robust Z’ score of 0.68.
{"title":"3D-Suspension culture platform for high throughput screening of neurotoxic chemicals using LUHMES dopaminergic neurons","authors":"Zhi-Bin Tong, Ruili Huang, John Braisted, Pei-Hsuan Chu, Anton Simeonov, David L. Gerhold","doi":"10.1016/j.slasd.2024.01.004","DOIUrl":"10.1016/j.slasd.2024.01.004","url":null,"abstract":"<div><p>Three-dimensional (3D) cell culture <em>in vitro</em> promises to improve representation of neuron physiology <em>in vivo</em>. This inspired development of a 3D culture platform for LUHMES (Lund Human Mesencephalic) dopaminergic neurons for high-throughput screening (HTS) of chemicals for neurotoxicity. Three culture platforms, adhesion (2D-monolayer), 3D-suspension, and 3D-shaken, were compared to monitor mRNA expression of seven neuronal marker genes, <em>DCX, DRD2, ENO2, NEUROD4, SYN1, TH,</em> and <em>TUBB3</em>. These seven marker genes reached similar maxima in all three formats, with the two 3D platforms showing similar kinetics, whereas several markers peaked earlier in 2D adhesion compared to both 3D culture platforms. The differentiated LUHMES (dLUHMES) neurons treated with ziram, methylmercury or thiram dynamically increased expression of metallothionein biomarker genes <em>MT1G, MT1E</em> and <em>MT2A</em> at 6 h. These gene expression increases were generally more dynamic in 2D adhesion cultures than in 3D cultures, but were generally comparable between 3D-suspension and 3D-u plate (low binding) platforms. Finally, we adapted 3D-suspension culture of dLUHMES and neural stem cells to 1536 well plates with a HTS cytotoxicity assay. This HTS assay revealed that cytotoxicity IC<sub>50</sub> values were not significantly different between adhesion and 3D-suspension platforms for 31 of 34 (91%) neurotoxicants tested, whereas IC<sub>50</sub> values were significantly different for at least two toxicants. In summary, the 3D-suspension culture platform for LUHMES dopaminergic neurons supported full differentiation and reproducible assay results, enabling quantitative HTS (qHTS) for cytotoxicity in 1536 well format with a Robust Z’ score of 0.68.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"29 3","pages":"Article 100143"},"PeriodicalIF":3.1,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555224000054/pdfft?md5=6ff5659913d236de92a50d2266c74ac5&pid=1-s2.0-S2472555224000054-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139572293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-24DOI: 10.1016/j.slasd.2024.01.003
Simon C.C. Lucas , J. Henry Blackwell , Sarah H. Hewitt , Hannah Semple , Benjamin C. Whitehurst , Hua Xu
Covalent hits for drug discovery campaigns are neither fantastic beasts nor mythical creatures, they can be routinely identified through electrophile-first screening campaigns using a suite of different techniques. These include biophysical and biochemical methods, cellular approaches, and DNA-encoded libraries. Employing best practice, however, is critical to success. The purpose of this review is to look at state of the art covalent hit identification, how to identify hits from a covalent library and how to select compounds for medicinal chemistry programmes.
