Alzheimer's disease (AD) is one of the largest health crises in the world. There are limited pharmaceutical interventions to treat AD, however, and most of the treatment options are not for cure or prevention, but rather to slow down the progression of the disease. The aim of this study was to examine the effect of tactile stimulation (TS) on AD-like symptoms and pathology in APPNL-G-F/NL-G-F mice, a mouse model of AD. The results show that TS reduces the AD-like symptoms on tests of cognition, motor, and anxiety-like behaviors and these improvements in behavior are associated with reduced AD pathology in APP mice. Thus, TS appears to be a promising noninvasive strategy for slowing the onset of dementia in aging animals.
Roux-en-Y gastric bypass surgery (RYGB) remains an effective weight-loss method used to treat obesity. While it is successful in combating obesity, there are many lingering questions related to the changes in the brain following RYGB surgery, one of them being its effects on neuroinflammation. While it is known that chronic high-fat diet (HFD) contributes to obesity and neuroinflammation, it remains to be understood whether bariatric surgery can ameliorate diet-induced inflammatory responses. To examine this, rats were assigned to either a normal diet (ND) or a HFD for 8 weeks. Rats fed a HFD were split into the following groups: sham surgery with ad libitum access to HFD (sham-HF); sham surgery with calorie-restricted HFD (sham-FR); RYGB surgery with ad libitum access to HFD (RYGB). Following sham or RYGB surgeries, rats were maintained on their diets for 9 weeks before being euthanized. [3 H] PK11195 autoradiography was then performed on fresh-frozen brain tissue in order to measure activated microglia. Sham-FR rats showed increased [3 H] PK11195 binding in the amygdala (63%), perirhinal (60%), and ectorhinal cortex (53%) compared with the ND rats. Obese rats who had the RYGB surgery did not show this increased inflammatory effect. Since the sham-FR and RYGB rats were fed the same amount of HFD, the surgery itself seems responsible for this attenuation in [3 H] PK11195 binding. We speculate that calorie restriction following obese conditions may be seen as a stressor and contribute to inflammation in the brain. Further research is needed to verify this mechanism.
Angiotensinergic, GABAergic, and glutamatergic neurons are present in the parvocellular region of the paraventricular nucleus (PVNp). It has been shown that microinjection of AngII into the PVNp increases arterial pressure (AP) and heart rate (HR). The presence of synapses between the angiotensinergic, GABAergic, and glutamatergic neurons has been shown in the PVNp. In this study, we investigated the possible interaction between these three systems of the PVNp for control of AP and HR. All drugs were bilaterally (100 nl/side) microinjected into the PVNp of urethane-anesthetized rats, and AP and HR were recorded continuously. Microinjection of AngII into the PVNp produced pressor and tachycardia responses. Pretreatment of PVNp with AP5 or CNQX, glutamatergic NMDA and AMPA receptors antagonists, attenuated the responses to AngII. Pretreatment of PVNp with bicuculline greatly attenuated the pressor and tachycardia responses to AngII. In conclusion, this study provides the first evidence that pressor and tachycardia responses to microinjection of AngII into the PVNp are partly mediated by both NMDA and non-NMDA receptors of glutamate. Activation of glutamatergic neurons by AngII stimulates the sympathoexcitatory neurons. We also showed that the responses to AngII were strongly mediated by GABAA receptors, probably through activation of GABAergic neurons, which in turn inhibit sympathoinhibitory neurons.
