首页 > 最新文献

Statistics and Computing最新文献

英文 中文
Bayesian variable selection for matrix autoregressive models 矩阵自回归模型的贝叶斯变量选择
IF 2.2 2区 数学 Q1 Mathematics Pub Date : 2024-03-11 DOI: 10.1007/s11222-024-10402-y
Alessandro Celani, Paolo Pagnottoni, Galin Jones

A Bayesian method is proposed for variable selection in high-dimensional matrix autoregressive models which reflects and exploits the original matrix structure of data to (a) reduce dimensionality and (b) foster interpretability of multidimensional relationship structures. A compact form of the model is derived which facilitates the estimation procedure and two computational methods for the estimation are proposed: a Markov chain Monte Carlo algorithm and a scalable Bayesian EM algorithm. Being based on the spike-and-slab framework for fast posterior mode identification, the latter enables Bayesian data analysis of matrix-valued time series at large scales. The theoretical properties, comparative performance, and computational efficiency of the proposed model is investigated through simulated examples and an application to a panel of country economic indicators.

针对高维矩阵自回归模型中的变量选择提出了一种贝叶斯方法,该方法反映并利用了数据的原始矩阵结构,以(a)降低维度和(b)提高多维关系结构的可解释性。该模型推导出一种简洁的形式,便于估算过程,并提出了两种估算计算方法:马尔科夫链蒙特卡罗算法和可扩展的贝叶斯 EM 算法。后者基于用于快速后验模式识别的尖峰和板块框架,能够在大尺度上对矩阵值时间序列进行贝叶斯数据分析。通过模拟实例和对国家经济指标面板的应用,研究了所提模型的理论特性、比较性能和计算效率。
{"title":"Bayesian variable selection for matrix autoregressive models","authors":"Alessandro Celani, Paolo Pagnottoni, Galin Jones","doi":"10.1007/s11222-024-10402-y","DOIUrl":"https://doi.org/10.1007/s11222-024-10402-y","url":null,"abstract":"<p>A Bayesian method is proposed for variable selection in high-dimensional matrix autoregressive models which reflects and exploits the original matrix structure of data to (a) reduce dimensionality and (b) foster interpretability of multidimensional relationship structures. A compact form of the model is derived which facilitates the estimation procedure and two computational methods for the estimation are proposed: a Markov chain Monte Carlo algorithm and a scalable Bayesian EM algorithm. Being based on the spike-and-slab framework for fast posterior mode identification, the latter enables Bayesian data analysis of matrix-valued time series at large scales. The theoretical properties, comparative performance, and computational efficiency of the proposed model is investigated through simulated examples and an application to a panel of country economic indicators.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140098943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-scale correlation screening under dependence for brain functional connectivity network inference 大脑功能连接网络推断依赖性下的大规模相关性筛选
IF 2.2 2区 数学 Q1 Mathematics Pub Date : 2024-03-09 DOI: 10.1007/s11222-024-10411-x
Hanâ Lbath, Alexander Petersen, Sophie Achard

Data produced by resting-state functional Magnetic Resonance Imaging are widely used to infer brain functional connectivity networks. Such networks correlate neural signals to connect brain regions, which consist in groups of dependent voxels. Previous work has focused on aggregating data across voxels within predefined regions. However, the presence of within-region correlations has noticeable impacts on inter-regional correlation detection, and thus edge identification. To alleviate them, we propose to leverage techniques from the large-scale correlation screening literature, and derive simple and practical characterizations of the mean number of correlation discoveries that flexibly incorporate intra-regional dependence structures. A connectivity network inference framework is then presented. First, inter-regional correlation distributions are estimated. Then, correlation thresholds that can be tailored to one’s application are constructed for each edge. Finally, the proposed framework is implemented on synthetic and real-world datasets. This novel approach for handling arbitrary intra-regional correlation is shown to limit false positives while improving true positive rates.

