首页 > 最新文献

Synapse最新文献

英文 中文
Cover Image, Volume 77, Issue 3 封面图片,第77卷,第3期
IF 2.3 4区 医学 Q4 NEUROSCIENCES Pub Date : 2023-03-16 DOI: 10.1002/syn.22267
The cover image is based on the Research Article Abnormal [18F]NIFENE binding in transgenic 5xFAD mouse model of Alzheimer's disease: In vivo PET/CT imaging studies of α4β2* nicotinic acetylcholinergic receptors and in vitro correlations with Aβ plaques by Christopher Liang et al., https://doi.org/10.1002/syn.22265.
封面图片基于Christopher Liang等人的研究文章《阿尔茨海默病转基因5xFAD小鼠模型中异常[18F]NIFENE结合:α4β2*尼古丁乙酰胆碱能受体的体内PET/CT成像研究及其与β斑块的体外相关性》https://doi.org/10.1002/syn.22265。
{"title":"Cover Image, Volume 77, Issue 3","authors":"","doi":"10.1002/syn.22267","DOIUrl":"https://doi.org/10.1002/syn.22267","url":null,"abstract":"The cover image is based on the Research Article <i>Abnormal [<sup>18</sup>F]NIFENE binding in transgenic 5xFAD mouse model of Alzheimer's disease: In vivo PET/CT imaging studies of α4β2* nicotinic acetylcholinergic receptors and in vitro correlations with Aβ plaques</i> by Christopher Liang et al., https://doi.org/10.1002/syn.22265.","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"466 ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tactile stimulation improves cognition, motor, and anxiety-like behaviors and attenuates the Alzheimer's disease pathology in adult APPNL-G-F/NL-G-F mice. 触觉刺激可改善成年APPNL-G-F/NL-G-F小鼠的认知、运动和焦虑样行为,并减轻阿尔茨海默病病理。
IF 2.3 4区 医学 Q4 NEUROSCIENCES Pub Date : 2023-03-01 DOI: 10.1002/syn.22257
Shakhawat R Hossain, Hadil Karem, Zahra Jafari, Bryan E Kolb, Majid H Mohajerani

Alzheimer's disease (AD) is one of the largest health crises in the world. There are limited pharmaceutical interventions to treat AD, however, and most of the treatment options are not for cure or prevention, but rather to slow down the progression of the disease. The aim of this study was to examine the effect of tactile stimulation (TS) on AD-like symptoms and pathology in APPNL-G-F/NL-G-F mice, a mouse model of AD. The results show that TS reduces the AD-like symptoms on tests of cognition, motor, and anxiety-like behaviors and these improvements in behavior are associated with reduced AD pathology in APP mice. Thus, TS appears to be a promising noninvasive strategy for slowing the onset of dementia in aging animals.

阿尔茨海默病(AD)是世界上最大的健康危机之一。然而,治疗阿尔茨海默病的药物干预有限,而且大多数治疗选择不是为了治愈或预防,而是为了减缓疾病的进展。本研究旨在探讨触觉刺激(TS)对AD小鼠模型APPNL-G-F/NL-G-F小鼠AD样症状和病理的影响。结果表明,TS在认知、运动和焦虑样行为测试中减轻了AD样症状,这些行为的改善与APP小鼠AD病理减少有关。因此,TS似乎是一种很有前途的非侵入性策略,可以减缓老年动物痴呆的发生。
{"title":"Tactile stimulation improves cognition, motor, and anxiety-like behaviors and attenuates the Alzheimer's disease pathology in adult APP<sup>NL-G-F/NL-G-F</sup> mice.","authors":"Shakhawat R Hossain,&nbsp;Hadil Karem,&nbsp;Zahra Jafari,&nbsp;Bryan E Kolb,&nbsp;Majid H Mohajerani","doi":"10.1002/syn.22257","DOIUrl":"https://doi.org/10.1002/syn.22257","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is one of the largest health crises in the world. There are limited pharmaceutical interventions to treat AD, however, and most of the treatment options are not for cure or prevention, but rather to slow down the progression of the disease. The aim of this study was to examine the effect of tactile stimulation (TS) on AD-like symptoms and pathology in APP<sup>NL-G-F/NL-G-F</sup> mice, a mouse model of AD. The results show that TS reduces the AD-like symptoms on tests of cognition, motor, and anxiety-like behaviors and these improvements in behavior are associated with reduced AD pathology in APP mice. Thus, TS appears to be a promising noninvasive strategy for slowing the onset of dementia in aging animals.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"77 2","pages":"e22257"},"PeriodicalIF":2.3,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10625702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Calorie restriction, but not Roux-en-Y gastric bypass surgery, increases [3 H] PK11195 binding in a rat model of obesity. 在肥胖大鼠模型中,热量限制,而不是Roux-en-Y胃旁路手术,增加了PK11195的[3 H]结合。
IF 2.3 4区 医学 Q4 NEUROSCIENCES Pub Date : 2023-03-01 DOI: 10.1002/syn.22258
John Hamilton, Cynthia Nguyen, Margaret McAvoy, Nicole Roeder, Brittany Richardson, Teresa Quattrin, Andras Hajnal, Panayotis K Thanos