药物发现活动中的共价化合物既不是神奇的野兽,也不是神话中的生物,它们可以通过亲电子先筛选活动,利用一系列不同的技术进行常规鉴定。这些技术包括生物物理和生物化学方法、细胞方法和 DNA 编码库。然而,采用最佳实践是成功的关键。本综述的目的是介绍最先进的共价反应识别技术、如何从共价化合物库中识别反应,以及如何为药物化学项目选择化合物。
{"title":"Covalent hits and where to find them","authors":"Simon C.C. Lucas , J. Henry Blackwell , Sarah H. Hewitt , Hannah Semple , Benjamin C. Whitehurst , Hua Xu","doi":"10.1016/j.slasd.2024.01.003","DOIUrl":"10.1016/j.slasd.2024.01.003","url":null,"abstract":"<div><p>Covalent hits for drug discovery campaigns are neither fantastic beasts nor mythical creatures, they can be routinely identified through electrophile-first screening campaigns using a suite of different techniques. These include biophysical and biochemical methods, cellular approaches, and DNA-encoded libraries. Employing best practice, however, is critical to success. The purpose of this review is to look at state of the art covalent hit identification, how to identify hits from a covalent library and how to select compounds for medicinal chemistry programmes.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"29 3","pages":"Article 100142"},"PeriodicalIF":3.1,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555224000042/pdfft?md5=28984734996316504590225697375dad&pid=1-s2.0-S2472555224000042-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139567707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-11DOI: 10.1016/j.slasd.2024.01.002
Luis M. Ortiz Jordan, Virneliz Fernández Vega, Justin Shumate, Adam Peles, Jordan Zeiger, Louis Scampavia, Timothy P. Spicer
High Throughput Screening (HTS) with 3D cell models is possible thanks to the recent progress and development in 3D cell culture technologies. Results from multiple studies have demonstrated different drug responses between 2D and 3D cell culture. It is now widely accepted that 3D cell models more accurately represent the physiologic conditions of tumors over 2D cell models. However, there is still a need for more accurate tests that are scalable and better imitate the complex conditions in living tissues. Here, we describe ultrahigh throughput 3D methods of drug response profiling in patient derived primary tumors including melanoma as well as renal cell carcinoma that were tested against the NCI oncologic set of FDA approved drugs. We also tested their autologous patient derived cancer associated fibroblasts, varied the in-vitro conditions using matrix vs matrix free methods and completed this in both 3D vs 2D rendered cancer cells. The result indicates a heterologous response to the drugs based on their genetic background, but not on their maintenance condition. Here, we present the methods and supporting results of the HTS efforts using these 3D of organoids derived from patients. This demonstrated the possibility of using patient derived 3D cells for HTS and expands on our screening capabilities for testing other types of cancer using clinically approved anti-cancer agents to find drugs for potential off label use.
由于三维细胞培养技术的最新进展和发展,利用三维细胞模型进行高通量筛选(HTS)成为可能。多项研究结果表明,二维和三维细胞培养对药物的反应不同。目前,人们普遍认为三维细胞模型比二维细胞模型更能准确地反映肿瘤的生理状况。然而,我们仍然需要可扩展的、能更好地模拟活体组织中复杂条件的更精确测试。在此,我们介绍了超高通量三维药物反应谱分析方法,该方法针对患者原发性肿瘤(包括黑色素瘤和肾细胞癌)进行了测试,并与美国国家癌症研究所(NCI)的一套经 FDA 批准的肿瘤药物进行了对比。我们还测试了患者自体癌症相关成纤维细胞,使用基质与无基质方法改变了体外条件,并在三维与二维渲染的癌细胞中完成了测试。结果表明,基于遗传背景,但不基于维持条件,患者对药物的反应是不同的。在此,我们介绍了使用这些来自患者的三维有机体进行 HTS 研究的方法和支持性结果。这证明了使用病人的三维细胞进行 HTS 的可能性,并扩展了我们使用临床批准的抗癌药物测试其他类型癌症的筛选能力,以寻找潜在的非标签使用药物。
{"title":"Protocol for high throughput 3D drug screening of patient derived melanoma and renal cell carcinoma","authors":"Luis M. Ortiz Jordan, Virneliz Fernández Vega, Justin Shumate, Adam Peles, Jordan Zeiger, Louis Scampavia, Timothy P. Spicer","doi":"10.1016/j.slasd.2024.01.002","DOIUrl":"10.1016/j.slasd.2024.01.002","url":null,"abstract":"<div><p>High Throughput Screening (HTS) with 3D cell models is possible thanks to the recent progress and development in 3D cell culture technologies. Results from multiple studies have demonstrated different drug responses between 2D and 3D cell culture. It is now widely accepted that 3D cell models more accurately represent the physiologic conditions of tumors over 2D cell models. However, there is still a need for more accurate tests that are scalable and better imitate the complex conditions in living tissues. Here, we describe ultrahigh throughput 3D methods of drug response profiling in patient derived primary tumors including melanoma as well as renal cell carcinoma that were tested against the NCI oncologic set of FDA approved drugs. We also