静息态功能磁共振成像产生的数据被广泛用于推断大脑功能连接网络。这些网络将神经信号关联起来,连接由依存体素组组成的大脑区域。以往的工作主要集中在汇总预定义区域内各体素的数据。然而,区域内相关性的存在会对区域间相关性检测产生明显影响,进而影响边缘识别。为了缓解这些问题,我们建议利用大规模相关性筛选文献中的技术,并推导出简单实用的相关性发现平均数量特征,灵活地纳入区域内依赖结构。然后提出了一个连通性网络推断框架。首先,对区域间相关性分布进行估算。然后,为每条边缘构建可根据应用定制的相关性阈值。最后,在合成数据集和真实数据集上实现了所提出的框架。结果表明,这种处理任意区域内相关性的新方法可以限制误报,同时提高真阳性率。
{"title":"Large-scale correlation screening under dependence for brain functional connectivity network inference","authors":"Hanâ Lbath, Alexander Petersen, Sophie Achard","doi":"10.1007/s11222-024-10411-x","DOIUrl":"https://doi.org/10.1007/s11222-024-10411-x","url":null,"abstract":"<p>Data produced by resting-state functional Magnetic Resonance Imaging are widely used to infer brain functional connectivity networks. Such networks correlate neural signals to connect brain regions, which consist in groups of dependent voxels. Previous work has focused on aggregating data across voxels within predefined regions. However, the presence of within-region correlations has noticeable impacts on inter-regional correlation detection, and thus edge identification. To alleviate them, we propose to leverage techniques from the large-scale correlation screening literature, and derive simple and practical characterizations of the mean number of correlation discoveries that flexibly incorporate intra-regional dependence structures. A connectivity network inference framework is then presented. First, inter-regional correlation distributions are estimated. Then, correlation thresholds that can be tailored to one’s application are constructed for each edge. Finally, the proposed framework is implemented on synthetic and real-world datasets. This novel approach for handling arbitrary intra-regional correlation is shown to limit false positives while improving true positive rates.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140076119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple-output quantile regression neural network 多输出量位回归神经网络
IF 2.2 2区 数学 Q1 Mathematics Pub Date : 2024-03-08 DOI: 10.1007/s11222-024-10408-6
Ruiting Hao, Xiaorong Yang

Quantile regression neural network (QRNN) model has received increasing attention in various fields to provide conditional quantiles of responses. However, almost all the available literature about QRNN is devoted to handling the case with one-dimensional responses, which presents a great limitation when we focus on the quantiles of multivariate responses. To deal with this issue, we propose a novel multiple-output quantile regression neural network (MOQRNN) model in this paper to estimate the conditional quantiles of multivariate data. The MOQRNN model is constructed by the following steps. Step 1 acquires the conditional distribution of multivariate responses by a nonparametric method. Step 2 obtains the optimal transport map that pushes the spherical uniform distribution forward to the conditional distribution through the input convex neural network (ICNN). Step 3 provides the conditional quantile contours and regions by the ICNN-based optimal transport map. In both simulation studies and real data application, comparative analyses with the existing method demonstrate that the proposed MOQRNN model is more appealing to yield excellent quantile contours, which are not only smoother but also closer to their theoretical counterparts.

定量回归神经网络(QRNN)模型在提供响应的条件定量方面受到了各个领域越来越多的关注。然而,几乎所有关于 QRNN 的文献都致力于处理一维响应的情况,这给我们关注多变量响应的量值带来了很大的限制。针对这一问题,我们在本文中提出了一种新的多输出量位回归神经网络(MOQRNN)模型,用于估计多元数据的条件量值。MOQRNN 模型的构建步骤如下。步骤 1 通过非参数方法获取多元响应的条件分布。步骤 2 通过输入凸神经网络(ICNN)获得将球形均匀分布推向条件分布的最优传输图。第 3 步通过基于 ICNN 的最优传输图提供条件量值等值线和区域。在仿真研究和实际数据应用中,与现有方法的对比分析表明,所提出的 MOQRNN 模型更有吸引力,能得到出色的量值等值线,不仅更平滑,而且更接近理论值。
{"title":"Multiple-output quantile regression neural network","authors":"Ruiting Hao, Xiaorong Yang","doi":"10.1007/s11222-024-10408-6","DOIUrl":"https://doi.org/10.1007/s11222-024-10408-6","url":null,"abstract":"<p>Quantile regression neural network (QRNN) model has received increasing attention in various fields to provide conditional quantiles of responses. However, almost all the available literature about QRNN is devoted to handling the case with one-dimensional responses, which presents a great limitation when we focus on the quantiles of multivariate responses. To deal with this issue, we propose a novel multiple-output quantile regression neural network (MOQRNN) model in this paper to estimate the conditional quantiles of multivariate data. The MOQRNN model is constructed by the following steps. Step 1 acquires the conditional distribution of multivariate responses by a nonparametric method. Step 2 obtains the optimal transport map that pushes the spherical uniform distribution forward to the conditional distribution through the input convex neural network (ICNN). Step 3 provides the conditional quantile contours and regions by the ICNN-based optimal transport map. In both simulation studies and real data application, comparative analyses with the existing method demonstrate that the proposed MOQRNN model is more appealing to yield excellent quantile contours, which are not only smoother but also closer to their theoretical counterparts.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140076024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Total effects with constrained features 有限制特征的总效果
IF 2.2 2区 数学 Q1 Mathematics Pub Date : 2024-03-05 DOI: 10.1007/s11222-024-10398-5