Roux-en-Y gastric bypass surgery (RYGB) remains an effective weight-loss method used to treat obesity. While it is successful in combating obesity, there are many lingering questions related to the changes in the brain following RYGB surgery, one of them being its effects on neuroinflammation. While it is known that chronic high-fat diet (HFD) contributes to obesity and neuroinflammation, it remains to be understood whether bariatric surgery can ameliorate diet-induced inflammatory responses. To examine this, rats were assigned to either a normal diet (ND) or a HFD for 8 weeks. Rats fed a HFD were split into the following groups: sham surgery with ad libitum access to HFD (sham-HF); sham surgery with calorie-restricted HFD (sham-FR); RYGB surgery with ad libitum access to HFD (RYGB). Following sham or RYGB surgeries, rats were maintained on their diets for 9 weeks before being euthanized. [3 H] PK11195 autoradiography was then performed on fresh-frozen brain tissue in order to measure activated microglia. Sham-FR rats showed increased [3 H] PK11195 binding in the amygdala (63%), perirhinal (60%), and ectorhinal cortex (53%) compared with the ND rats. Obese rats who had the RYGB surgery did not show this increased inflammatory effect. Since the sham-FR and RYGB rats were fed the same amount of HFD, the surgery itself seems responsible for this attenuation in [3 H] PK11195 binding. We speculate that calorie restriction following obese conditions may be seen as a stressor and contribute to inflammation in the brain. Further research is needed to verify this mechanism.

Roux-en-Y胃旁路手术(RYGB)仍然是治疗肥胖的有效减肥方法。虽然它在对抗肥胖方面取得了成功,但RYGB手术后大脑的变化仍有许多悬而未决的问题,其中之一是它对神经炎症的影响。虽然已知慢性高脂肪饮食(HFD)会导致肥胖和神经炎症,但减肥手术是否能改善饮食诱导的炎症反应仍有待了解。为了检验这一点,大鼠被分配到正常饮食(ND)或高热量饮食8周。喂食HFD的大鼠分为以下组:假手术和自由获取HFD (sham- hf);假手术与限制热量的HFD (sham- fr);RYGB手术与自由进入HFD (RYGB)。假手术或RYGB手术后,大鼠在安乐死前维持其饮食9周。[3 H]然后对新鲜冷冻的脑组织进行PK11195放射自显影以测量活化的小胶质细胞。与ND大鼠相比,Sham-FR大鼠的杏仁核(63%)、鼻周(60%)和鼻外皮层(53%)的[3 H] PK11195结合增加。接受RYGB手术的肥胖大鼠没有表现出这种增加的炎症效应。由于sham-FR大鼠和RYGB大鼠被喂食相同量的HFD,手术本身似乎对[3 H] PK11195结合的衰减负责。我们推测,肥胖后的卡路里限制可能被视为一种压力源,并导致大脑炎症。需要进一步的研究来验证这一机制。
{"title":"Calorie restriction, but not Roux-en-Y gastric bypass surgery, increases [<sup>3</sup> H] PK11195 binding in a rat model of obesity.","authors":"John Hamilton,&nbsp;Cynthia Nguyen,&nbsp;Margaret McAvoy,&nbsp;Nicole Roeder,&nbsp;Brittany Richardson,&nbsp;Teresa Quattrin,&nbsp;Andras Hajnal,&nbsp;Panayotis K Thanos","doi":"10.1002/syn.22258","DOIUrl":"https://doi.org/10.1002/syn.22258","url":null,"abstract":"<p><p>Roux-en-Y gastric bypass surgery (RYGB) remains an effective weight-loss method used to treat obesity. While it is successful in combating obesity, there are many lingering questions related to the changes in the brain following RYGB surgery, one of them being its effects on neuroinflammation. While it is known that chronic high-fat diet (HFD) contributes to obesity and neuroinflammation, it remains to be understood whether bariatric surgery can ameliorate diet-induced inflammatory responses. To examine this, rats were assigned to either a normal diet (ND) or a HFD for 8 weeks. Rats fed a HFD were split into the following groups: sham surgery with ad libitum access to HFD (sham-HF); sham surgery with calorie-restricted HFD (sham-FR); RYGB surgery with ad libitum access to HFD (RYGB). Following sham or RYGB surgeries, rats were maintained on their diets for 9 weeks before being euthanized. [<sup>3</sup> H] PK11195 autoradiography was then performed on fresh-frozen brain tissue in order to measure activated microglia. Sham-FR rats showed increased [<sup>3</sup> H] PK11195 binding in the amygdala (63%), perirhinal (60%), and ectorhinal cortex (53%) compared with the ND rats. Obese rats who had the RYGB surgery did not show this increased inflammatory effect. Since the sham-FR and RYGB rats were fed the same amount of HFD, the surgery itself seems responsible for this attenuation in [<sup>3</sup> H] PK11195 binding. We speculate that calorie restriction following obese conditions may be seen as a stressor and contribute to inflammation in the brain. Further research is needed to verify this mechanism.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"77 2","pages":"e22258"},"PeriodicalIF":2.3,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10617687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In the parvocellular part of paraventricular nucleus, glutamatergic and GABAergic neurons mediate cardiovascular responses to AngII. 在室旁核的旁细胞部分,谷氨酸能和gaba能神经元介导心血管对AngII的反应。
IF 2.3 4区 医学 Q4 NEUROSCIENCES Pub Date : 2023-03-01 DOI: 10.1002/syn.22259
Ali Rastegarmanesh, Bahar Rostami, Ali Nasimi, Masoumeh Hatam

Angiotensinergic, GABAergic, and glutamatergic neurons are present in the parvocellular region of the paraventricular nucleus (PVNp). It has been shown that microinjection of AngII into the PVNp increases arterial pressure (AP) and heart rate (HR). The presence of synapses between the angiotensinergic, GABAergic, and glutamatergic neurons has been shown in the PVNp. In this study, we investigated the possible interaction between these three systems of the PVNp for control of AP and HR. All drugs were bilaterally (100 nl/side) microinjected into the PVNp of urethane-anesthetized rats, and AP and HR were recorded continuously. Microinjection of AngII into the PVNp produced pressor and tachycardia responses. Pretreatment of PVNp with AP5 or CNQX, glutamatergic NMDA and AMPA receptors antagonists, attenuated the responses to AngII. Pretreatment of PVNp with bicuculline greatly attenuated the pressor and tachycardia responses to AngII. In conclusion, this study provides the first evidence that pressor and tachycardia responses to microinjection of AngII into the PVNp are partly mediated by both NMDA and non-NMDA receptors of glutamate. Activation of glutamatergic neurons by AngII stimulates the sympathoexcitatory neurons. We also showed that the responses to AngII were strongly mediated by GABAA receptors, probably through activation of GABAergic neurons, which in turn inhibit sympathoinhibitory neurons.

