Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.80319
Xiaochun Wang, Yingjun Zou, Xianqiang He
The accuracy of the initial condition of a global ocean forecasting system and its prediction skill was evaluated against in situ temperature, salinity and satellite salinity observations during the winter of 2015 and the summer of 2016 for the East China Sea. The ocean forecasting system demonstrates better skill for the Yangtze River estuary and the East China Sea during winter time than during summer time. During winter time, the rootmean-square error (RMSE) of the initial fields of the system for salinity is 1.90 psu, and the correlation is 0.56. The model has a salty bias of 0.29 psu. The salinity RMSE reduces with increasing distance from the coast. In contrast, the RMSE for temperature is 0.76°C, and the correlation is as high as 0.95. There is no bias between model temperature and observation. During summer time, the accuracy and forecast skill of the global ocean forecasting system are very poor. The RMSE for salinity is 3.14 psu, and the correlation is 0.28. The model has a salty bias of 0.95 psu. The RMSE for temperature is 7.22°C, and the model has a warm bias as high as 5.52°C.
{"title":"Evaluation of Ocean Forecasting in the East China Sea","authors":"Xiaochun Wang, Yingjun Zou, Xianqiang He","doi":"10.5772/INTECHOPEN.80319","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80319","url":null,"abstract":"The accuracy of the initial condition of a global ocean forecasting system and its prediction skill was evaluated against in situ temperature, salinity and satellite salinity observations during the winter of 2015 and the summer of 2016 for the East China Sea. The ocean forecasting system demonstrates better skill for the Yangtze River estuary and the East China Sea during winter time than during summer time. During winter time, the rootmean-square error (RMSE) of the initial fields of the system for salinity is 1.90 psu, and the correlation is 0.56. The model has a salty bias of 0.29 psu. The salinity RMSE reduces with increasing distance from the coast. In contrast, the RMSE for temperature is 0.76°C, and the correlation is as high as 0.95. There is no bias between model temperature and observation. During summer time, the accuracy and forecast skill of the global ocean forecasting system are very poor. The RMSE for salinity is 3.14 psu, and the correlation is 0.28. The model has a salty bias of 0.95 psu. The RMSE for temperature is 7.22°C, and the model has a warm bias as high as 5.52°C.","PeriodicalId":221163,"journal":{"name":"Coastal Environment, Disaster, and Infrastructure - A Case Study of China's Coastline","volume":"117 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128121068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.80020
Siqiang Wang, Meng Xiang, Yanan He, J. Tsou, Yuanzhi Zhang, X. Liang, Xia Lu
In this chapter, we present the analysis of urban heat island (UHI) effects on coastal urban areas using satellite images as a case study in Hangzhou, China. With the sustainable development of coastal areas, land use and land cover have been dramatically changed. Such changes make the phenomenon of urban heat island (UHI) becoming serious, which has brought some negative influences on human activities or public health issues in coastal regions. This study takes Hangzhou as an example of coastal cities and uses the Landsat TM, ETM+ and OLI images to retrieve the urban land surface temperature (LST). We also mapped and compared the intensity of UHI effects in different years of 2003, 2008 and 2013. The result shows that the intensity of UHI effect in 2013 was more serious than previous years, which is increasing year by year. The study also analyzed the relationship between UHI, NDVI, and NDBI and provided some useful suggestions to mitigate the UHI effects on coastal cities such as Hangzhou in China.