Abstract

Recent studies have emphasized the connection between machine learning feature importance measures and total order sensitivity indices (total effects, henceforth). Feature correlations and the need to avoid unrestricted permutations make the estimation of these indices challenging. Additionally, there is no established theory or approach for non-Cartesian domains. We propose four alternative strategies for computing total effects that account for both dependent and constrained features. Our first approach involves a generalized winding stairs design combined with the Knothe-Rosenblatt transformation. This approach, while applicable to a wide family of input dependencies, becomes impractical when inputs are physically constrained. Our second approach is a U-statistic that combines the Jansen estimator with a weighting factor. The U-statistic framework allows the derivation of a central limit theorem for this estimator. However, this design is computationally intensive. Then, our third approach uses derangements to significantly reduce computational burden. We prove consistency and central limit theorems for these estimators as well. Our fourth approach is based on a nearest-neighbour intuition and it further reduces computational burden. We test these estimators through a series of increasingly complex computational experiments with features constrained on compact and connected domains (circle, simplex), non-compact and non-connected domains (Sierpinski gaskets), we provide comparisons with machine learning approaches and conclude with an application to a realistic simulator.

摘要 近期的研究强调了机器学习特征重要性度量与总阶灵敏度指数(以下简称总效应)之间的联系。特征相关性和避免无限制排列的需要使这些指数的估计具有挑战性。此外,对于非笛卡尔域还没有成熟的理论或方法。我们提出了四种计算总效应的替代策略,这些策略同时考虑了依赖特征和受限特征。我们的第一种方法是将广义缠绕阶梯设计与 Knothe-Rosenblatt 变换相结合。这种方法虽然适用于多种输入依赖关系,但当输入受到物理约束时,这种方法就变得不切实际了。我们的第二种方法是将扬森估计法与加权因子相结合的 U 统计法。U 统计框架允许推导出该估计器的中心极限定理。然而,这种设计需要大量计算。然后,我们的第三种方法利用导差大大减轻了计算负担。我们也证明了这些估计器的一致性和中心极限定理。我们的第四种方法基于近邻直觉,进一步减轻了计算负担。我们通过一系列越来越复杂的计算实验来测试这些估计器,实验中的特征受限于紧凑和连通的域(圆、单纯形)、非紧凑和非连通的域(Sierpinski 垫圈),我们将这些估计器与机器学习方法进行了比较,最后将其应用于一个现实的模拟器。
{"title":"Total effects with constrained features","authors":"","doi":"10.1007/s11222-024-10398-5","DOIUrl":"https://doi.org/10.1007/s11222-024-10398-5","url":null,"abstract":"<h3>Abstract</h3> <p>Recent studies have emphasized the connection between machine learning feature importance measures and total order sensitivity indices (total effects, henceforth). Feature correlations and the need to avoid unrestricted permutations make the estimation of these indices challenging. Additionally, there is no established theory or approach for non-Cartesian domains. We propose four alternative strategies for computing total effects that account for both dependent and constrained features. Our first approach involves a generalized winding stairs design combined with the Knothe-Rosenblatt transformation. This approach, while applicable to a wide family of input dependencies, becomes impractical when inputs are physically constrained. Our second approach is a U-statistic that combines the Jansen estimator with a weighting factor. The U-statistic framework allows the derivation of a central limit theorem for this estimator. However, this design is computationally intensive. Then, our third approach uses derangements to significantly reduce computational burden. We prove consistency and central limit theorems for these estimators as well. Our fourth approach is based on a nearest-neighbour intuition and it further reduces computational burden. We test these estimators through a series of increasingly complex computational experiments with features constrained on compact and connected domains (circle, simplex), non-compact and non-connected domains (Sierpinski gaskets), we provide comparisons with machine learning approaches and conclude with an application to a realistic simulator.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140035815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of regime-switching diffusions via Fourier transforms 通过傅立叶变换估计制度切换扩散
IF 2.2 2区 数学 Q1 Mathematics Pub Date : 2024-03-05 DOI: 10.1007/s11222-024-10397-6
Thomas Lux