tested their autologous patient derived cancer associated fibroblasts, varied the <em>in-vitro</em> conditions using matrix vs matrix free methods and completed this in both 3D vs 2D rendered cancer cells. The result indicates a heterologous response to the drugs based on their genetic background, but not on their maintenance condition. Here, we present the methods and supporting results of the HTS efforts using these 3D of organoids derived from patients. This demonstrated the possibility of using patient derived 3D cells for HTS and expands on our screening capabilities for testing other types of cancer using clinically approved anti-cancer agents to find drugs for potential off label use.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"29 3","pages":"Article 100141"},"PeriodicalIF":3.1,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555224000029/pdfft?md5=0a92fc4c4df53099e9c90f6f22bf7c70&pid=1-s2.0-S2472555224000029-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139459264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-03DOI: 10.1016/j.slasd.2024.01.001
Mujahed I. Mustafa , Ahmed Mohammed
The use of recombinant antibodies developed through phage display technology offers a promising approach for combating viral infectious diseases. By specifically targeting antigens on viral surfaces, these antibodies have the potential to reduce the severity of infections or even prevent them altogether. With the emergence of new and more virulent strains of viruses, it is crucial to develop innovative methods to counteract them. Phage display technology has proven successful in generating recombinant antibodies capable of targeting specific viral antigens, thereby providing a powerful tool to fight viral infections. In this mini-review article, we examine the development of these antibodies using phage display technology, and discuss the associated challenges and opportunities in developing novel treatments for viral infectious diseases. Furthermore, we provide an overview of phage display technology. As these methods continue to evolve and improve, novel and sophisticated tools based on phage display and peptide display systems are constantly emerging, offering exciting prospects for solving scientific, medical, and technological problems related to viral infectious diseases in the near future.
{"title":"Developing recombinant antibodies by phage display technology to neutralize viral infectious diseases","authors":"Mujahed I. Mustafa , Ahmed Mohammed","doi":"10.1016/j.slasd.2024.01.001","DOIUrl":"10.1016/j.slasd.2024.01.001","url":null,"abstract":"<div><p>The use of recombinant antibodies developed through phage display technology offers a promising approach for combating viral infectious diseases. By specifically targeting antigens on viral surfaces, these antibodies have the potential to reduce the severity of infections or even prevent them altogether. With the emergence of new and more virulent strains of viruses, it is crucial to develop innovative methods to counteract them. Phage display technology has proven successful in generating recombinant antibodies capable of targeting specific viral antigens, thereby providing a powerful tool to fight viral infections. In this mini-review article, we examine the development of these antibodies using phage display technology, and discuss the associated challenges and opportunities in developing novel treatments for viral infectious diseases. Furthermore, we provide an overview of phage display technology. As these methods continue to evolve and improve, novel and sophisticated tools based on phage display and peptide display systems are constantly emerging, offering exciting prospects for solving scientific, medical, and technological problems related to viral infectious diseases in the near future.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"29 3","pages":"Article 100140"},"PeriodicalIF":3.1,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555224000017/pdfft?md5=93aed5a9bb73b5e08c82c3d4ec4e0e52&pid=1-s2.0-S2472555224000017-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139106993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.slasd.2023.09.001
Edward A. FitzGerald , Darius Vagrys , Giulia Opassi , Hanna F. Klein , David J. Hamilton , Vladimir O. Talibov , Mia Abramsson , Anna Moberg , Maria T. Lindgren , Claes Holmgren , Ben Davis , Peter O'Brien , Maikel Wijtmans , Roderick E. Hubbard , Iwan J.P. de Esch , U.Helena Danielson
