Brucellosis is a zoonotic infection transmitted to humans from infected animals and is one of the widely spread zoonoses. Recently, six species were recognized within the genus Brucella wherein B. melitensis, B. suis and B. abortus are considered virulent for humans. While these species differ phenotypically by their pattern of metabolic activities, there has been an imperative need to understand pathogenesis of Brucella species. It has been foreseen that creating a human vaccine for Brucellosis would entail decreased dose of antibiotics. However the emerging role of Brucella pathogenesis still centers on isolation of the organism and various diagnostic tests thereby leading to varying strategies of treatment cycle. In view of disease heterogeneity, we focus systems and synthetic biology challenges that might improve our understanding the Brucella pathogenesis.
{"title":"On Brucella pathogenesis: looking for the unified challenge in systems and synthetic biology.","authors":"Srikanth Chiliveru, Mahesh Appari, Prashanth Suravajhala","doi":"10.1007/s11693-014-9158-2","DOIUrl":"https://doi.org/10.1007/s11693-014-9158-2","url":null,"abstract":"<p><p>Brucellosis is a zoonotic infection transmitted to humans from infected animals and is one of the widely spread zoonoses. Recently, six species were recognized within the genus Brucella wherein B. melitensis, B. suis and B. abortus are considered virulent for humans. While these species differ phenotypically by their pattern of metabolic activities, there has been an imperative need to understand pathogenesis of Brucella species. It has been foreseen that creating a human vaccine for Brucellosis would entail decreased dose of antibiotics. However the emerging role of Brucella pathogenesis still centers on isolation of the organism and various diagnostic tests thereby leading to varying strategies of treatment cycle. In view of disease heterogeneity, we focus systems and synthetic biology challenges that might improve our understanding the Brucella pathogenesis. </p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":"9 1-2","pages":"73-5"},"PeriodicalIF":0.0,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11693-014-9158-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33176894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-06-01Epub Date: 2015-02-21DOI: 10.1007/s11693-014-9159-1
Remya Krishnan, Vinod Kumar, Vivek Ananth, Shailja Singh, Achuthsankar S Nair, Pawan K Dhar
MicroRNAs are a ~22 nucleotide small non-coding RNAs found in animals, plants and viruses. They regulate key cellular processes by enhancing, degrading or silencing protein coding targets. Currently most of the data on miRNA is available from Drosophila . Given their important post-transcriptional role in several organisms, there is a need to understand the miRNA mediated processes in normal and abnormal conditions. Here we report four novel microRNAs ast - mir - 2502, ast - mir - 2559, ast - mir - 3868 and ast - mir - 9891 in Anopheles stephensi identified from a set of 3,052 transcriptome sequences, showing average minimum free energy of -31.8 kcal/mol of duplex formation with mRNA indicating their functional relevance. Phylogenetic study shows conservation of sequence signatures within the Class Insecta. Furthermore, 26 potential targets of these four miRNAs have been predicted that play an important role in the mosquito life-cycle. This work leads to novel leads and experimental possibilities for improved understanding of gene regulatory processes in mosquito.
MicroRNAs是一种约22个核苷酸的小非编码rna,存在于动物、植物和病毒中。它们通过增强、降解或沉默蛋白质编码靶点来调节关键的细胞过程。目前,大多数关于miRNA的数据都来自果蝇。鉴于miRNA在多种生物体中重要的转录后作用,有必要了解正常和异常条件下miRNA介导的过程。本文报道了从斯氏按蚊的3052个转录组序列中鉴定出的四个新的microrna ast - mir - 2502、ast - mir - 2559、ast - mir - 3868和ast - mir - 9891,显示出与mRNA双工形成的平均最小自由能为-31.8 kcal/mol,表明它们的功能相关性。系统发育研究表明昆虫纲的序列特征是守恒的。此外,我们还预测了这4种mirna的26个潜在靶点,它们在蚊子的生命周期中发挥重要作用。这项工作为提高对蚊子基因调控过程的理解提供了新的线索和实验可能性。