In this article, an algorithm for maximum-likelihood estimation of regime-switching diffusions is proposed. The proposed approach uses a Fourier transform to numerically solve the system of Fokker–Planck or forward Kolmogorow equations for the temporal evolution of the state densities. Monte Carlo simulations confirm the theoretically expected consistency of this approach for moderate sample sizes and its practical feasibility for certain regime-switching diffusions used in economics and biology with moderate numbers of states and parameters. An application to animal movement data serves as an illustration of the proposed algorithm.

本文提出了一种对制度切换扩散进行最大似然估计的算法。该方法利用傅立叶变换对状态密度时间演化的福克-普朗克方程或前向科尔莫格罗方程组进行数值求解。蒙特卡罗模拟证实了这种方法在中等样本量时的理论预期一致性,以及它在经济学和生物学中某些具有中等数量状态和参数的制度转换扩散的实际可行性。对动物运动数据的应用是对所提算法的一个说明。
{"title":"Estimation of regime-switching diffusions via Fourier transforms","authors":"Thomas Lux","doi":"10.1007/s11222-024-10397-6","DOIUrl":"https://doi.org/10.1007/s11222-024-10397-6","url":null,"abstract":"<p>In this article, an algorithm for maximum-likelihood estimation of regime-switching diffusions is proposed. The proposed approach uses a Fourier transform to numerically solve the system of Fokker–Planck or forward Kolmogorow equations for the temporal evolution of the state densities. Monte Carlo simulations confirm the theoretically expected consistency of this approach for moderate sample sizes and its practical feasibility for certain regime-switching diffusions used in economics and biology with moderate numbers of states and parameters. An application to animal movement data serves as an illustration of the proposed algorithm.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140035718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-dimensional sparse single–index regression via Hilbert–Schmidt independence criterion 通过希尔伯特-施密特独立性准则实现高维稀疏单索引回归
IF 2.2 2区 数学 Q1 Mathematics Pub Date : 2024-02-27 DOI: 10.1007/s11222-024-10399-4
Xin Chen, Chang Deng, Shuaida He, Runxiong Wu, Jia Zhang

Hilbert-Schmidt Independence Criterion (HSIC) has recently been introduced to the field of single-index models to estimate the directions. Compared with other well-established methods, the HSIC based method requires relatively weak conditions. However, its performance has not yet been studied in the prevalent high-dimensional scenarios, where the number of covariates can be much larger than the sample size. In this article, based on HSIC, we propose to estimate the possibly sparse directions in the high-dimensional single-index models through a parameter reformulation. Our approach estimates the subspace of the direction directly and performs variable selection simultaneously. Due to the non-convexity of the objective function and the complexity of the constraints, a majorize-minimize algorithm together with the linearized alternating direction method of multipliers is developed to solve the optimization problem. Since it does not involve the inverse of the covariance matrix, the algorithm can naturally handle large p small n scenarios. Through extensive simulation studies and a real data analysis, we show that our proposal is efficient and effective in the high-dimensional settings. The (texttt {Matlab}) codes for this method are available online.