{"title":"Evaluating Urban Heat Island Effects in Rapidly Developing Coastal Cities","authors":"Siqiang Wang, Meng Xiang, Yanan He, J. Tsou, Yuanzhi Zhang, X. Liang, Xia Lu","doi":"10.5772/INTECHOPEN.80020","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80020","url":null,"abstract":"In this chapter, we present the analysis of urban heat island (UHI) effects on coastal urban areas using satellite images as a case study in Hangzhou, China. With the sustainable development of coastal areas, land use and land cover have been dramatically changed. Such changes make the phenomenon of urban heat island (UHI) becoming serious, which has brought some negative influences on human activities or public health issues in coastal regions. This study takes Hangzhou as an example of coastal cities and uses the Landsat TM, ETM+ and OLI images to retrieve the urban land surface temperature (LST). We also mapped and compared the intensity of UHI effects in different years of 2003, 2008 and 2013. The result shows that the intensity of UHI effect in 2013 was more serious than previous years, which is increasing year by year. The study also analyzed the relationship between UHI, NDVI, and NDBI and provided some useful suggestions to mitigate the UHI effects on coastal cities such as Hangzhou in China.","PeriodicalId":221163,"journal":{"name":"Coastal Environment, Disaster, and Infrastructure - A Case Study of China's Coastline","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131863604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Using sea surface salinity (SSS) from the Soil Moisture Active Passive (SMAP) mission from September 2015 to August 2016, the spatial distribution and seasonal variation in SSS in the Chinese coastal seas were investigated. First, in situ salinity observation over Chinese East Sea was used to validate SMAP observation. Then, the SSS signature of the Yangtze River fresh water was analyzed using SMAP data and the river discharge data. The SSS around the Yangtze River estuary in the Chinese East Sea, the Bohai Sea and the Yellow Sea is significantly lower than that of the open ocean. The SSS of Chinese coastal seas shows significant seasonal variation, and the seasonal variation in the adja cent waters of the Yangtze River estuary is the most obvious, followed by that of the Pearl River estuary. The minimum value of SSS appears in summer while maximum in winter. The root-mean-squared difference of daily SSS between SMAP observation and in situ observation is around 3 psu in both summer and winter, which is much lower than the annual range of SSS variation. The path of fresh water from SMAP and in situ observation is consistent during summer time.
{"title":"Validation and Application of SMAP SSS Observation in Chinese Coastal Seas","authors":"Qiong Wu, Xiaochun Wang, Xianqiang He, Wenhao Liang","doi":"10.5772/INTECHOPEN.80318","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80318","url":null,"abstract":"Using sea surface salinity (SSS) from the Soil Moisture Active Passive (SMAP) mission from September 2015 to August 2016, the spatial distribution and seasonal variation in SSS in the Chinese coastal seas were investigated. First, in situ salinity observation over Chinese East Sea was used to validate SMAP observation. Then, the SSS signature of the Yangtze River fresh water was analyzed using SMAP data and the river discharge data. The SSS around the Yangtze River estuary in the Chinese East Sea, the Bohai Sea and the Yellow Sea is significantly lower than that of the open ocean. The SSS of Chinese coastal seas shows significant seasonal variation, and the seasonal variation in the adja cent waters of the Yangtze River estuary is the most obvious, followed by that of the Pearl River estuary. The minimum value of SSS appears in summer while maximum in winter. The root-mean-squared difference of daily SSS between SMAP observation and in situ observation is around 3 psu in both summer and winter, which is much lower than the annual range of SSS variation. The path of fresh water from SMAP and in situ observation is consistent during summer time.","PeriodicalId":221163,"journal":{"name":"Coastal Environment, Disaster, and Infrastructure - A Case Study of China's Coastline","volume":"85 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114412330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.80018
X. Liang, Lan Wang
The cyclogenesis of typhoons has been a continuing challenge in dynamic meteorology. In this study, we use a recently developed methodology, namely, multiscale window transform (MWT), together with the MWT-based localized multiscale energy and vorticity analysis and the theory of canonical transfer, to investigate the formation, maintenance, and decay of the typhoon Damrey, a rarely seen tropical storm of higher-latitude origin. The atmospheric fields are first reconstructed onto three scale subspaces or scale windows: large-scale window, tropical cyclone-scale window, and cumulus convection-scale window. On the cyclone-scale window, Damrey is found right along the edge of the subtropical high. It is generated due to a strong barotropic instability in the lower troposphere, but its subsequent rapid amplification is, however, related to a baroclinic instability in the upper troposphere. Damrey begins to decay before landfall, right over East China Sea at the mouth of Yangtze River, where a strong inverse cascade center resides and transfers the cyclone-scale energy backward to the large-scale window.