The regulation of dendritic spine morphology is a critical aspect of neuronal network refinement during development and modulation of neurotransmission. Previous studies revealed that glutamatergic transmission plays a central role in synapse development. AMPA receptors and NMDA receptors regulate spine morphology in an activity dependent manner. However, whether and how Kainate receptors (KARs) regulate synapse development remains poorly understood. In this study, we found that GluK1 and GluK2 may play distinct roles in synapse development. In primary cultured hippocampal neurons, we found overexpression of the calcium-permeable GluK2(Q) receptor variant increased spine length and spine head area compared to overexpression of the calcium-impermeable GluK2(R) variant or EGFP transfected, control neurons, indicating that Q/R editing may play a role in GluK2 regulation of synapse development. Intriguingly, neurons transfected with GluK1(Q) showed decreased spine length and spine head area, while the density of dendritic spines was increased, suggesting that GluK1(Q) and GluK2(Q) have different effects on synaptic development. Swapping the critical domains between GluK2 and GluK1 demonstrated the N-terminal domain (NTD) is responsible for the different effects of GluK1 and GluK2. In conclusion, Kainate receptors GluK1 and GluK2 have distinct roles in regulating spine morphology and development, a process likely relying on the NTD.
The suprachiasmatic nucleus (SCN) is the most important circadian clock in mammals. The SCN synchronizes to environmental light via the retinohypothalamic tract (RHT), which is an axon cluster derived from melanopsin-expressing intrinsic photosensitive retinal ganglion cells. Investigations on the development of the nonimage-forming pathway and the RHT are scarce. Previous studies imply that light stimulation during postnatal development is not needed to make the RHT functional at adult stages. Here, we examined the effects of light deprivation (i.e., constant darkness (DD) rearing) during postnatal development on the expression in the ventral SCN of two crucial proteins for the synchronization of circadian rhythms to light: the presynaptic vesicular glutamate transporter type 2 (vGluT2) and the GluN2B subunit of the postsynaptic NMDA receptor. We found that animals submitted to DD conditions exhibited a transitory reduction in the expression of vGluT2 (at P12-19) and of GluN2B (at P7-9) that was compensated at older stages. These findings support the hypothesis that visual stimulation during early ages is not decisive for normal development of the RHT-SCN pathway.
The brain plays a major role in controlling the desire to eat. This meta-analysis aimed to assess the association between dopamine receptor (DR) availability and dopamine transporter (DAT) availability, measured using positron emission tomography, and obesity. We performed a systematic search of MEDLINE (from inception to November 2020) and EMBASE (from inception to November 2020) for articles published in English using the keywords "dopamine receptor," "dopamine transporter," "obesity," and "neuroimaging." Body mass index (BMI) and the corresponding binding potential (BPND ) were extracted from figures in each study using Engauge Digitizer, version 12.1, and plotted for radiopharmaceuticals and regions of interest (ROIs). Five studies involving 119 subjects with DR and five studies including 421 subjects with DAT were eligible for inclusion in this study. In overweight or obese subjects with BMI of 25 kg/m2 or higher, DR availability from 11 C-Racloprie was negatively associated with BMI. However, DR availability from 11 C-PHNO was positively associated with BMI. DAT ratio was calculated after dividing DAT availabilities of overweight/obese BMI with mean DAT availabilities of normal BMI. The association between DAT ratio and BMI was not significant regardless of radiopharmaceuticals. In conclusion, dopamine plays a main role in the reward system with regard to obesity. Overweight and obese subjects had negative association between DR availability from 11 C-Raclopride and BMI. However, the association of DR availability with BMI was dependent on radiopharmaceuticals. DAT availability did not show the significant relationship with BMI regardless of radiopharmaceuticals.