Surface plasmon resonance (SPR) biosensor methods are ideally suited for fragment-based lead discovery. However, generally applicable experimental procedures and detailed protocols are lacking, especially for structurally or physico-chemically challenging targets or when tool compounds are not available. Success depends on accounting for the features of both the target and the chemical library, purposely designing screening experiments for identification and validation of hits with desired specificity and mode-of-action, and availability of orthogonal methods capable of confirming fragment hits. The range of targets and libraries amenable to an SPR biosensor-based approach for identifying hits is considerably expanded by adopting multiplexed strategies, using multiple complementary surfaces or experimental conditions. Here we illustrate principles and multiplexed approaches for using flow-based SPR biosensor systems for screening fragment libraries of different sizes (90 and 1056 compounds) against a selection of challenging targets. It shows strategies for the identification of fragments interacting with 1) large and structurally dynamic targets, represented by acetyl choline binding protein (AChBP), a Cys-loop receptor ligand gated ion channel homologue, 2) targets in multi protein complexes, represented by lysine demethylase 1 and a corepressor (LSD1/CoREST), 3) structurally variable or unstable targets, represented by farnesyl pyrophosphate synthase (FPPS), 4) targets containing intrinsically disordered regions, represented by protein tyrosine phosphatase 1B (PTP1B), and 5) aggregation-prone proteins, represented by an engineered form of human tau (tau K18M). Practical considerations and procedures accounting for the characteristics of the proteins and libraries, and that increase robustness, sensitivity, throughput and versatility are highlighted. The study shows that the challenges for addressing these types of targets is not identification of potentially useful fragments per se, but establishing methods for their validation and evolution into leads.
{"title":"Multiplexed experimental strategies for fragment library screening against challenging drug targets using SPR biosensors","authors":"Edward A. FitzGerald , Darius Vagrys , Giulia Opassi , Hanna F. Klein , David J. Hamilton , Vladimir O. Talibov , Mia Abramsson , Anna Moberg , Maria T. Lindgren , Claes Holmgren , Ben Davis , Peter O'Brien , Maikel Wijtmans , Roderick E. Hubbard , Iwan J.P. de Esch , U.Helena Danielson","doi":"10.1016/j.slasd.2023.09.001","DOIUrl":"10.1016/j.slasd.2023.09.001","url":null,"abstract":"<div><p>Surface plasmon resonance (SPR) biosensor methods are ideally suited for fragment-based lead discovery. However, generally applicable experimental procedures and detailed protocols are lacking, especially for structurally or physico-chemically challenging targets or when tool compounds are not available. Success depends on accounting for the features of both the target and the chemical library, purposely designing screening experiments for identification and validation of hits with desired specificity and mode-of-action, and availability of orthogonal methods capable of confirming fragment hits. The range of targets and libraries amenable to an SPR biosensor-based approach for identifying hits is considerably expanded by adopting multiplexed strategies, using multiple complementary surfaces or experimental conditions. Here we illustrate principles and multiplexed approaches for using flow-based SPR biosensor systems for screening fragment libraries of different sizes (90 and 1056 compounds) against a selection of challenging targets. It shows strategies for the identification of fragments interacting with 1) large and structurally dynamic targets, represented by acetyl choline binding protein (AChBP), a Cys-loop receptor ligand gated ion channel homologue, 2) targets in multi protein complexes, represented by lysine demethylase 1 and a corepressor (LSD1/CoREST), 3) structurally variable or unstable targets, represented by farnesyl pyrophosphate synthase (FPPS), 4) targets containing intrinsically disordered regions, represented by protein tyrosine phosphatase 1B (PTP1B), and 5) aggregation-prone proteins, represented by an engineered form of human tau (tau K18<sup>M</sup>). Practical considerations and procedures accounting for the characteristics of the proteins and libraries, and that increase robustness, sensitivity, throughput and versatility are highlighted. The study shows that the challenges for addressing these types of targets is not identification of potentially useful fragments per se, but establishing methods for their validation and evolution into leads.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"29 1","pages":"Pages 40-51"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555223000679/pdfft?md5=e9a7100ac306d5de9cdd29e39a98f3eb&pid=1-s2.0-S2472555223000679-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10253726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.slasd.2023.08.002