{"title":"The Cyclogenesis and Decay of Typhoon Damrey","authors":"X. Liang, Lan Wang","doi":"10.5772/INTECHOPEN.80018","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80018","url":null,"abstract":"The cyclogenesis of typhoons has been a continuing challenge in dynamic meteorology. In this study, we use a recently developed methodology, namely, multiscale window transform (MWT), together with the MWT-based localized multiscale energy and vorticity analysis and the theory of canonical transfer, to investigate the formation, maintenance, and decay of the typhoon Damrey, a rarely seen tropical storm of higher-latitude origin. The atmospheric fields are first reconstructed onto three scale subspaces or scale windows: large-scale window, tropical cyclone-scale window, and cumulus convection-scale window. On the cyclone-scale window, Damrey is found right along the edge of the subtropical high. It is generated due to a strong barotropic instability in the lower troposphere, but its subsequent rapid amplification is, however, related to a baroclinic instability in the upper troposphere. Damrey begins to decay before landfall, right over East China Sea at the mouth of Yangtze River, where a strong inverse cascade center resides and transfers the cyclone-scale energy backward to the large-scale window.","PeriodicalId":221163,"journal":{"name":"Coastal Environment, Disaster, and Infrastructure - A Case Study of China's Coastline","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122761149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.80903
Jianrong Zhu, Hui Wu, Lu Li, Cheng Qiu
Saltwater intrusion in the Changjiang Estuary and the impacts of river discharge, tide, wind, sea level rise, river basin, and major estuary projects on saltwater intrusion are studied in this chapter. There is a net landward flow in the NB (North Branch) when river discharge is low during spring tide, resulting in a type of saltwater intrusion known as the SSO (saltwater-spilling-over from the NB into the SB (South Branch)), which is the most striking characteristic of saltwater intrusion in the estuary. A three-dimension numerical model with HSIMT-TVD advection scheme was developed to study the hydrodynamic processes and saltwater intrusion in the Changjiang Estuary. Saltwater intrusion in the estuary is controlled mainly by river discharge and tide, but is also influenced by wind, sea level rise, river basin, and estuary projects. Saltwater intrusion is enhanced when river discharge decreases. There is more time for the reservoir to take freshwater from the river when river discharge is larger. The fortnightly spring tide generates greater saltwater intrusion than the neap tide. The saltwater intrusion in the SP (South Passage) is stronger than that in the NP (North Passage), and the intrusion in the NP is stronger than that in the NC (North Channel). The northerly wind produces southward currents along the Subei coast as well as the landward Ekman transport, which enhances the saltwater intrusion in the NC and NB and weakens the saltwater intrusion in the NP and SP. Saltwater intrusion becomes stronger as the sea level rises and is much stronger when river discharge is much small. The DWP (Deep Waterway Project) alleviates the saltwater intrusion in the NC and the lower reaches of the NP and enhances the saltwater intrusion in the SP and in the upper reaches of the NP. The Three Gorges Dam (TGD) increases river discharge in winter, which weakens saltwater intrusion, and is favorable for reducing the burden of freshwater supplement in the highly populated estuarine region. The Water Diversion South to the North Project (WDP) decreases river discharge, enhances saltwater intrusion, and is unfavorable for freshwater supply in the estuary.
本章主要研究了长江口的咸水入侵,以及河流流量、潮汐、风、海平面上升、流域和主要河口工程对咸水入侵的影响。在春潮期间,当河水流量较低时,北支有向陆地的净流,形成了一种称为SSO (salt -spill -over of NB - into SB (South Branch))的盐水入侵,这是河口最显著的盐水入侵特征。采用HSIMT-TVD平流格式建立了长江口水动力过程和海水入侵的三维数值模型。入海口海水入侵主要受河流流量和潮汐控制,同时还受风、海平面上升、流域和入海口工程的影响。当河流流量减少时,盐水入侵增强。当河流流量较大时,水库从河流中吸取淡水的时间更长。每两周的大潮比小潮产生更大的盐水入侵。SP(南通道)的盐水入侵强度大于NP(北通道),NP(北通道)的盐水入侵强度大于NC(北通道)。北风在苏北沿岸产生南向气流和向陆地的Ekman输运,增强了北、南海区的咸水入侵,减弱了北、南海区的咸水入侵。咸水入侵随着海平面上升而增强,当河流流量较小时,咸水入侵更强。深水航道工程缓解了长江上游和长江下游的咸水入侵,增强了长江上游和长江上游的咸水入侵。三峡大坝在冬季增加了河流流量,减弱了咸水入侵,有利于减轻人口密集的河口地区的淡水补充负担。南水北调工程减少了河流流量,增加了咸水入侵,不利于河口的淡水供应。
{"title":"Saltwater Intrusion in the Changjiang Estuary","authors":"Jianrong Zhu, Hui Wu, Lu Li, Cheng Qiu","doi":"10.5772/INTECHOPEN.80903","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80903","url":null,"abstract":"Saltwater intrusion in the Changjiang Estuary and the impacts of river discharge, tide, wind, sea level rise, river basin, and major estuary projects on saltwater intrusion are studied in this chapter. There is a net landward flow in the NB (North Branch) when river discharge is low during spring tide, resulting in a type of saltwater intrusion known as the SSO (saltwater-spilling-over from the NB into the SB (South Branch)), which is the most striking characteristic of saltwater intrusion in the estuary. A three-dimension numerical model with HSIMT-TVD advection scheme was developed to study the hydrodynamic processes and saltwater intrusion in the Changjiang Estuary. Saltwater intrusion in the estuary is controlled mainly by river discharge and tide, but is also influenced by wind, sea level rise, river basin, and estuary projects. Saltwater intrusion is enhanced when river discharge decreases. There