血管紧张素能、gaba能和谷氨酸能神经元存在于室旁核(PVNp)的细胞旁区。研究表明,在PVNp中微量注射AngII可增加动脉压(AP)和心率(HR)。血管紧张能神经元、gaba能神经元和谷氨酸能神经元之间突触的存在已在PVNp中得到证实。在这项研究中,我们研究了PVNp的这三个系统之间可能的相互作用,以控制AP和HR。将所有药物双侧(100 nl/侧)微注射到脲烷麻醉大鼠的pnp中,连续记录AP和HR。在PVNp中微量注射AngII可产生加压反应和心动过速反应。用AP5或CNQX、谷氨酸能NMDA和AMPA受体拮抗剂预处理PVNp可减弱对AngII的反应。双库兰预处理PVNp可显著减弱对AngII的压力反应和心动过速反应。总之,本研究提供了第一个证据,证明在ppvnp中微量注射AngII的加压和心动过速反应部分是由谷氨酸的NMDA和非NMDA受体介导的。AngII激活谷氨酸能神经元刺激交感神经兴奋性神经元。我们还发现,对AngII的反应是由GABAA受体强烈介导的,可能是通过激活GABAA能神经元,进而抑制交感神经抑制神经元。
{"title":"In the parvocellular part of paraventricular nucleus, glutamatergic and GABAergic neurons mediate cardiovascular responses to AngII.","authors":"Ali Rastegarmanesh,&nbsp;Bahar Rostami,&nbsp;Ali Nasimi,&nbsp;Masoumeh Hatam","doi":"10.1002/syn.22259","DOIUrl":"https://doi.org/10.1002/syn.22259","url":null,"abstract":"<p><p>Angiotensinergic, GABAergic, and glutamatergic neurons are present in the parvocellular region of the paraventricular nucleus (PVNp). It has been shown that microinjection of AngII into the PVNp increases arterial pressure (AP) and heart rate (HR). The presence of synapses between the angiotensinergic, GABAergic, and glutamatergic neurons has been shown in the PVNp. In this study, we investigated the possible interaction between these three systems of the PVNp for control of AP and HR. All drugs were bilaterally (100 nl/side) microinjected into the PVNp of urethane-anesthetized rats, and AP and HR were recorded continuously. Microinjection of AngII into the PVNp produced pressor and tachycardia responses. Pretreatment of PVNp with AP5 or CNQX, glutamatergic NMDA and AMPA receptors antagonists, attenuated the responses to AngII. Pretreatment of PVNp with bicuculline greatly attenuated the pressor and tachycardia responses to AngII. In conclusion, this study provides the first evidence that pressor and tachycardia responses to microinjection of AngII into the PVNp are partly mediated by both NMDA and non-NMDA receptors of glutamate. Activation of glutamatergic neurons by AngII stimulates the sympathoexcitatory neurons. We also showed that the responses to AngII were strongly mediated by GABA<sub>A</sub> receptors, probably through activation of GABAergic neurons, which in turn inhibit sympathoinhibitory neurons.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"77 2","pages":"e22259"},"PeriodicalIF":2.3,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10617666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Kainate receptors GluK1 and GluK2 differentially regulate synapse morphology. 盐酸盐受体GluK1和GluK2调节突触形态的差异。
IF 2.3 4区 医学 Q4 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.1002/syn.22255
Gui-Fang Duan, Xiao-Hui Tang, Min Jia, Dan Wu, Yun Stone Shi

The regulation of dendritic spine morphology is a critical aspect of neuronal network refinement during development and modulation of neurotransmission. Previous studies revealed that glutamatergic transmission plays a central role in synapse development. AMPA receptors and NMDA receptors regulate spine morphology in an activity dependent manner. However, whether and how Kainate receptors (KARs) regulate synapse development remains poorly understood. In this study, we found that GluK1 and GluK2 may play distinct roles in synapse development. In primary cultured hippocampal neurons, we found overexpression of the calcium-permeable GluK2(Q) receptor variant increased spine length and spine head area compared to overexpression of the calcium-impermeable GluK2(R) variant or EGFP transfected, control neurons, indicating that Q/R editing may play a role in GluK2 regulation of synapse development. Intriguingly, neurons transfected with GluK1(Q) showed decreased spine length and spine head area, while the density of dendritic spines was increased, suggesting that GluK1(Q) and GluK2(Q) have different effects on synaptic development. Swapping the critical domains between GluK2 and GluK1 demonstrated the N-terminal domain (NTD) is responsible for the different effects of GluK1 and GluK2. In conclusion, Kainate receptors GluK1 and GluK2 have distinct roles in regulating spine morphology and development, a process likely relying on the NTD.

