Despite the known therapeutic uses of dexamethasone (DEX), the specific mechanisms underlying its neurotoxic effects in neuronal cells, particularly in undifferentiated human neuroblastoma (SH-SY5Y) cells, remain inadequately understood. This study aims to elucidate these mechanisms, emphasizing bioenergetics, oxidative stress, and apoptosis, thereby providing novel insights into the cellular vulnerabilities induced by chronic DEX exposure. The findings revealed significant reductions in cell viability, altered membrane integrity with LDH leakage, decreased intracellular ATP production, and the electron transport chain complexes I and III activity inhibition. DEX significantly increased the release of the reactive species and peroxidation of lipids, as well as of Nrf2 expression. At the same time, it simultaneously led to a decline in the activities of the antioxidant catalase and superoxide dismutase enzymes, along with a depletion of glutathione reserves. The apoptosis process was exhibited by a significant elevation of caspases 3 and 8 activities with overexpression of mRNA BAX, inhibition of BCL-2, and a significant upregulation of the BAX/BCL-2 ratio. Assessment of neuronal development genes (GAP43, CAMK2A, CAMK2B, TUBB3, and Wnts) by quantitative PCR assay showed increased expression of CAMK2A, CAMK2B, and Wnt3a with a significant reduction in GAP43 mRNA levels. Collectively, this study proved that DEX was cytotoxic to SH-SY5Y via bioenergetic disruption, mitochondrial dysfunction, oxidative stress, and apoptosis.
Polycystic Ovary Syndrome (PCOS) is a prevalent endocrine and metabolic disorder affecting reproductive-aged women worldwide. Characterized by irregular menstruation, signs of hyperandrogenism, polycystic ovaries via ultrasound ovarian dysfunction.
The review delves into the intricate pathophysiological mechanisms underlying the syndrome. Dysregulation of the hypothalamic-pituitary-ovarian axis, IR, obesity, and hyperandrogenism contribute to anovulation and follicular dysfunction which is associated with gut dysbiosis, bile metabolites, and an unhealthy diet.
Metabolomics and genomics analyses offer insights into the metabolism of bile acids (BAs) and gut microbiota dysbiosis in PCOS. BAs, crucial for metabolic regulation, are influenced by microbes, impacting hormonal balance. Disruptions in gut microbiota contribute to hormonal dysregulation. Interconnected pathways involving BAs and gut microbiota are pivotal in PCOS. Therapeutic implications include a healthy diet, exercise, and interventions targeting gut microbiota modulation and BAs metabolite to alleviate PCOS symptoms and improve metabolic health.
PCOS requires a multifaceted, multidisciplinary approach for effective management, including lifestyle changes, medications, and emerging therapies. Tailored strategies considering individual needs and personalized treatment plans are crucial for successful PCOS management. Despite existing knowledge, comprehensive investigations are needed to bridge research gaps and discern the interconnected pathways linking the development of PCOS and the gut-bile axis which are interconnected with metabolic disorders and the development of PCOS. Gut microbiota and hormonal regulation offer promising avenues for innovative therapeutic strategies aimed at addressing the root causes of PCOS and improving patient outcomes.