is more time for the reservoir to take freshwater from the river when river discharge is larger. The fortnightly spring tide generates greater saltwater intrusion than the neap tide. The saltwater intrusion in the SP (South Passage) is stronger than that in the NP (North Passage), and the intrusion in the NP is stronger than that in the NC (North Channel). The northerly wind produces southward currents along the Subei coast as well as the landward Ekman transport, which enhances the saltwater intrusion in the NC and NB and weakens the saltwater intrusion in the NP and SP. Saltwater intrusion becomes stronger as the sea level rises and is much stronger when river discharge is much small. The DWP (Deep Waterway Project) alleviates the saltwater intrusion in the NC and the lower reaches of the NP and enhances the saltwater intrusion in the SP and in the upper reaches of the NP. The Three Gorges Dam (TGD) increases river discharge in winter, which weakens saltwater intrusion, and is favorable for reducing the burden of freshwater supplement in the highly populated estuarine region. The Water Diversion South to the North Project (WDP) decreases river discharge, enhances saltwater intrusion, and is unfavorable for freshwater supply in the estuary.","PeriodicalId":221163,"journal":{"name":"Coastal Environment, Disaster, and Infrastructure - A Case Study of China's Coastline","volume":"129 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115551362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The extension of the Changjiang River plume is one of the fundamental processes in the Yellow and East China Seas, which is responsible not only for the physical properties of seawater but also for the numerous physical, biogeochemical, and sedimentary processes in this region. The studies of the Changjiang River plume dated back to 1960s, followed by generations, and are still attracting numerous focuses nowadays. Here in this chapter, we will review the past studies on the Changjiang River plume and present some latest studies on this massive river plume. The latest research progresses on the Changjiang River plume are mainly related to the tidal modulation mechanisms. It is found that the tide shifts the Changjiang Rive plume to the northeast outside the river mouth, bifurcates the plume at the head of submarine canyon, and arrests the unreal up-shelf plume intrusion that occurred frequently in previous model studies. It is also found that the tidal residual current transports part of the Changjiang River plume to the Subei Coastal Water. These tidal modulation effects can answer the questions on the dynamics of Changjiang River plume that puzzled the research community for decades.
{"title":"Dynamics of the Changjiang River Plume","authors":"Huiand Wu, Tianning Wu, Jian-jian Shen, Jianrong Zhu","doi":"10.5772/INTECHOPEN.80734","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80734","url":null,"abstract":"The extension of the Changjiang River plume is one of the fundamental processes in the Yellow and East China Seas, which is responsible not only for the physical properties of seawater but also for the numerous physical, biogeochemical, and sedimentary processes in this region. The studies of the Changjiang River plume dated back to 1960s, followed by generations, and are still attracting numerous focuses nowadays. Here in this chapter, we will review the past studies on the Changjiang River plume and present some latest studies on this massive river plume. The latest research progresses on the Changjiang River plume are mainly related to the tidal modulation mechanisms. It is found that the tide shifts the Changjiang Rive plume to the northeast outside the river mouth, bifurcates the plume at the head of submarine canyon, and arrests the unreal up-shelf plume intrusion that occurred frequently in previous model studies. It is also found that the tidal residual current transports part of the Changjiang River plume to the Subei Coastal Water. These tidal modulation effects can answer the questions on the dynamics of Changjiang River plume that puzzled the research community for decades.","PeriodicalId":221163,"journal":{"name":"Coastal Environment, Disaster, and Infrastructure - A Case Study of China's Coastline","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129637123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.80732
X. Liang, MingHai Huang, Hui Wu, Yihe Wang
An important hydrographic phenomenon in the Yellow Sea is the surface cold patches (SCP) in warm seasons, among which the most conspicuous are the Shandong SCP, Subei SCP, and Mokpo SCP. Previous studies based on monthly mean fields propose that these patches result from the collaboration of tidal mixing and tidal induced upwelling. While this is true for patches like the Shandong SCP, the monthly mean tidal mixing and upwelling alone cannot explain all their formations. In this study, through a detailed analysis of their patterns over a spring-neap tidal cycle, it is found that the Subei and Mokpo SCPs show distinct spring-neap variations. During the neap tide phase, strong stratification is established, and hence the cold patches in these two areas may be greatly weakened or even suppressed, while during the spring tide phase, the surface temperature reaches its minimum. That is to say, for these two SCPs, besides the well-accepted mechanisms, the effect of spring-neap tidal variation must be taken into account.
