Pub Date : 2024-05-01DOI: 10.1016/j.stemcr.2024.04.010
Pedro Rifes, Janko Kajtez, Josefine Rågård Christiansen, Alrik L. Schörling, Gaurav Singh Rathore, Daniel A Wolf, Andreas Heuer, A. Kirkeby
{"title":"Forced LMX1A expression induces dorsal neural fates and disrupts patterning of human embryonic stem cells into ventral midbrain dopaminergic neurons.","authors":"Pedro Rifes, Janko Kajtez, Josefine Rågård Christiansen, Alrik L. Schörling, Gaurav Singh Rathore, Daniel A Wolf, Andreas Heuer, A. Kirkeby","doi":"10.1016/j.stemcr.2024.04.010","DOIUrl":"https://doi.org/10.1016/j.stemcr.2024.04.010","url":null,"abstract":"","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":"8 2","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141036169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Spermatogonial stem cell (SSC) transplantation is a valuable tool for studying stem cell-niche interaction. However, the conventional approach requires the removal of endogenous SSCs, causing damage to the niche. Here we introduce WIN18,446, an ALDH1A2 inhibitor, to enhance SSC colonization in nonablated recipients. Pre-transplantation treatment with WIN18,446 induced abnormal claudin protein expression, which comprises the blood-testis barrier and impedes SSC colonization. Consequently, WIN18,446 increased colonization efficiency by 4.6-fold compared with untreated host. WIN18,446-treated testes remained small despite the cessation of WIN18,446, suggesting its irreversible effect. Offspring were born by microinsemination using donor-derived sperm. While WIN18,446 was lethal to busulfan-treated mice, cyclophosphamide- or radiation-treated animals survived after WIN18,446 treatment. Although WIN18,446 is not applicable to humans due to toxicity, similar ALDH1A2 inhibitors may be useful for SSC transplantation into nonablated testes, shedding light on the role of retinoid metabolism on SSC-niche interactions and advancing SSC research in animal models and humans.
{"title":"Restoration of fertility in nonablated recipient mice after spermatogonial stem cell transplantation.","authors":"Hiroko Morimoto, Narumi Ogonuki, Shogo Matoba, Mito Kanatsu-Shinohara, Atsuo Ogura, Takashi Shinohara","doi":"10.1016/j.stemcr.2024.02.003","DOIUrl":"10.1016/j.stemcr.2024.02.003","url":null,"abstract":"<p><p>Spermatogonial stem cell (SSC) transplantation is a valuable tool for studying stem cell-niche interaction. However, the conventional approach requires the removal of endogenous SSCs, causing damage to the niche. Here we introduce WIN18,446, an ALDH1A2 inhibitor, to enhance SSC colonization in nonablated recipients. Pre-transplantation treatment with WIN18,446 induced abnormal claudin protein expression, which comprises the blood-testis barrier and impedes SSC colonization. Consequently, WIN18,446 increased colonization efficiency by 4.6-fold compared with untreated host. WIN18,446-treated testes remained small despite the cessation of WIN18,446, suggesting its irreversible effect. Offspring were born by microinsemination using donor-derived sperm. While WIN18,446 was lethal to busulfan-treated mice, cyclophosphamide- or radiation-treated animals survived after WIN18,446 treatment. Although WIN18,446 is not applicable to humans due to toxicity, similar ALDH1A2 inhibitors may be useful for SSC transplantation into nonablated testes, shedding light on the role of retinoid metabolism on SSC-niche interactions and advancing SSC research in animal models and humans.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"443-455"},"PeriodicalIF":5.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096438/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140065984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09Epub Date: 2024-03-21DOI: 10.1016/j.stemcr.2024.02.006
Michael W Ream, Lauren N Randolph, Yuqian Jiang, Yun Chang, Xiaoping Bao, Xiaojun Lance Lian
Transcription factors (TFs) are pivotal in guiding stem cell behavior, including their maintenance and differentiation. Using single-cell RNA sequencing, we investigated TFs expressed in endothelial progenitors (EPs) derived from human pluripotent stem cells (hPSCs) and identified upregulated expression of SOXF factors SOX7, SOX17, and SOX18 in the EP population. To test whether overexpression of these factors increases differentiation efficiency, we established inducible hPSC lines for each SOXF factor and found only SOX17 overexpression robustly increased the percentage of cells expressing CD34 and vascular endothelial cadherin (VEC). Conversely, SOX17 knockdown via CRISPR-Cas13d significantly compromised EP differentiation. Intriguingly, we discovered SOX17 overexpression alone was sufficient to generate CD34+VEC+CD31- cells, and, when combined with FGF2 treatment, more than 90% of CD34+VEC+CD31+ EP was produced. These cells are capable of further differentiating into endothelial cells. These findings underscore an undiscovered role of SOX17 in programming hPSCs toward an EP lineage, illuminating pivotal mechanisms in EP differentiation.