树突棘形态的调控是发育过程中神经元网络细化和神经传递调节的重要方面。先前的研究表明,谷氨酸传递在突触发育中起着核心作用。AMPA受体和NMDA受体以活动依赖的方式调节脊柱形态。然而,Kainate受体(KARs)是否以及如何调节突触发育仍然知之甚少。在这项研究中,我们发现GluK1和GluK2可能在突触发育中发挥不同的作用。在原代培养的海马神经元中,我们发现钙渗透性GluK2(Q)受体变体的过表达比钙不渗透性GluK2(R)变体的过表达或EGFP转染的对照神经元增加了脊柱长度和脊柱头部面积,这表明Q/R编辑可能在GluK2调节突触发育中发挥作用。有趣的是,转染GluK1(Q)的神经元脊柱长度和脊柱头面积减少,而树突棘密度增加,这表明GluK1(Q)和GluK2(Q)对突触发育的影响不同。在GluK2和GluK1之间交换关键结构域证明了n端结构域(NTD)是GluK1和GluK2不同作用的原因。综上所述,Kainate受体GluK1和GluK2在调节脊柱形态和发育中具有不同的作用,这一过程可能依赖于NTD。
{"title":"Kainate receptors GluK1 and GluK2 differentially regulate synapse morphology.","authors":"Gui-Fang Duan,&nbsp;Xiao-Hui Tang,&nbsp;Min Jia,&nbsp;Dan Wu,&nbsp;Yun Stone Shi","doi":"10.1002/syn.22255","DOIUrl":"https://doi.org/10.1002/syn.22255","url":null,"abstract":"<p><p>The regulation of dendritic spine morphology is a critical aspect of neuronal network refinement during development and modulation of neurotransmission. Previous studies revealed that glutamatergic transmission plays a central role in synapse development. AMPA receptors and NMDA receptors regulate spine morphology in an activity dependent manner. However, whether and how Kainate receptors (KARs) regulate synapse development remains poorly understood. In this study, we found that GluK1 and GluK2 may play distinct roles in synapse development. In primary cultured hippocampal neurons, we found overexpression of the calcium-permeable GluK2(Q) receptor variant increased spine length and spine head area compared to overexpression of the calcium-impermeable GluK2(R) variant or EGFP transfected, control neurons, indicating that Q/R editing may play a role in GluK2 regulation of synapse development. Intriguingly, neurons transfected with GluK1(Q) showed decreased spine length and spine head area, while the density of dendritic spines was increased, suggesting that GluK1(Q) and GluK2(Q) have different effects on synaptic development. Swapping the critical domains between GluK2 and GluK1 demonstrated the N-terminal domain (NTD) is responsible for the different effects of GluK1 and GluK2. In conclusion, Kainate receptors GluK1 and GluK2 have distinct roles in regulating spine morphology and development, a process likely relying on the NTD.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"77 1","pages":"e22255"},"PeriodicalIF":2.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10625227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Developmental light deprivation transiently reduces the expression of vGluT2 and GluN2B in the rat ventral suprachiasmatic nucleus. 发育性光剥夺可瞬间降低大鼠腹侧视交叉上核vGluT2和GluN2B的表达。
IF 2.3 4区 医学 Q4 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.1002/syn.22250
Miriam E Reyes-Méndez, J Manuel Herrera-Zamora, Fernando Osuna-Lopez, Irving S Aguilar-Martínez, José L Góngora-Alfaro, Ricardo A Navarro-Polanco, Enrique Sánchez-Pastor, Eloy G Moreno-Galindo, Javier Alamilla

The suprachiasmatic nucleus (SCN) is the most important circadian clock in mammals. The SCN synchronizes to environmental light via the retinohypothalamic tract (RHT), which is an axon cluster derived from melanopsin-expressing intrinsic photosensitive retinal ganglion cells. Investigations on the development of the nonimage-forming pathway and the RHT are scarce. Previous studies imply that light stimulation during postnatal development is not needed to make the RHT functional at adult stages. Here, we examined the effects of light deprivation (i.e., constant darkness (DD) rearing) during postnatal development on the expression in the ventral SCN of two crucial proteins for the synchronization of circadian rhythms to light: the presynaptic vesicular glutamate transporter type 2 (vGluT2) and the GluN2B subunit of the postsynaptic NMDA receptor. We found that animals submitted to DD conditions exhibited a transitory reduction in the expression of vGluT2 (at P12-19) and of GluN2B (at P7-9) that was compensated at older stages. These findings support the hypothesis that visual stimulation during early ages is not decisive for normal development of the RHT-SCN pathway.

视交叉上核(SCN)是哺乳动物最重要的生物钟。SCN通过视网膜下丘脑束(retinohypothalamic tract, RHT)与环境光同步,RHT是由表达黑视素的内在光敏视网膜神经节细胞衍生的轴突簇。关于非成像通路和RHT发展的研究很少。先前的研究表明,在出生后的发育过程中,光刺激并不需要使RHT在成年阶段发挥作用。在这里,我们研究了出生后发育期间的光照剥夺(即持续黑暗(DD)饲养)对腹侧SCN中两种昼夜节律与光照同步的关键蛋白表达的影响:突触前泡状谷氨酸转运蛋白2 (vGluT2)和突触后NMDA受体的GluN2B亚基。我们发现,在DD条件下的动物表现出vGluT2 (P12-19)和GluN2B (P7-9)表达的短暂减少,这种减少在老年阶段得到补偿。这些发现支持了早期视觉刺激对RHT-SCN通路的正常发育不是决定性的假设。
{"title":"Developmental light deprivation transiently reduces the expression of vGluT2 and GluN2B in the rat ventral suprachiasmatic nucleus.","authors":"Miriam E Reyes-Méndez,&nbsp;J Manuel Herrera-Zamora,&nbsp;Fernando Osuna-Lopez,&nbsp;Irving S Aguilar-Martínez,&nbsp;José L Góngora-Alfaro,&nbsp;Ricardo A Navarro-Polanco,&nbsp;Enrique Sánchez-Pastor,&nbsp;Eloy G Moreno-Galindo,&nbsp;Javier Alamilla","doi":"10.1002/syn.22250","DOIUrl":"https://doi.org/10.1002/syn.22250","url":null,"abstract":"<p><p>The suprachiasmatic nucleus (SCN) is the most important circadian clock in mammals. The SCN synchronizes to environmental light via the retinohypothalamic tract (RHT), which is an axon cluster derived from melanopsin-expressing intrinsic photosensitive retinal ganglion cells. Investigations on the development of the nonimage-forming pathway and the RHT are scarce. Previous studies imply that light stimulation during postnatal development is not needed to make the RHT functional at adult stages. Here, we examined the effects of light deprivation (i.e., constant darkness (DD) rearing) during postnatal development on the expression in the ventral SCN of two crucial proteins for the synchronization of circadian rhythms to light: the presynaptic vesicular glutamate transporter type 2 (vGluT2) and the GluN2B subunit of the postsynaptic NMDA receptor. We found that animals submitted to DD conditions exhibited a transitory reduction in the expression of vGluT2 (at P12-19) and of GluN2B (at P7-9) that was compensated at older stages. These findings support the hypothesis that visual stimulation during early ages is not decisive for normal development of the RHT-SCN pathway.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"77 1","pages":"e22250"},"PeriodicalIF":2.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10626500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dopamine receptor and dopamine transporter in obesity: A meta-analysis. 肥胖中的多巴胺受体和多巴胺转运体:一项荟萃分析。
IF 2.3 4区 医学 Q4 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.1002/syn.22254
Kyoungjune Pak, Ju Won Seok, Myung Jun Lee, Keunyoung Kim, In Joo Kim