Pranav Shah , Elias C. Padilha , Rintaro Kato , Vishal B. Siramshetty , Wenwei Huang , Xin Xu
Hepatic metabolic stability is a crucial determinant of oral bioavailability and plasma concentrations of a compound, and its measurement is important in early drug discovery. Preliminary metabolic stability estimations are commonly performed in liver microsomal fractions. At the National Center for Advancing Translational Sciences, a single-point assay in rat liver microsomes (RLM) is employed for initial stability assessment (Tier I) and a multi-point detailed stability assay is employed as a Tier II assay for promising compounds. Although the in vitro and in vivo metabolic stability of compounds typically exhibit good correlation, conflicting results may arise in certain cases. While investigating one such instance, we serendipitously found vendor-related RLM differences in metabolic stability and metabolite formation, which had implications for in vitro and in vivo correlations. In this study, we highlight the importance of considering vendor differences in hepatic metabolic stability data and discuss strategies to avoid these pitfalls.
{"title":"Consideration of vendor-related differences in hepatic metabolic stability data to optimize early ADME screening in drug discovery","authors":"Pranav Shah , Elias C. Padilha , Rintaro Kato , Vishal B. Siramshetty , Wenwei Huang , Xin Xu","doi":"10.1016/j.slasd.2023.08.002","DOIUrl":"10.1016/j.slasd.2023.08.002","url":null,"abstract":"<div><p>Hepatic metabolic stability is a crucial determinant of oral bioavailability and plasma concentrations of a compound, and its measurement is important in early drug discovery. Preliminary metabolic stability estimations are commonly performed in liver microsomal fractions. At the National Center for Advancing Translational Sciences, a single-point assay in rat liver microsomes (RLM) is employed for initial stability assessment (Tier I) and a multi-point detailed stability assay is employed as a Tier II assay for promising compounds. Although the <em>in vitro</em> and <em>in vivo</em> metabolic stability of compounds typically exhibit good correlation, conflicting results may arise in certain cases. While investigating one such instance, we serendipitously found vendor-related RLM differences in metabolic stability and metabolite formation, which had implications for <em>in vitro</em> and <em>in vivo</em> correlations. In this study, we highlight the importance of considering vendor differences in hepatic metabolic stability data and discuss strategies to avoid these pitfalls.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"29 1","pages":"Pages 34-39"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S247255522300059X/pdfft?md5=97f05a382d32c16ef121ece3e85f6f38&pid=1-s2.0-S247255522300059X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10064905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.slasd.2023.08.007
Phil Addis , Utsav Bali , Frank Baron , Adrian Campbell , Steven Harborne , Liz Jagger , Gavin Milne , Martin Pearce , Elizabeth M Rosethorne , Rupert Satchell , Denise Swift , Barbara Young , John F Unitt
G-protein-coupled receptors (GPCRs) are the largest and most versatile cell surface receptor family with a broad repertoire of ligands and functions. We've learned an enormous amount about discovering drugs of this receptor class since the first GPCR was cloned and expressed in 1986, such that it's now well-recognized that GPCRs are the most successful target class for approved drugs. Here we take the reader through a GPCR drug discovery journey from target to the clinic, highlighting the key learnings, best practices, challenges, trends and insights on discovering drugs that ultimately modulate GPCR function therapeutically in patients. The future of GPCR drug discovery is inspiring, with more desirable drug mechanisms and new technologies enabling the delivery of better and more successful drugs.