转录因子(TFs)在指导干细胞行为(包括其维持和分化)方面起着关键作用。利用单细胞RNA测序,我们研究了人多能干细胞(hPSCs)衍生的内皮祖细胞(EPs)中表达的TFs,并在EP群体中发现了SOXF因子SOX7、SOX17和SOX18的上调表达。为了测试这些因子的过度表达是否会提高分化效率,我们为每种SOXF因子建立了诱导型hPSC品系,结果发现只有SOX17的过度表达能显著提高表达CD34和血管内皮粘连蛋白(VEC)的细胞比例。相反,通过 CRISPR-Cas13d 敲除 SOX17 会显著影响 EP 的分化。有趣的是,我们发现单单过表达SOX17就足以产生CD34+VEC+CD31-细胞,而当与FGF2处理相结合时,就能产生90%以上的CD34+VEC+CD31+ EP。这些细胞能进一步分化成内皮细胞。这些发现强调了 SOX17 在使 hPSCs 向 EP 系发展过程中尚未发现的作用,揭示了 EP 分化的关键机制。
{"title":"Direct programming of human pluripotent stem cells into endothelial progenitors with SOX17 and FGF2.","authors":"Michael W Ream, Lauren N Randolph, Yuqian Jiang, Yun Chang, Xiaoping Bao, Xiaojun Lance Lian","doi":"10.1016/j.stemcr.2024.02.006","DOIUrl":"10.1016/j.stemcr.2024.02.006","url":null,"abstract":"<p><p>Transcription factors (TFs) are pivotal in guiding stem cell behavior, including their maintenance and differentiation. Using single-cell RNA sequencing, we investigated TFs expressed in endothelial progenitors (EPs) derived from human pluripotent stem cells (hPSCs) and identified upregulated expression of SOXF factors SOX7, SOX17, and SOX18 in the EP population. To test whether overexpression of these factors increases differentiation efficiency, we established inducible hPSC lines for each SOXF factor and found only SOX17 overexpression robustly increased the percentage of cells expressing CD34 and vascular endothelial cadherin (VEC). Conversely, SOX17 knockdown via CRISPR-Cas13d significantly compromised EP differentiation. Intriguingly, we discovered SOX17 overexpression alone was sufficient to generate CD34<sup>+</sup>VEC<sup>+</sup>CD31<sup>-</sup> cells, and, when combined with FGF2 treatment, more than 90% of CD34<sup>+</sup>VEC<sup>+</sup>CD31<sup>+</sup> EP was produced. These cells are capable of further differentiating into endothelial cells. These findings underscore an undiscovered role of SOX17 in programming hPSCs toward an EP lineage, illuminating pivotal mechanisms in EP differentiation.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"579-595"},"PeriodicalIF":5.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096437/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140190169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09Epub Date: 2024-03-21DOI: 10.1016/j.stemcr.2024.02.007
Miriam Labusch, Melina Thetiot, Emmanuel Than-Trong, David Morizet, Marion Coolen, Hugo Varet, Rachel Legendre, Sara Ortica, Laure Mancini, Laure Bally-Cuif
In most vertebrates, adult neural stem cells (NSCs) continuously give rise to neurons in discrete brain regions. A critical process for maintaining NSC pools over long periods of time in the adult brain is NSC quiescence, a reversible and tightly regulated state of cell-cycle arrest. Recently, lysosomes were identified to regulate the NSC quiescence-proliferation balance. However, it remains controversial whether lysosomal activity promotes NSC proliferation or quiescence, and a finer influence of lysosomal activity on NSC quiescence duration or depth remains unexplored. Using RNA sequencing and pharmacological manipulations, we show that lysosomes are necessary for NSC quiescence maintenance. In addition, we reveal that expression of psap, encoding the lysosomal regulator Prosaposin, is enriched in quiescent NSCs (qNSCs) that reside upstream in the NSC lineage and display a deep/long quiescence phase in the adult zebrafish telencephalon. We show that shRNA-mediated psap knockdown increases the proportion of activated NSCs (aNSCs) as well as NSCs that reside in shallower quiescence states (signed by ascl1a and deltaA expression). Collectively, our results identify the lysosomal protein Psap as a (direct or indirect) quiescence regulator and unfold the interplay between lysosomal function and NSC quiescence heterogeneities.