The basolateral amygdala (BLA), which is sensitive to stress, is necessary for reward-seeking behavior and addiction. Regular exercise can produce various positive effects by affecting the BLA. Therefore, we aimed to investigate the effects of chronic stress and treadmill running (TR) on anxiety-like behavior, neuronal activity, lipid peroxidation (measured by malondialdehyde (MDA) levels, a marker for oxidative stress), and total thiol in BLA, in morphine-treated rats. Male Wistar rats were restricted in restraint stress and/or ran on the treadmill and treated with morphine (5 mg/kg) for 21 days. Anxiety-like behavior was evaluated using an elevated plus maze (EPM) and open field tests (OFTs), on day 22. On day 23, neuronal activity in BLA was assessed via single-unit recording. Finally, MDA and total thiol were assessed in BLA. Our results showed that chronic administration of morphine (5 mg/kg) did not affect anxiety-like behavior. However, the morphine-treated rats, subjected to chronic stress and exercise, showed fewer anxiety-like behaviors. Morphine increased BLA's MDA levels but it was prevented by TR. Glutamatergic and GABAergic basal neuronal activities were low in morphine-treated rats but after acute morphine application, there was a significant decrease in GABAergic neuronal activities in the morphine-exercise-stress (Mor-Exe-St) group. The results of this study showed that in morphine-treated rats, stress and exercise or their combination could have either co-directional or opposite effects to the chronic effects of morphine. These results indicate the existence of common pathways similar to endogenous opioids.
Anorexia nervosa (AN) is a mental illness with the highest rates of mortality and relapse, and no approved pharmacological treatment. Using an animal model of AN, called activity-based anorexia (ABA), we showed earlier that a single intraperitoneal injection of ketamine at a dose of 30 mg/kg (30mgKET), but not 3 mg/kg (3mgKET), has a long-lasting effect upon adolescent females of ameliorating anorexia-like symptoms through the following changes: enhanced food consumption and body weight; reduced running and anxiety-like behavior. However, there were also individual differences in the drug's efficacy. We hypothesized that individual differences in ketamine's ameliorative effects involve drebrin A, an F-actin-binding protein known to be required for the activity-dependent trafficking of NMDA receptors (NMDARs). We tested this hypothesis by electron microscopic quantifications of drebrin A immunoreactivity at excitatory synapses of pyramidal neurons (PN) and GABAergic interneurons (GABA-IN) in deep layer 1 of prefrontal cortex (PFC) of these mice. Results reveal that (1) the areal density of excitatory synapses on GABA-IN is greater for the 30mgKET group than the 3mgKET group; (2) the proportion of drebrin A+ excitatory synapses is greater for both PN and GABA-IN of 30mgKET than 3mgKET group. Correlation analyses with behavioral measurements revealed that (3) 30mgKET's protection is associated with reduced levels of drebrin A in the cytoplasm of GABA-IN and higher levels at extrasynaptic membranous sites of PN and GABA-IN; (5) altogether pointing to 30mgKET-induced homeostatic plasticity that engages drebrin A at excitatory synapses of both PN and GABA-IN.
Previous studies demonstrated that in vitro preparations of the isolated vestibular system of diverse animal species still exhibit stable resting electrical activity and mechanically evoked synaptic transmission between hair cells and primary afferent endings. However, there are no reports related to their neurodevelopment. Therefore, this research aimed to examine whether NMDA receptors mediate these electrical signals in an isolated preparation of the chicken vestibular system at three developmental stages, E15, E18, and E21. We found that the spontaneous and mechanically evoked discharges from primary afferents of the posterior semicircular canal were modulated by agonists NMDA and glycine, but not by the agonist d-serine applied near the synapses. Moreover, the individually applied by bath perfusion of three NMDA receptor antagonists (MK-801, ifenprodil, and 2-naphthoic acid) or high Mg2+ decreased the resting discharge rate, the NMDA response, and the discharge rate of mechanically evoked activity from these primary afferents. Furthermore, we found that the vestibular ganglion shows a stage-dependent increase in the expression of NMDA receptor subunits GluN1, GluN2 (A-C), and GluN3 (A-B), being greater at E21, except for GluN2D, which was inversely related to the developmental stage. However, in the crista ampullaris, the expression pattern remained constant throughout development. This could suggest the possible existence of presynaptic NMDA receptors. Our results highlight that although the NMDA receptors are functionally active at the early embryonic stages of the vestibular system, NMDA and glycine reach their mature functionality to increase NMDA responses close to hatching (E21).