{"title":"The Yellow Sea Surface Cold Patches in Warm Seasons","authors":"X. Liang, MingHai Huang, Hui Wu, Yihe Wang","doi":"10.5772/INTECHOPEN.80732","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80732","url":null,"abstract":"An important hydrographic phenomenon in the Yellow Sea is the surface cold patches (SCP) in warm seasons, among which the most conspicuous are the Shandong SCP, Subei SCP, and Mokpo SCP. Previous studies based on monthly mean fields propose that these patches result from the collaboration of tidal mixing and tidal induced upwelling. While this is true for patches like the Shandong SCP, the monthly mean tidal mixing and upwelling alone cannot explain all their formations. In this study, through a detailed analysis of their patterns over a spring-neap tidal cycle, it is found that the Subei and Mokpo SCPs show distinct spring-neap variations. During the neap tide phase, strong stratification is established, and hence the cold patches in these two areas may be greatly weakened or even suppressed, while during the spring tide phase, the surface temperature reaches its minimum. That is to say, for these two SCPs, besides the well-accepted mechanisms, the effect of spring-neap tidal variation must be taken into account.","PeriodicalId":221163,"journal":{"name":"Coastal Environment, Disaster, and Infrastructure - A Case Study of China's Coastline","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125381781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.80015
Min Bao, W. Guan, Zhenyi Cao, Qi Chen, Yun-Seok Yang
The studies in this chapter are focused on marine ecological disasters in Jiangsu coastal area. Three kinds of algal blooms occurred in this region, namely, red tide associated with Dinoflagellate , green tide associated with Ulvaprolifera and golden tide associated with Sargassum . Numerical model results demonstrated that red tides in Haizhou Bay originated locally, because most of Dinoflagellates near Zhoushan Islands would be transported northeastward by the Changjiang diluted water, and even the lucky ones that entered the south of Jiangsu coastal area would die in the Subei Shoal due to high turbidity there. Due to the Changjiang diluted water and the prevailing southerly wind, Ulvaprolifera could not drift southward, either. Seawater with high turbidity in the Subei Shoal limited sunlight penetration into deep water column, and further inhibited the growth of Ulvaprolifera suspending in the water column. In this chapter, we use drift bottles and satellite-tracked Argos drifters to provide solid direct dynamic evidence that Ulvaprolifera could drift from the Subei Shoal to Qingdao coastal area and even further north. The sand ridges limited the traveling path of Ulvaprolifera in the Subei Shoal, and wind-driven currents and other baroclinic processes helped Ulvaprolifera travel farther to the north.
{"title":"Marine Ecological Disasters and Their Physical Controlling Mechanisms in Jiangsu Coastal Area","authors":"Min Bao, W. Guan, Zhenyi Cao, Qi Chen, Yun-Seok Yang","doi":"10.5772/INTECHOPEN.80015","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80015","url":null,"abstract":"The studies in this chapter are focused on marine ecological disasters in Jiangsu coastal area. Three kinds of algal blooms occurred in this region, namely, red tide associated with Dinoflagellate , green tide associated with Ulvaprolifera and golden tide associated with Sargassum . Numerical model results demonstrated that red tides in Haizhou Bay originated locally, because most of Dinoflagellates near Zhoushan Islands would be transported northeastward by the Changjiang diluted water, and even the lucky ones that entered the south of Jiangsu coastal area would die in the Subei Shoal due to high turbidity there. Due to the Changjiang diluted water and the prevailing southerly wind, Ulvaprolifera could not drift southward, either. Seawater with high turbidity in the Subei Shoal limited sunlight penetration into deep water column, and further inhibited the growth of Ulvaprolifera suspending in the water column. In this chapter, we use drift bottles and satellite-tracked Argos drifters to provide solid direct dynamic evidence that Ulvaprolifera could drift from the Subei Shoal to Qingdao coastal area and even further north. The sand ridges limited the traveling path of Ulvaprolifera in the Subei Shoal, and wind-driven currents and other baroclinic processes helped Ulvaprolifera travel farther to the north.","PeriodicalId":221163,"journal":{"name":"Coastal Environment, Disaster, and Infrastructure - A Case Study of China's Coastline","volume":"93 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121447377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Impervious surface is an important indicator of the level of urbanization. It is of great significance to study the impervious surface to promote the sustainable development of the city. In the process of urban development, the increase of impervious surface cities is bound to be accompanied by a reduction of one or more types of land use in the city. This paper, taking Lianyungang as an example, introduces the methods of extracting urban impervious surface based on VIS model, NDVI (normalized vegetation index), MNDWI (modified normalized water body index), and unsupervised classification, analyzes the changes of impervious surface in Lianyungang from 1987 to 2014, and on this basis, ana lyzes the trend and driving forces of land use types in Lianyungang city in depth. The results show that the impervious surface of Lianyungang increased by a total of 29.70% between 1987 and 2014. While the impervious surface continues to increase, the area of cultivated land and coastal areas (including salt works and tidal flats) has been greatly reduced, and the types of land use have undergone significant changes.