{"title":"Prosaposin maintains adult neural stem cells in a state associated with deep quiescence.","authors":"Miriam Labusch, Melina Thetiot, Emmanuel Than-Trong, David Morizet, Marion Coolen, Hugo Varet, Rachel Legendre, Sara Ortica, Laure Mancini, Laure Bally-Cuif","doi":"10.1016/j.stemcr.2024.02.007","DOIUrl":"10.1016/j.stemcr.2024.02.007","url":null,"abstract":"<p><p>In most vertebrates, adult neural stem cells (NSCs) continuously give rise to neurons in discrete brain regions. A critical process for maintaining NSC pools over long periods of time in the adult brain is NSC quiescence, a reversible and tightly regulated state of cell-cycle arrest. Recently, lysosomes were identified to regulate the NSC quiescence-proliferation balance. However, it remains controversial whether lysosomal activity promotes NSC proliferation or quiescence, and a finer influence of lysosomal activity on NSC quiescence duration or depth remains unexplored. Using RNA sequencing and pharmacological manipulations, we show that lysosomes are necessary for NSC quiescence maintenance. In addition, we reveal that expression of psap, encoding the lysosomal regulator Prosaposin, is enriched in quiescent NSCs (qNSCs) that reside upstream in the NSC lineage and display a deep/long quiescence phase in the adult zebrafish telencephalon. We show that shRNA-mediated psap knockdown increases the proportion of activated NSCs (aNSCs) as well as NSCs that reside in shallower quiescence states (signed by ascl1a and deltaA expression). Collectively, our results identify the lysosomal protein Psap as a (direct or indirect) quiescence regulator and unfold the interplay between lysosomal function and NSC quiescence heterogeneities.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"515-528"},"PeriodicalIF":5.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096431/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140190171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alveolar type 2 (AT2) epithelial cells are tissue stem cells capable of differentiating into alveolar type 1 (AT1) cells for injury repair and maintenance of lung homeostasis. However, the factors involved in human AT2-to-AT1 cell differentiation are not fully understood. Here, we established SFTPCGFP and AGERmCherry-HiBiT dual-reporter induced pluripotent stem cells (iPSCs), which detected AT2-to-AT1 cell differentiation with high sensitivity and identified factors inducing AT1 cell differentiation from AT2 and their progenitor cells. We also established an "on-gel" alveolar epithelial spheroid culture suitable for medium-throughput screening. Among the 274 chemical compounds, several single compounds, including LATS-IN-1, converted AT1 cells from AT2 and their progenitor cells. Moreover, YAP/TAZ signaling activation and AKT signaling suppression synergistically recapitulated the induction of transcriptomic, morphological, and functionally mature AT1 cells. Our findings provide novel insights into human lung development and lung regenerative medicine.