希尔伯特-施密特独立准则(Hilbert-Schmidt Independence Criterion,HSIC)最近被引入单指数模型领域,用于估计方向。与其他成熟的方法相比,基于 HSIC 的方法所需的条件相对较弱。然而,在协变量数量可能远大于样本量的普遍高维情况下,该方法的性能尚未得到研究。本文以 HSIC 为基础,提出通过参数重构来估计高维单指标模型中可能存在的稀疏方向。我们的方法直接估计方向子空间,并同时进行变量选择。由于目标函数的非凸性和约束条件的复杂性,我们开发了一种大数最小化算法和线性化交替方向乘法来解决优化问题。由于该算法不涉及协方差矩阵的逆,因此可以自然地处理大 p 小 n 的情况。通过大量的模拟研究和真实数据分析,我们证明了我们的建议在高维环境下是高效和有效的。该方法的(texttt {Matlab} )代码可在线获取。
{"title":"High-dimensional sparse single–index regression via Hilbert–Schmidt independence criterion","authors":"Xin Chen, Chang Deng, Shuaida He, Runxiong Wu, Jia Zhang","doi":"10.1007/s11222-024-10399-4","DOIUrl":"https://doi.org/10.1007/s11222-024-10399-4","url":null,"abstract":"<p>Hilbert-Schmidt Independence Criterion (HSIC) has recently been introduced to the field of single-index models to estimate the directions. Compared with other well-established methods, the HSIC based method requires relatively weak conditions. However, its performance has not yet been studied in the prevalent high-dimensional scenarios, where the number of covariates can be much larger than the sample size. In this article, based on HSIC, we propose to estimate the possibly sparse directions in the high-dimensional single-index models through a parameter reformulation. Our approach estimates the subspace of the direction directly and performs variable selection simultaneously. Due to the non-convexity of the objective function and the complexity of the constraints, a majorize-minimize algorithm together with the linearized alternating direction method of multipliers is developed to solve the optimization problem. Since it does not involve the inverse of the covariance matrix, the algorithm can naturally handle large <i>p</i> small <i>n</i> scenarios. Through extensive simulation studies and a real data analysis, we show that our proposal is efficient and effective in the high-dimensional settings. The <span>(texttt {Matlab})</span> codes for this method are available online.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140005016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvements on scalable stochastic Bayesian inference methods for multivariate Hawkes process 改进多变量霍克斯过程的可扩展随机贝叶斯推理方法
IF 2.2 2区 数学 Q1 Mathematics Pub Date : 2024-02-27 DOI: 10.1007/s11222-024-10392-x
Alex Ziyu Jiang, Abel Rodriguez

Multivariate Hawkes Processes (MHPs) are a class of point processes that can account for complex temporal dynamics among event sequences. In this work, we study the accuracy and computational efficiency of three classes of algorithms which, while widely used in the context of Bayesian inference, have rarely been applied in the context of MHPs: stochastic gradient expectation-maximization, stochastic gradient variational inference and stochastic gradient Langevin Monte Carlo. An important contribution of this paper is a novel approximation to the likelihood function that allows us to retain the computational advantages associated with conjugate settings while reducing approximation errors associated with the boundary effects. The comparisons are based on various simulated scenarios as well as an application to the study of risk dynamics in the Standard & Poor’s 500 intraday index prices among its 11 sectors.

多变量霍克斯过程(MHPs)是一类能解释事件序列间复杂时间动态的点过程。在这项工作中,我们研究了三类算法的准确性和计算效率,这三类算法虽然广泛应用于贝叶斯推理,但很少应用于 MHPs:随机梯度期望最大化、随机梯度变分推理和随机梯度朗格文蒙特卡罗。本文的一个重要贡献是对似然函数进行了新的近似,使我们既能保留共轭设置带来的计算优势,又能减少与边界效应相关的近似误差。比较基于各种模拟情景以及对标准普尔 500 指数 11 个板块盘中价格风险动态研究的应用。
{"title":"Improvements on scalable stochastic Bayesian inference methods for multivariate Hawkes process","authors":"Alex Ziyu Jiang, Abel Rodriguez","doi":"10.1007/s11222-024-10392-x","DOIUrl":"https://doi.org/10.1007/s11222-024-10392-x","url":null,"abstract":"<p>Multivariate Hawkes Processes (MHPs) are a class of point processes that can account for complex temporal dynamics among event sequences. In this work, we study the accuracy and computational efficiency of three classes of algorithms which, while widely used in the context of Bayesian inference, have rarely been applied in the context of MHPs: stochastic gradient expectation-maximization, stochastic gradient variational inference and stochastic gradient Langevin Monte Carlo. An important contribution of this paper is a novel approximation to the likelihood function that allows us to retain the computational advantages associated with conjugate settings while reducing approximation errors associated with the boundary effects. The comparisons are based on various simulated scenarios as well as an application to the study of risk dynamics in the Standard &amp; Poor’s 500 intraday index prices among its 11 sectors.\u0000</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140005135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximum likelihood estimation of log-concave densities on tree space 树空间对数凹密度的最大似然估计
IF 2.2 2区 数学 Q1 Mathematics Pub Date : 2024-02-23 DOI: 10.1007/s11222-024-10400-0
Yuki Takazawa, Tomonari Sei