{"title":"Analysis of Urban Impervious Surface in Coastal Cities: A Case Study in Lianyungang, China","authors":"Ting-chen Jiang, Yuxi Liu, Kapo Wong, Yuanzhi Zhang, Yu Li, X. Liang","doi":"10.5772/INTECHOPEN.80019","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80019","url":null,"abstract":"Impervious surface is an important indicator of the level of urbanization. It is of great significance to study the impervious surface to promote the sustainable development of the city. In the process of urban development, the increase of impervious surface cities is bound to be accompanied by a reduction of one or more types of land use in the city. This paper, taking Lianyungang as an example, introduces the methods of extracting urban impervious surface based on VIS model, NDVI (normalized vegetation index), MNDWI (modified normalized water body index), and unsupervised classification, analyzes the changes of impervious surface in Lianyungang from 1987 to 2014, and on this basis, ana lyzes the trend and driving forces of land use types in Lianyungang city in depth. The results show that the impervious surface of Lianyungang increased by a total of 29.70% between 1987 and 2014. While the impervious surface continues to increase, the area of cultivated land and coastal areas (including salt works and tidal flats) has been greatly reduced, and the types of land use have undergone significant changes.","PeriodicalId":221163,"journal":{"name":"Coastal Environment, Disaster, and Infrastructure - A Case Study of China's Coastline","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133225533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.80736
J. Cai, Yuanzhi Zhang, Yu Li, Ting-chen Jiang, X. Liang, XiaLu, J. Tsou
In this chapter, we present the analysis for the evolution characteristics of temperature, precipitation, and soil moisture. We choose a newly developed method that is based on the information flow (IF) concept to research the causality between annual mean temper- ature, precipitation, and soil moisture in Jiangsu province, China, from 1961 to 2011 by using the Global Land Data Assimilation System (GLDAS). The correlation and the cau- sality of air temperature and precipitation on soil moisture were compared and discussed. The causality value of 0 – 10 cm layer is significantly different from zero, while the deeper, in comparison to the surface layer, is negligible. This result unambiguously shows the causality in the sense that the precipitation increase and the temperature decrease are causing the shallow soil moisture to increase. Temperature and all layers of soil moisture have a negative correlation, but precipitation inverses. Precipitation strongly has the greatest effects on soil moisture in the surface layer, though the rest layers are not obvious.
{"title":"Analysis for Soil Moisture in Jiangsu Province, China, Using GLDAS Data","authors":"J. Cai, Yuanzhi Zhang, Yu Li, Ting-chen Jiang, X. Liang, XiaLu, J. Tsou","doi":"10.5772/INTECHOPEN.80736","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80736","url":null,"abstract":"In this chapter, we present the analysis for the evolution characteristics of temperature, precipitation, and soil moisture. We choose a newly developed method that is based on the information flow (IF) concept to research the causality between annual mean temper- ature, precipitation, and soil moisture in Jiangsu province, China, from 1961 to 2011 by using the Global Land Data Assimilation System (GLDAS). The correlation and the cau- sality of air temperature and precipitation on soil moisture were compared and discussed. The causality value of 0 – 10 cm layer is significantly different from zero, while the deeper, in comparison to the surface layer, is negligible. This result unambiguously shows the causality in the sense that the precipitation increase and the temperature decrease are causing the shallow soil moisture to increase. Temperature and all layers of soil moisture have a negative correlation, but precipitation inverses. Precipitation strongly has the greatest effects on soil moisture in the surface layer, though the rest layers are not obvious.","PeriodicalId":221163,"journal":{"name":"Coastal Environment, Disaster, and Infrastructure - A Case Study of China's Coastline","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125506077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}