The brain plays a major role in controlling the desire to eat. This meta-analysis aimed to assess the association between dopamine receptor (DR) availability and dopamine transporter (DAT) availability, measured using positron emission tomography, and obesity. We performed a systematic search of MEDLINE (from inception to November 2020) and EMBASE (from inception to November 2020) for articles published in English using the keywords "dopamine receptor," "dopamine transporter," "obesity," and "neuroimaging." Body mass index (BMI) and the corresponding binding potential (BPND ) were extracted from figures in each study using Engauge Digitizer, version 12.1, and plotted for radiopharmaceuticals and regions of interest (ROIs). Five studies involving 119 subjects with DR and five studies including 421 subjects with DAT were eligible for inclusion in this study. In overweight or obese subjects with BMI of 25 kg/m2 or higher, DR availability from 11 C-Racloprie was negatively associated with BMI. However, DR availability from 11 C-PHNO was positively associated with BMI. DAT ratio was calculated after dividing DAT availabilities of overweight/obese BMI with mean DAT availabilities of normal BMI. The association between DAT ratio and BMI was not significant regardless of radiopharmaceuticals. In conclusion, dopamine plays a main role in the reward system with regard to obesity. Overweight and obese subjects had negative association between DR availability from 11 C-Raclopride and BMI. However, the association of DR availability with BMI was dependent on radiopharmaceuticals. DAT availability did not show the significant relationship with BMI regardless of radiopharmaceuticals.

大脑在控制食欲方面起着重要作用。本荟萃分析旨在评估多巴胺受体(DR)可用性和多巴胺转运体(DAT)可用性(使用正电子发射断层扫描测量)与肥胖之间的关系。我们系统地检索了MEDLINE(从创建到2020年11月)和EMBASE(从创建到2020年11月)中使用关键词“多巴胺受体”、“多巴胺转运体”、“肥胖”和“神经影像学”发表的英文文章。身体质量指数(BMI)和相应的结合电位(BPND)使用engage数字化仪12.1版从每个研究的数据中提取,并绘制放射性药物和感兴趣区域(roi)。5项研究纳入了119名DR患者,5项研究纳入了421名DAT患者。在体重指数为25 kg/m2或更高的超重或肥胖受试者中,11 C-Racloprie的DR可用性与体重指数呈负相关。然而,11 C-PHNO的DR可用性与BMI呈正相关。将超重/肥胖BMI的数据有效度与正常BMI的平均数据有效度相除后计算出数据有效度比值。无论使用何种放射性药物,DAT比率与BMI之间的相关性均不显著。综上所述,多巴胺在肥胖的奖励系统中起着主要作用。超重和肥胖受试者在11 C-Raclopride的DR可用性和BMI之间呈负相关。然而,DR可用性与BMI的关联依赖于放射性药物。无论使用何种放射性药物,数据可得性与BMI均无显著关系。
{"title":"Dopamine receptor and dopamine transporter in obesity: A meta-analysis.","authors":"Kyoungjune Pak,&nbsp;Ju Won Seok,&nbsp;Myung Jun Lee,&nbsp;Keunyoung Kim,&nbsp;In Joo Kim","doi":"10.1002/syn.22254","DOIUrl":"https://doi.org/10.1002/syn.22254","url":null,"abstract":"<p><p>The brain plays a major role in controlling the desire to eat. This meta-analysis aimed to assess the association between dopamine receptor (DR) availability and dopamine transporter (DAT) availability, measured using positron emission tomography, and obesity. We performed a systematic search of MEDLINE (from inception to November 2020) and EMBASE (from inception to November 2020) for articles published in English using the keywords \"dopamine receptor,\" \"dopamine transporter,\" \"obesity,\" and \"neuroimaging.\" Body mass index (BMI) and the corresponding binding potential (BP<sub>ND</sub> ) were extracted from figures in each study using Engauge Digitizer, version 12.1, and plotted for radiopharmaceuticals and regions of interest (ROIs). Five studies involving 119 subjects with DR and five studies including 421 subjects with DAT were eligible for inclusion in this study. In overweight or obese subjects with BMI of 25 kg/m<sup>2</sup> or higher, DR availability from <sup>11</sup> C-Racloprie was negatively associated with BMI. However, DR availability from <sup>11</sup> C-PHNO was positively associated with BMI. DAT ratio was calculated after dividing DAT availabilities of overweight/obese BMI with mean DAT availabilities of normal BMI. The association between DAT ratio and BMI was not significant regardless of radiopharmaceuticals. In conclusion, dopamine plays a main role in the reward system with regard to obesity. Overweight and obese subjects had negative association between DR availability from <sup>11</sup> C-Raclopride and BMI. However, the association of DR availability with BMI was dependent on radiopharmaceuticals. DAT availability did not show the significant relationship with BMI regardless of radiopharmaceuticals.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"77 1","pages":"e22254"},"PeriodicalIF":2.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9192895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effects of treadmill exercise and chronic stress on anxiety-like behavior, neuronal activity, and oxidative stress in basolateral amygdala in morphine-treated rats. 跑步机运动和慢性应激对吗啡治疗大鼠杏仁核基底外侧焦虑样行为、神经元活动和氧化应激的影响。
IF 2.3 4区 医学 Q4 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.1002/syn.22256
Somayeh Shahidani, Zahra Jokar, Hojjatallah Alaei, Parham Reisi