Phylogenetic trees are key data objects in biology, and the method of phylogenetic reconstruction has been highly developed. The space of phylogenetic trees is a nonpositively curved metric space. Recently, statistical methods to analyze samples of trees on this space are being developed utilizing this property. Meanwhile, in Euclidean space, the log-concave maximum likelihood method has emerged as a new nonparametric method for probability density estimation. In this paper, we derive a sufficient condition for the existence and uniqueness of the log-concave maximum likelihood estimator on tree space. We also propose an estimation algorithm for one and two dimensions. Since various factors affect the inferred trees, it is difficult to specify the distribution of a sample of trees. The class of log-concave densities is nonparametric, and yet the estimation can be conducted by the maximum likelihood method without selecting hyperparameters. We compare the estimation performance with a previously developed kernel density estimator numerically. In our examples where the true density is log-concave, we demonstrate that our estimator has a smaller integrated squared error when the sample size is large. We also conduct numerical experiments of clustering using the Expectation-Maximization algorithm and compare the results with k-means++ clustering using Fréchet mean.

系统发生树是生物学中的关键数据对象,系统发生重建的方法也得到了高度发展。系统发育树的空间是一个非正向弯曲的度量空间。最近,利用这一特性开发出了在该空间上分析树样本的统计方法。同时,在欧几里得空间中,对数凹最大似然法作为一种新的非参数方法出现,用于概率密度估计。本文推导了树空间对数凹极大似然估计子存在性和唯一性的充分条件。我们还提出了一种一维和二维的估计算法。由于各种因素会影响推断出的树,因此很难确定树样本的分布。对数凹密度类是非参数的,但可以通过最大似然法进行估计,而无需选择超参数。我们将估计结果与之前开发的核密度估计器进行了数值比较。在真实密度为对数凹的例子中,我们证明了当样本量较大时,我们的估计器具有较小的综合平方误差。我们还对使用期望最大化算法进行聚类进行了数值实验,并将结果与使用弗雷谢特均值进行的 k-means++ 聚类进行了比较。
{"title":"Maximum likelihood estimation of log-concave densities on tree space","authors":"Yuki Takazawa, Tomonari Sei","doi":"10.1007/s11222-024-10400-0","DOIUrl":"https://doi.org/10.1007/s11222-024-10400-0","url":null,"abstract":"<p>Phylogenetic trees are key data objects in biology, and the method of phylogenetic reconstruction has been highly developed. The space of phylogenetic trees is a nonpositively curved metric space. Recently, statistical methods to analyze samples of trees on this space are being developed utilizing this property. Meanwhile, in Euclidean space, the log-concave maximum likelihood method has emerged as a new nonparametric method for probability density estimation. In this paper, we derive a sufficient condition for the existence and uniqueness of the log-concave maximum likelihood estimator on tree space. We also propose an estimation algorithm for one and two dimensions. Since various factors affect the inferred trees, it is difficult to specify the distribution of a sample of trees. The class of log-concave densities is nonparametric, and yet the estimation can be conducted by the maximum likelihood method without selecting hyperparameters. We compare the estimation performance with a previously developed kernel density estimator numerically. In our examples where the true density is log-concave, we demonstrate that our estimator has a smaller integrated squared error when the sample size is large. We also conduct numerical experiments of clustering using the Expectation-Maximization algorithm and compare the results with k-means++ clustering using Fréchet mean.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139947601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Do applied statisticians prefer more randomness or less? Bootstrap or Jackknife? 应用统计学家更喜欢随机性多一些还是少一些?Bootstrap 还是 Jackknife?
IF 2.2 2区 数学 Q1 Mathematics Pub Date : 2024-02-22 DOI: 10.1007/s11222-024-10388-7
Yannis G. Yatracos