{"title":"Key aspects of modern GPCR drug discovery","authors":"Phil Addis , Utsav Bali , Frank Baron , Adrian Campbell , Steven Harborne , Liz Jagger , Gavin Milne , Martin Pearce , Elizabeth M Rosethorne , Rupert Satchell , Denise Swift , Barbara Young , John F Unitt","doi":"10.1016/j.slasd.2023.08.007","DOIUrl":"10.1016/j.slasd.2023.08.007","url":null,"abstract":"<div><p>G-protein-coupled receptors (GPCRs) are the largest and most versatile cell surface receptor family with a broad repertoire of ligands and functions. We've learned an enormous amount about discovering drugs of this receptor class since the first GPCR was cloned and expressed in 1986, such that it's now well-recognized that GPCRs are the most successful target class for approved drugs. Here we take the reader through a GPCR drug discovery journey from target to the clinic, highlighting the key learnings, best practices, challenges, trends and insights on discovering drugs that ultimately modulate GPCR function therapeutically in patients. The future of GPCR drug discovery is inspiring, with more desirable drug mechanisms and new technologies enabling the delivery of better and more successful drugs.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"29 1","pages":"Pages 1-22"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555223000643/pdfft?md5=e5ba61e29a8a7d8a39b708740744ab68&pid=1-s2.0-S2472555223000643-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10074621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.slasd.2023.10.008
Yohanka Martinez-Gzegozewska, Lynn Rasmussen, Sara McKellip, Anna Manuvakhova, N. Miranda Nebane, Andrew J. Reece, Pedro Ruiz, Melinda Sosa, Robert Bostwick, Paige Vinson
A rapid drug discovery response to influenza outbreaks with the potential to reach pandemic status could help minimize the virus's impact by reducing the time to identify anti-influenza drugs. Although several anti-influenza strategies have been considered in the search for new drugs, only a few therapeutic agents are approved for clinical use. The cytopathic effect induced by the influenza virus in Madin Darby canine kidney (MDCK) cells has been widely used for high-throughput anti-influenza drug screening, but the fact that the MDCK cells are not human cells constitutes a disadvantage when searching for new therapeutic agents for human use. We have developed a highly sensitive cell-based imaging assay for the identification of inhibitors of influenza A and B virus that is high-throughput compatible using the A549 human cell line. The assay has also been optimized for the assessment of the neutralizing effect of anti-influenza antibodies in the absence of trypsin, which allows testing of purified antibodies and serum samples. This assay platform can be applied to full high-throughput screening campaigns or later stages requiring quantitative potency determinations for structure-activity relationships.
{"title":"High-Throughput cell-based immunofluorescence assays against influenza","authors":"Yohanka Martinez-Gzegozewska, Lynn Rasmussen, Sara McKellip, Anna Manuvakhova, N. Miranda Nebane, Andrew J. Reece, Pedro Ruiz, Melinda Sosa, Robert Bostwick, Paige Vinson","doi":"10.1016/j.slasd.2023.10.008","DOIUrl":"10.1016/j.slasd.2023.10.008","url":null,"abstract":"<div><p>A rapid drug discovery response to influenza outbreaks with the potential to reach pandemic status could help minimize the virus's impact by reducing the time to identify anti-influenza drugs. Although several anti-influenza strategies have been considered in the search for new drugs, only a few therapeutic agents are approved for clinical use. The cytopathic effect induced by the influenza virus in Madin Darby canine kidney (MDCK) cells has been widely used for high-throughput anti-influenza drug screening, but the fact that the MDCK cells are not human cells constitutes a disadvantage when searching for new therapeutic agents for human use. We have developed a highly sensitive cell-based imaging assay for the identification of inhibitors of influenza A and B virus that is high-throughput compatible using the A549 human cell line. The assay has also been optimized for the assessment of the neutralizing effect of anti-influenza antibodies in the absence of trypsin, which allows testing of purified antibodies and serum samples. This assay platform can be applied to full high-throughput screening campaigns or later stages requiring quantitative potency determinations for structure-activity relationships.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"29 1","pages":"Pages 66-76"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555223000783/pdfft?md5=fb5946572ad6363ceeb2a134add0ee25&pid=1-s2.0-S2472555223000783-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71489818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}