{"title":"Screening of factors inducing alveolar type 1 epithelial cells using human pluripotent stem cells.","authors":"Yuko Ohnishi, Atsushi Masui, Takahiro Suezawa, Ryuta Mikawa, Toyohiro Hirai, Masatoshi Hagiwara, Shimpei Gotoh","doi":"10.1016/j.stemcr.2024.02.009","DOIUrl":"10.1016/j.stemcr.2024.02.009","url":null,"abstract":"<p><p>Alveolar type 2 (AT2) epithelial cells are tissue stem cells capable of differentiating into alveolar type 1 (AT1) cells for injury repair and maintenance of lung homeostasis. However, the factors involved in human AT2-to-AT1 cell differentiation are not fully understood. Here, we established SFTPC<sup>GFP</sup> and AGER<sup>mCherry-HiBiT</sup> dual-reporter induced pluripotent stem cells (iPSCs), which detected AT2-to-AT1 cell differentiation with high sensitivity and identified factors inducing AT1 cell differentiation from AT2 and their progenitor cells. We also established an \"on-gel\" alveolar epithelial spheroid culture suitable for medium-throughput screening. Among the 274 chemical compounds, several single compounds, including LATS-IN-1, converted AT1 cells from AT2 and their progenitor cells. Moreover, YAP/TAZ signaling activation and AKT signaling suppression synergistically recapitulated the induction of transcriptomic, morphological, and functionally mature AT1 cells. Our findings provide novel insights into human lung development and lung regenerative medicine.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"529-544"},"PeriodicalIF":5.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096435/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140327183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09Epub Date: 2024-03-28DOI: 10.1016/j.stemcr.2024.02.008
Megan Obi, Ashley Adams, Alexandria Vandenbossche, Ana Otero Pineiro, Amy L Lightner
Several clinical trials are underway investigating cell and gene therapy, and while these trials are meant to significantly impact patient care, they rely on patient engagement and participation. Unfortunately, clinical trials generally require extensive commitment by subjects. While several studies are using validated surveys to measure patient-reported outcomes, there is a lack of characterization of the patient experience as a subject in these trials. As such, we surveyed mesenchymal stromal cell (MSC) trial participants to understand their perspective. We found that there exists a reliance on one's gastroenterologist and colorectal surgeons for trial introduction and that time and cost were the main barriers to participation. Overall, participants demonstrated high satisfaction with MSC trial participation, but future protocols could incorporate increased use of virtual appointments to optimize patient experience.
{"title":"Patient engagement and satisfaction with early phase cell therapy clinical trials at a tertiary inflammatory bowel disease center.","authors":"Megan Obi, Ashley Adams, Alexandria Vandenbossche, Ana Otero Pineiro, Amy L Lightner","doi":"10.1016/j.stemcr.2024.02.008","DOIUrl":"10.1016/j.stemcr.2024.02.008","url":null,"abstract":"<p><p>Several clinical trials are underway investigating cell and gene therapy, and while these trials are meant to significantly impact patient care, they rely on patient engagement and participation. Unfortunately, clinical trials generally require extensive commitment by subjects. While several studies are using validated surveys to measure patient-reported outcomes, there is a lack of characterization of the patient experience as a subject in these trials. As such, we surveyed mesenchymal stromal cell (MSC) trial participants to understand their perspective. We found that there exists a reliance on one's gastroenterologist and colorectal surgeons for trial introduction and that time and cost were the main barriers to participation. Overall, participants demonstrated high satisfaction with MSC trial participation, but future protocols could incorporate increased use of virtual appointments to optimize patient experience.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"435-442"},"PeriodicalIF":5.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096429/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140327181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09Epub Date: 2024-03-28DOI: 10.1016/j.stemcr.2024.02.012
Chaahat S B Singh, Kelly Marie Johns, Suresh Kari, Lonna Munro, Angela Mathews, Franz Fenninger, Cheryl G Pfeifer, Wilfred A Jefferies
The risk of iatrogenic disease is often underestimated as a concern in contemporary medical procedures, encompassing tissue and organ transplantation, stem cell therapies, blood transfusions, and the administration of blood-derived products. In this context, despite the prevailing belief that Alzheimer's disease (AD) manifests primarily in familial and sporadic forms, our investigation reveals an unexpected transplantable variant of AD in a preclinical context, potentially indicating iatrogenic transmission in AD patients. Through adoptive transplantation of donor bone marrow stem cells carrying a mutant human amyloid precursor protein (APP) transgene into either APP-deficient knockout or normal recipient animals, we observed rapid development of AD pathological hallmarks. These pathological features were significantly accelerated and emerged within 6-9 months post transplantation and included compromised blood-brain barrier integrity, heightened cerebral vascular neoangiogenesis, elevated brain-associated β-amyloid levels, and cognitive impairment. Furthermore, our findings underscore the contribution of β-amyloid burden originating outside of the central nervous system to AD pathogenesis within the brain. We conclude that stem cell transplantation from donors harboring a pathogenic mutant allele can effectively transfer central nervous system diseases to healthy recipients, mirroring the pathogenesis observed in the donor. Consequently, our observations advocate for genomic sequencing of donor specimens prior to tissue, organ, or stem cell transplantation therapies, as well as blood transfusions and blood-derived product administration, to mitigate the risk of iatrogenic diseases.