Bootstrap and Jackknife estimates, (T_{n,B}^*) and (T_{n,J},) respectively, of a population parameter (theta ) are both used in statistical computations; n is the sample size, B is the number of Bootstrap samples. For any (n_0) and (B_0,) Bootstrap samples do not add new information about (theta ) being observations from the original sample and when (B_0<infty ,) (T_{n_0,B_0}^*) includes also resampling variability, an additional source of uncertainty not affecting (T_{n_0, J}.) These are neglected in theoretical papers with results for the utopian (T_{n, infty }^*, ) that do not hold for (B<infty .) The consequence is that (T^*_{n_0, B_0}) is expected to have larger mean squared error (MSE) than (T_{n_0,J},) namely (T_{n_0,B_0}^*) is inadmissible. The amount of inadmissibility may be very large when populations’ parameters, e.g. the variance, are unbounded and/or with big data. A palliating remedy is increasing B, the larger the better, but the MSEs ordering remains unchanged for (B<infty .) This is confirmed theoretically when (theta ) is the mean of a population, and is observed in the estimated total MSE for linear regression coefficients. In the latter, the chance the estimated total MSE with (T_{n,B}^*) improves that with (T_{n,J}) decreases to 0 as B increases.

Bootstrap和Jackknife估计值(分别为(T_{n,B}^*)和(T_{n,J},))在统计计算中都会用到;n是样本大小,B是Bootstrap样本的数量。对于任意的 (n_0) 和 (B_0,) Bootstrap 样本不会增加关于 (theta ) 的新信息,这些信息是来自原始样本的观察结果,当 (B_0<infty ,) (T_{n_0,B_0}^*) 也包括重采样的变异性,这是一个额外的不确定性来源,不会影响 (T_{n_0, J}.这些在理论文章中被忽略了,对于乌托邦式的(T_{n, infty }^*, )的结果并不成立,而对于(B<infty .其结果是,(T^*_{n_0, B_0}) 的均方误差(MSE)会大于(T_{n_0,J},),即(T_{n_0,B_0}^*)是不可接受的。当群体的参数(如方差)没有限制和/或数据量很大时,不允许的数量可能会非常大。一个缓解的办法是增加 B,越大越好,但 (B<infty .) 的 MSEs 排序保持不变,当 (theta ) 是一个种群的均值时,这一点在理论上得到了证实,并在线性回归系数的估计总 MSE 中得到了观察。在后者中,随着 B 的增加,用 (T_{n,B}^*) 估计出的总 MSE 改善用 (T_{n,J}) 估计出的总 MSE 的机会减小到 0。
{"title":"Do applied statisticians prefer more randomness or less? Bootstrap or Jackknife?","authors":"Yannis G. Yatracos","doi":"10.1007/s11222-024-10388-7","DOIUrl":"https://doi.org/10.1007/s11222-024-10388-7","url":null,"abstract":"<p>Bootstrap and Jackknife estimates, <span>(T_{n,B}^*)</span> and <span>(T_{n,J},)</span> respectively, of a population parameter <span>(theta )</span> are both used in statistical computations; <i>n</i> is the sample size, <i>B</i> is the number of Bootstrap samples. For any <span>(n_0)</span> and <span>(B_0,)</span> Bootstrap samples do not add new information about <span>(theta )</span> being observations from the original sample and when <span>(B_0&lt;infty ,)</span> <span>(T_{n_0,B_0}^*)</span> includes also resampling variability, an additional source of uncertainty not affecting <span>(T_{n_0, J}.)</span> These are neglected in theoretical papers with results for the utopian <span>(T_{n, infty }^*, )</span> that do not hold for <span>(B&lt;infty .)</span> The consequence is that <span>(T^*_{n_0, B_0})</span> is expected to have larger mean squared error (MSE) than <span>(T_{n_0,J},)</span> namely <span>(T_{n_0,B_0}^*)</span> is inadmissible. The amount of inadmissibility may be very large when populations’ parameters, e.g. the variance, are unbounded and/or with big data. A palliating remedy is increasing <i>B</i>, the larger the better, but the MSEs ordering remains unchanged for <span>(B&lt;infty .)</span> This is confirmed theoretically when <span>(theta )</span> is the mean of a population, and is observed in the estimated total MSE for linear regression coefficients. In the latter, the chance the estimated total MSE with <span>(T_{n,B}^*)</span> improves that with <span>(T_{n,J})</span> decreases to 0 as <i>B</i> increases.\u0000</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139947598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forward stability and model path selection 前向稳定性和模型路径选择
IF 2.2 2区 数学 Q1 Mathematics Pub Date : 2024-02-20 DOI: 10.1007/s11222-024-10395-8
Nicholas Kissel, Lucas Mentch