The basolateral amygdala (BLA), which is sensitive to stress, is necessary for reward-seeking behavior and addiction. Regular exercise can produce various positive effects by affecting the BLA. Therefore, we aimed to investigate the effects of chronic stress and treadmill running (TR) on anxiety-like behavior, neuronal activity, lipid peroxidation (measured by malondialdehyde (MDA) levels, a marker for oxidative stress), and total thiol in BLA, in morphine-treated rats. Male Wistar rats were restricted in restraint stress and/or ran on the treadmill and treated with morphine (5 mg/kg) for 21 days. Anxiety-like behavior was evaluated using an elevated plus maze (EPM) and open field tests (OFTs), on day 22. On day 23, neuronal activity in BLA was assessed via single-unit recording. Finally, MDA and total thiol were assessed in BLA. Our results showed that chronic administration of morphine (5 mg/kg) did not affect anxiety-like behavior. However, the morphine-treated rats, subjected to chronic stress and exercise, showed fewer anxiety-like behaviors. Morphine increased BLA's MDA levels but it was prevented by TR. Glutamatergic and GABAergic basal neuronal activities were low in morphine-treated rats but after acute morphine application, there was a significant decrease in GABAergic neuronal activities in the morphine-exercise-stress (Mor-Exe-St) group. The results of this study showed that in morphine-treated rats, stress and exercise or their combination could have either co-directional or opposite effects to the chronic effects of morphine. These results indicate the existence of common pathways similar to endogenous opioids.

基底外侧杏仁核(BLA)对压力敏感,是寻求奖励行为和成瘾所必需的。有规律的运动可以通过影响BLA产生各种积极的影响。因此,我们旨在研究慢性应激和跑步机(TR)对吗啡治疗大鼠的焦虑样行为、神经元活动、脂质过氧化(通过丙二醛(MDA)水平测量,这是氧化应激的一种标志物)和BLA中总硫醇的影响。雄性Wistar大鼠被限制在约束应激和/或在跑步机上跑步,并给予吗啡(5 mg/kg)治疗21天。在第22天,使用升高+迷宫(EPM)和开放现场测试(OFTs)评估焦虑样行为。在第23天,通过单单元记录评估BLA的神经元活动。最后测定丙二醛和总硫醇含量。我们的研究结果显示,长期给药吗啡(5mg /kg)对焦虑样行为没有影响。然而,接受吗啡治疗的大鼠,长期承受压力和锻炼,表现出较少的焦虑样行为。吗啡增加了BLA的MDA水平,但被TR阻止了。吗啡治疗大鼠的谷氨酸能和gaba能基础神经元活性较低,但吗啡-运动-应激(more -exe -st)组的gaba能神经元活性显著降低。本研究结果表明,在吗啡治疗的大鼠中,压力和运动或它们的组合可能对吗啡的慢性作用产生同向或相反的影响。这些结果表明存在类似于内源性阿片样物质的共同途径。
{"title":"Effects of treadmill exercise and chronic stress on anxiety-like behavior, neuronal activity, and oxidative stress in basolateral amygdala in morphine-treated rats.","authors":"Somayeh Shahidani,&nbsp;Zahra Jokar,&nbsp;Hojjatallah Alaei,&nbsp;Parham Reisi","doi":"10.1002/syn.22256","DOIUrl":"https://doi.org/10.1002/syn.22256","url":null,"abstract":"<p><p>The basolateral amygdala (BLA), which is sensitive to stress, is necessary for reward-seeking behavior and addiction. Regular exercise can produce various positive effects by affecting the BLA. Therefore, we aimed to investigate the effects of chronic stress and treadmill running (TR) on anxiety-like behavior, neuronal activity, lipid peroxidation (measured by malondialdehyde (MDA) levels, a marker for oxidative stress), and total thiol in BLA, in morphine-treated rats. Male Wistar rats were restricted in restraint stress and/or ran on the treadmill and treated with morphine (5 mg/kg) for 21 days. Anxiety-like behavior was evaluated using an elevated plus maze (EPM) and open field tests (OFTs), on day 22. On day 23, neuronal activity in BLA was assessed via single-unit recording. Finally, MDA and total thiol were assessed in BLA. Our results showed that chronic administration of morphine (5 mg/kg) did not affect anxiety-like behavior. However, the morphine-treated rats, subjected to chronic stress and exercise, showed fewer anxiety-like behaviors. Morphine increased BLA's MDA levels but it was prevented by TR. Glutamatergic and GABAergic basal neuronal activities were low in morphine-treated rats but after acute morphine application, there was a significant decrease in GABAergic neuronal activities in the morphine-exercise-stress (Mor-Exe-St) group. The results of this study showed that in morphine-treated rats, stress and exercise or their combination could have either co-directional or opposite effects to the chronic effects of morphine. These results indicate the existence of common pathways similar to endogenous opioids.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"77 1","pages":"e22256"},"PeriodicalIF":2.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9192917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Individual differences in the positive outcome from adolescent ketamine treatment in a female mouse model of anorexia nervosa involve drebrin A at excitatory synapses of the medial prefrontal cortex. 在神经性厌食症雌性小鼠模型中,青春期氯胺酮治疗的积极结果的个体差异涉及内侧前额叶皮层兴奋性突触的 drebrin A。
IF 2.3 4区 医学 Q4 NEUROSCIENCES Pub Date : 2023-01-01 Epub Date: 2022-10-09 DOI: 10.1002/syn.22253
Rose Temizer, Yi-Wen Chen, Chiye Aoki