{"title":"Conclusive demonstration of iatrogenic Alzheimer's disease transmission in a model of stem cell transplantation.","authors":"Chaahat S B Singh, Kelly Marie Johns, Suresh Kari, Lonna Munro, Angela Mathews, Franz Fenninger, Cheryl G Pfeifer, Wilfred A Jefferies","doi":"10.1016/j.stemcr.2024.02.012","DOIUrl":"10.1016/j.stemcr.2024.02.012","url":null,"abstract":"<p><p>The risk of iatrogenic disease is often underestimated as a concern in contemporary medical procedures, encompassing tissue and organ transplantation, stem cell therapies, blood transfusions, and the administration of blood-derived products. In this context, despite the prevailing belief that Alzheimer's disease (AD) manifests primarily in familial and sporadic forms, our investigation reveals an unexpected transplantable variant of AD in a preclinical context, potentially indicating iatrogenic transmission in AD patients. Through adoptive transplantation of donor bone marrow stem cells carrying a mutant human amyloid precursor protein (APP) transgene into either APP-deficient knockout or normal recipient animals, we observed rapid development of AD pathological hallmarks. These pathological features were significantly accelerated and emerged within 6-9 months post transplantation and included compromised blood-brain barrier integrity, heightened cerebral vascular neoangiogenesis, elevated brain-associated β-amyloid levels, and cognitive impairment. Furthermore, our findings underscore the contribution of β-amyloid burden originating outside of the central nervous system to AD pathogenesis within the brain. We conclude that stem cell transplantation from donors harboring a pathogenic mutant allele can effectively transfer central nervous system diseases to healthy recipients, mirroring the pathogenesis observed in the donor. Consequently, our observations advocate for genomic sequencing of donor specimens prior to tissue, organ, or stem cell transplantation therapies, as well as blood transfusions and blood-derived product administration, to mitigate the risk of iatrogenic diseases.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"456-468"},"PeriodicalIF":5.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096610/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140327178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09Epub Date: 2024-03-21DOI: 10.1016/j.stemcr.2024.03.006
Hannah A Pizzato, Paula Alonso-Guallart, James Woods, Bjarki Johannesson, Jon P Connelly, Todd A Fehniger, John P Atkinson, Shondra M Pruett-Miller, Frederick J Monsma, Deepta Bhattacharya
{"title":"Engineering human pluripotent stem cell lines to evade xenogeneic transplantation barriers.","authors":"Hannah A Pizzato, Paula Alonso-Guallart, James Woods, Bjarki Johannesson, Jon P Connelly, Todd A Fehniger, John P Atkinson, Shondra M Pruett-Miller, Frederick J Monsma, Deepta Bhattacharya","doi":"10.1016/j.stemcr.2024.03.006","DOIUrl":"10.1016/j.stemcr.2024.03.006","url":null,"abstract":"","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"596"},"PeriodicalIF":5.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096595/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140190170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The emergence of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) variants necessitated a rapid evaluation system for their pathogenesis. Lung epithelial cells are their entry points; however, in addition to their limited source, the culture of human alveolar epithelial cells is especially complicated. Induced pluripotent stem cells (iPSCs) are an alternative source of human primary stem cells. Here, we report a model for distinguishing SARS-CoV-2 variants at high resolution, using separately induced iPSC-derived alveolar and airway cells in micro-patterned culture plates. The position-specific signals induced the apical-out alveolar type 2 and multiciliated airway cells at the periphery and center of the colonies, respectively. The infection studies in each lineage enabled profiling of the pathogenesis of SARS-CoV-2 variants: infection efficiency, tropism to alveolar and airway lineages, and their responses. These results indicate that this culture system is suitable for predicting the pathogenesis of emergent SARS-CoV-2 variants.