Most scientific publications follow the familiar recipe of (i) obtain data, (ii) fit a model, and (iii) comment on the scientific relevance of the effects of particular covariates in that model. This approach, however, ignores the fact that there may exist a multitude of similarly-accurate models in which the implied effects of individual covariates may be vastly different. This problem of finding an entire collection of plausible models has also received relatively little attention in the statistics community, with nearly all of the proposed methodologies being narrowly tailored to a particular model class and/or requiring an exhaustive search over all possible models, making them largely infeasible in the current big data era. This work develops the idea of forward stability and proposes a novel, computationally-efficient approach to finding collections of accurate models we refer to as model path selection (MPS). MPS builds up a plausible model collection via a forward selection approach and is entirely agnostic to the model class and loss function employed. The resulting model collection can be displayed in a simple and intuitive graphical fashion, easily allowing practitioners to visualize whether some covariates can be swapped for others with minimal loss.

大多数科学出版物都遵循我们熟悉的方法:(i) 获取数据,(ii) 拟合模型,(iii) 评论该模型中特定协变量效应的科学相关性。然而,这种方法忽略了这样一个事实,即可能存在许多类似的精确模型,而在这些模型中,各个协变量的隐含效应可能大相径庭。统计学界对寻找整个可信模型集合这一问题的关注也相对较少,几乎所有提出的方法都是狭隘地针对某一特定模型类别和/或要求对所有可能的模型进行穷举搜索,这在当前的大数据时代基本上是不可行的。这项工作发展了前向稳定性的思想,并提出了一种新颖的、计算效率高的方法来寻找精确模型集合,我们称之为模型路径选择(MPS)。MPS 通过前向选择方法建立了一个可信的模型集合,并且完全不考虑所使用的模型类别和损失函数。由此产生的模型集合可以用简单直观的图形方式显示出来,方便从业人员直观地了解是否可以在损失最小的情况下将某些协变量替换为其他协变量。
{"title":"Forward stability and model path selection","authors":"Nicholas Kissel, Lucas Mentch","doi":"10.1007/s11222-024-10395-8","DOIUrl":"https://doi.org/10.1007/s11222-024-10395-8","url":null,"abstract":"<p>Most scientific publications follow the familiar recipe of (i) obtain data, (ii) fit a model, and (iii) comment on the scientific relevance of the effects of particular covariates in that model. This approach, however, ignores the fact that there may exist a multitude of similarly-accurate models in which the implied effects of individual covariates may be vastly different. This problem of finding an entire collection of plausible models has also received relatively little attention in the statistics community, with nearly all of the proposed methodologies being narrowly tailored to a particular model class and/or requiring an exhaustive search over all possible models, making them largely infeasible in the current big data era. This work develops the idea of forward stability and proposes a novel, computationally-efficient approach to finding collections of accurate models we refer to as model path selection (MPS). MPS builds up a plausible model collection via a forward selection approach and is entirely agnostic to the model class and loss function employed. The resulting model collection can be displayed in a simple and intuitive graphical fashion, easily allowing practitioners to visualize whether some covariates can be swapped for others with minimal loss.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Statistics and Computing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1