Anorexia nervosa (AN) is a mental illness with the highest rates of mortality and relapse, and no approved pharmacological treatment. Using an animal model of AN, called activity-based anorexia (ABA), we showed earlier that a single intraperitoneal injection of ketamine at a dose of 30 mg/kg (30mgKET), but not 3 mg/kg (3mgKET), has a long-lasting effect upon adolescent females of ameliorating anorexia-like symptoms through the following changes: enhanced food consumption and body weight; reduced running and anxiety-like behavior. However, there were also individual differences in the drug's efficacy. We hypothesized that individual differences in ketamine's ameliorative effects involve drebrin A, an F-actin-binding protein known to be required for the activity-dependent trafficking of NMDA receptors (NMDARs). We tested this hypothesis by electron microscopic quantifications of drebrin A immunoreactivity at excitatory synapses of pyramidal neurons (PN) and GABAergic interneurons (GABA-IN) in deep layer 1 of prefrontal cortex (PFC) of these mice. Results reveal that (1) the areal density of excitatory synapses on GABA-IN is greater for the 30mgKET group than the 3mgKET group; (2) the proportion of drebrin A+ excitatory synapses is greater for both PN and GABA-IN of 30mgKET than 3mgKET group. Correlation analyses with behavioral measurements revealed that (3) 30mgKET's protection is associated with reduced levels of drebrin A in the cytoplasm of GABA-IN and higher levels at extrasynaptic membranous sites of PN and GABA-IN; (5) altogether pointing to 30mgKET-induced homeostatic plasticity that engages drebrin A at excitatory synapses of both PN and GABA-IN.

神经性厌食症(AN)是一种死亡率和复发率最高的精神疾病,目前还没有获得批准的药物治疗方法。早些时候,我们利用一种被称为活动性厌食症(ABA)的厌食症动物模型研究发现,一次性腹腔注射氯胺酮,剂量为30毫克/千克(30mgKET),而非3毫克/千克(3mgKET),对青春期雌性厌食症患者具有持久的改善厌食症状的作用,具体表现为:增加食量和体重;减少奔跑和焦虑行为。然而,这种药物的疗效也存在个体差异。我们推测氯胺酮改善症状的个体差异与Drebrin A有关,Drebrin A是一种F-肌动蛋白结合蛋白,已知它是NMDA受体(NMDARs)随活动迁移所必需的。我们通过对小鼠前额叶皮层(PFC)深层 1 的锥体神经元(PN)和 GABA 能中间神经元(GABA-IN)兴奋性突触处的 drebrin A 免疫反应进行电子显微镜定量分析,验证了这一假设。结果显示:(1) 30mgKET 组 GABA-IN 上兴奋性突触的面积密度高于 3mgKET 组;(2) 30mgKET 组 PN 和 GABA-IN 上 drebrin A+ 兴奋性突触的比例高于 3mgKET 组。与行为测量结果的相关性分析表明:(3)30mgKET 的保护作用与 GABA-IN 细胞质中 drebrin A 水平的降低以及 PN 和 GABA-IN 突触外膜位点 drebrin A 水平的升高有关;(5)这一切都表明 30mgKET 诱导的同态可塑性使 PN 和 GABA-IN 的兴奋性突触中的 drebrin A 参与其中。
{"title":"Individual differences in the positive outcome from adolescent ketamine treatment in a female mouse model of anorexia nervosa involve drebrin A at excitatory synapses of the medial prefrontal cortex.","authors":"Rose Temizer, Yi-Wen Chen, Chiye Aoki","doi":"10.1002/syn.22253","DOIUrl":"10.1002/syn.22253","url":null,"abstract":"<p><p>Anorexia nervosa (AN) is a mental illness with the highest rates of mortality and relapse, and no approved pharmacological treatment. Using an animal model of AN, called activity-based anorexia (ABA), we showed earlier that a single intraperitoneal injection of ketamine at a dose of 30 mg/kg (30mgKET), but not 3 mg/kg (3mgKET), has a long-lasting effect upon adolescent females of ameliorating anorexia-like symptoms through the following changes: enhanced food consumption and body weight; reduced running and anxiety-like behavior. However, there were also individual differences in the drug's efficacy. We hypothesized that individual differences in ketamine's ameliorative effects involve drebrin A, an F-actin-binding protein known to be required for the activity-dependent trafficking of NMDA receptors (NMDARs). We tested this hypothesis by electron microscopic quantifications of drebrin A immunoreactivity at excitatory synapses of pyramidal neurons (PN) and GABAergic interneurons (GABA-IN) in deep layer 1 of prefrontal cortex (PFC) of these mice. Results reveal that (1) the areal density of excitatory synapses on GABA-IN is greater for the 30mgKET group than the 3mgKET group; (2) the proportion of drebrin A+ excitatory synapses is greater for both PN and GABA-IN of 30mgKET than 3mgKET group. Correlation analyses with behavioral measurements revealed that (3) 30mgKET's protection is associated with reduced levels of drebrin A in the cytoplasm of GABA-IN and higher levels at extrasynaptic membranous sites of PN and GABA-IN; (5) altogether pointing to 30mgKET-induced homeostatic plasticity that engages drebrin A at excitatory synapses of both PN and GABA-IN.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"77 1","pages":"e22253"},"PeriodicalIF":2.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691557/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10625226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pharmacological characterization and differential expression of NMDA receptor subunits in the chicken vestibular system during development. 鸡前庭系统发育过程中NMDA受体亚基的药理特征及差异表达。
IF 2.3 4区 医学 Q4 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.1002/syn.22252
Ana Ramírez, Eduardo Monjaraz, Elías Manjarrez, Alejandro Moyaho, Jorge Cebada, Amira Flores