{"title":"Micro-patterned culture of iPSC-derived alveolar and airway cells distinguishes SARS-CoV-2 variants.","authors":"Atsushi Masui, Rina Hashimoto, Yasufumi Matsumura, Takuya Yamamoto, Miki Nagao, Takeshi Noda, Kazuo Takayama, Shimpei Gotoh","doi":"10.1016/j.stemcr.2024.02.011","DOIUrl":"10.1016/j.stemcr.2024.02.011","url":null,"abstract":"<p><p>The emergence of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) variants necessitated a rapid evaluation system for their pathogenesis. Lung epithelial cells are their entry points; however, in addition to their limited source, the culture of human alveolar epithelial cells is especially complicated. Induced pluripotent stem cells (iPSCs) are an alternative source of human primary stem cells. Here, we report a model for distinguishing SARS-CoV-2 variants at high resolution, using separately induced iPSC-derived alveolar and airway cells in micro-patterned culture plates. The position-specific signals induced the apical-out alveolar type 2 and multiciliated airway cells at the periphery and center of the colonies, respectively. The infection studies in each lineage enabled profiling of the pathogenesis of SARS-CoV-2 variants: infection efficiency, tropism to alveolar and airway lineages, and their responses. These results indicate that this culture system is suitable for predicting the pathogenesis of emergent SARS-CoV-2 variants.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"545-561"},"PeriodicalIF":5.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096626/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140327179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09Epub Date: 2024-03-28DOI: 10.1016/j.stemcr.2024.03.001
Yingnan Lei, Diana Al Delbany, Nuša Krivec, Marius Regin, Edouard Couvreu de Deckersberg, Charlotte Janssens, Manjusha Ghosh, Karen Sermon, Claudia Spits
Human pluripotent stem cell (hPSC) cultures are prone to genetic drift, because cells that have acquired specific genetic abnormalities experience a selective advantage in vitro. These abnormalities are highly recurrent in hPSC lines worldwide, but their functional consequences in differentiating cells are scarcely described. In this work, we show that the loss of chromosome 18q impairs neuroectoderm commitment and that downregulation of SALL3, a gene located in the common 18q loss region, is responsible for this failed neuroectodermal differentiation. Knockdown of SALL3 in control lines impaired differentiation in a manner similar to the loss of 18q, and transgenic overexpression of SALL3 in hESCs with 18q loss rescued the differentiation capacity of the cells. Finally, we show that loss of 18q and downregulation of SALL3 leads to changes in the expression of genes involved in pathways regulating pluripotency and differentiation, suggesting that these cells are in an altered state of pluripotency.
{"title":"SALL3 mediates the loss of neuroectodermal differentiation potential in human embryonic stem cells with chromosome 18q loss.","authors":"Yingnan Lei, Diana Al Delbany, Nuša Krivec, Marius Regin, Edouard Couvreu de Deckersberg, Charlotte Janssens, Manjusha Ghosh, Karen Sermon, Claudia Spits","doi":"10.1016/j.stemcr.2024.03.001","DOIUrl":"10.1016/j.stemcr.2024.03.001","url":null,"abstract":"<p><p>Human pluripotent stem cell (hPSC) cultures are prone to genetic drift, because cells that have acquired specific genetic abnormalities experience a selective advantage in vitro. These abnormalities are highly recurrent in hPSC lines worldwide, but their functional consequences in differentiating cells are scarcely described. In this work, we show that the loss of chromosome 18q impairs neuroectoderm commitment and that downregulation of SALL3, a gene located in the common 18q loss region, is responsible for this failed neuroectodermal differentiation. Knockdown of SALL3 in control lines impaired differentiation in a manner similar to the loss of 18q, and transgenic overexpression of SALL3 in hESCs with 18q loss rescued the differentiation capacity of the cells. Finally, we show that loss of 18q and downregulation of SALL3 leads to changes in the expression of genes involved in pathways regulating pluripotency and differentiation, suggesting that these cells are in an altered state of pluripotency.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"562-578"},"PeriodicalIF":5.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096619/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140327182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}