Previous studies demonstrated that in vitro preparations of the isolated vestibular system of diverse animal species still exhibit stable resting electrical activity and mechanically evoked synaptic transmission between hair cells and primary afferent endings. However, there are no reports related to their neurodevelopment. Therefore, this research aimed to examine whether NMDA receptors mediate these electrical signals in an isolated preparation of the chicken vestibular system at three developmental stages, E15, E18, and E21. We found that the spontaneous and mechanically evoked discharges from primary afferents of the posterior semicircular canal were modulated by agonists NMDA and glycine, but not by the agonist d-serine applied near the synapses. Moreover, the individually applied by bath perfusion of three NMDA receptor antagonists (MK-801, ifenprodil, and 2-naphthoic acid) or high Mg2+ decreased the resting discharge rate, the NMDA response, and the discharge rate of mechanically evoked activity from these primary afferents. Furthermore, we found that the vestibular ganglion shows a stage-dependent increase in the expression of NMDA receptor subunits GluN1, GluN2 (A-C), and GluN3 (A-B), being greater at E21, except for GluN2D, which was inversely related to the developmental stage. However, in the crista ampullaris, the expression pattern remained constant throughout development. This could suggest the possible existence of presynaptic NMDA receptors. Our results highlight that although the NMDA receptors are functionally active at the early embryonic stages of the vestibular system, NMDA and glycine reach their mature functionality to increase NMDA responses close to hatching (E21).

先前的研究表明,不同动物前庭系统的离体制备仍然表现出稳定的静息电活动和毛细胞与初级传入末梢之间的机械诱发突触传递。然而,没有关于他们神经发育的报道。因此,本研究旨在研究NMDA受体是否介导了处于E15、E18和E21三个发育阶段的鸡前庭系统的电信号。我们发现后半规管初级传入神经的自发和机械诱发放电可被激动剂NMDA和甘氨酸调节,但不受突触附近的激动剂d-丝氨酸的调节。此外,三种NMDA受体拮抗剂(MK-801、伊芬地尔和2-萘酸)或高浓度Mg2+单独灌注可降低静息放电率、NMDA反应和这些初级传入的机械诱发活性放电率。此外,我们发现前庭神经节中NMDA受体亚基GluN1、GluN2 (a - c)和GluN3 (a - b)的表达呈阶段依赖性增加,除GluN2D与发育阶段呈负相关外,在E21时表达量增加。然而,壶腹嵴的表达模式在整个发育过程中保持不变。这表明突触前可能存在NMDA受体。我们的研究结果强调,尽管NMDA受体在前庭系统的早期胚胎阶段具有功能活性,但NMDA和甘氨酸在接近孵化时达到其成熟功能以增加NMDA应答(E21)。
{"title":"Pharmacological characterization and differential expression of NMDA receptor subunits in the chicken vestibular system during development.","authors":"Ana Ramírez,&nbsp;Eduardo Monjaraz,&nbsp;Elías Manjarrez,&nbsp;Alejandro Moyaho,&nbsp;Jorge Cebada,&nbsp;Amira Flores","doi":"10.1002/syn.22252","DOIUrl":"https://doi.org/10.1002/syn.22252","url":null,"abstract":"<p><p>Previous studies demonstrated that in vitro preparations of the isolated vestibular system of diverse animal species still exhibit stable resting electrical activity and mechanically evoked synaptic transmission between hair cells and primary afferent endings. However, there are no reports related to their neurodevelopment. Therefore, this research aimed to examine whether NMDA receptors mediate these electrical signals in an isolated preparation of the chicken vestibular system at three developmental stages, E15, E18, and E21. We found that the spontaneous and mechanically evoked discharges from primary afferents of the posterior semicircular canal were modulated by agonists NMDA and glycine, but not by the agonist d-serine applied near the synapses. Moreover, the individually applied by bath perfusion of three NMDA receptor antagonists (MK-801, ifenprodil, and 2-naphthoic acid) or high Mg<sup>2+</sup> decreased the resting discharge rate, the NMDA response, and the discharge rate of mechanically evoked activity from these primary afferents. Furthermore, we found that the vestibular ganglion shows a stage-dependent increase in the expression of NMDA receptor subunits GluN1, GluN2 (A-C), and GluN3 (A-B), being greater at E21, except for GluN2D, which was inversely related to the developmental stage. However, in the crista ampullaris, the expression pattern remained constant throughout development. This could suggest the possible existence of presynaptic NMDA receptors. Our results highlight that although the NMDA receptors are functionally active at the early embryonic stages of the vestibular system, NMDA and glycine reach their mature functionality to increase NMDA responses close to hatching (E21).</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"77 1","pages":"e22252"},"PeriodicalIF":2.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9192894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Synapse
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1