{"title":"Computational identification of novel microRNAs and their targets in the malarial vector, Anopheles stephensi.","authors":"Remya Krishnan, Vinod Kumar, Vivek Ananth, Shailja Singh, Achuthsankar S Nair, Pawan K Dhar","doi":"10.1007/s11693-014-9159-1","DOIUrl":"https://doi.org/10.1007/s11693-014-9159-1","url":null,"abstract":"<p><p>MicroRNAs are a ~22 nucleotide small non-coding RNAs found in animals, plants and viruses. They regulate key cellular processes by enhancing, degrading or silencing protein coding targets. Currently most of the data on miRNA is available from Drosophila . Given their important post-transcriptional role in several organisms, there is a need to understand the miRNA mediated processes in normal and abnormal conditions. Here we report four novel microRNAs ast - mir - 2502, ast - mir - 2559, ast - mir - 3868 and ast - mir - 9891 in Anopheles stephensi identified from a set of 3,052 transcriptome sequences, showing average minimum free energy of -31.8 kcal/mol of duplex formation with mRNA indicating their functional relevance. Phylogenetic study shows conservation of sequence signatures within the Class Insecta. Furthermore, 26 potential targets of these four miRNAs have been predicted that play an important role in the mosquito life-cycle. This work leads to novel leads and experimental possibilities for improved understanding of gene regulatory processes in mosquito. </p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":"9 1-2","pages":"11-7"},"PeriodicalIF":0.0,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11693-014-9159-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33304192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-04-19DOI: 10.1007/s11693-015-9170-1
Santanu Hati, S. Bhattacharya, S. Sen
{"title":"Innovative techniques to discover novel antimalarials","authors":"Santanu Hati, S. Bhattacharya, S. Sen","doi":"10.1007/s11693-015-9170-1","DOIUrl":"https://doi.org/10.1007/s11693-015-9170-1","url":null,"abstract":"","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":"48 1","pages":"39-42"},"PeriodicalIF":0.0,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80414659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-04-09DOI: 10.1007/s11693-015-9168-8
Shalini Agarwal, Shalini Agarwal, Vijeta Sharma, S. Phulera, M. Abdin, R. Ayana, Shailja Singh
{"title":"Structural insights into a key carotenogenesis related enzyme phytoene synthase of P. falciparum: a novel drug target for malaria","authors":"Shalini Agarwal, Shalini Agarwal, Vijeta Sharma, S. Phulera, M. Abdin, R. Ayana, Shailja Singh","doi":"10.1007/s11693-015-9168-8","DOIUrl":"https://doi.org/10.1007/s11693-015-9168-8","url":null,"abstract":"","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":"33 1","pages":"27-37"},"PeriodicalIF":0.0,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85619898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-04-08DOI: 10.1007/s11693-015-9166-x
S. Garg, Vijeta Sharma, Dandugudumula Ramu, Shailja Singh
{"title":"In silico analysis of calcium binding pocket of perforin like protein 1: insights into the regulation of pore formation","authors":"S. Garg, Vijeta Sharma, Dandugudumula Ramu, Shailja Singh","doi":"10.1007/s11693-015-9166-x","DOIUrl":"https://doi.org/10.1007/s11693-015-9166-x","url":null,"abstract":"","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":"12 1","pages":"17-21"},"PeriodicalIF":0.0,"publicationDate":"2015-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82089901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-12-01Epub Date: 2014-08-01DOI: 10.1007/s11693-014-9152-8
R Selvakumar, M Rashith Muhammad, G Poornima Devi
A non-deterministic finite automaton is designed to observe the cholesterol metabolism with the states of acceptance and rejection. The acceptance state of the automaton depicts the normal level of metabolism and production of good cholesterol as an end product. The rejection state of this machine shows the inhibition of enzymatic activity in cholesterol synthesis and removal of free fatty acids. The deficiency in human cholesterol metabolism pathway results in abnormal accumulation of cholesterol in plasma, arterial tissues leading to diseases such as hypercholesterolemia, atherosclerosis respectively and formation of gallstones. The designed machine can be used to monitor the cholesterol metabolism at molecular level through regulation of enzymes involved in the biosynthesis and metabolism of cholesterol for the treatment of diseases incident due to the respective metabolic disorder. In addition, an algorithm for this machine has been developed to compare the programmed string with the given string. This study demonstrates the construction of a machine that is used for the development of molecular targeted therapy for the disorders in cholesterol metabolism.
{"title":"Computational model for monitoring cholesterol metabolism.","authors":"R Selvakumar, M Rashith Muhammad, G Poornima Devi","doi":"10.1007/s11693-014-9152-8","DOIUrl":"https://doi.org/10.1007/s11693-014-9152-8","url":null,"abstract":"<p><p>A non-deterministic finite automaton is designed to observe the cholesterol metabolism with the states of acceptance and rejection. The acceptance state of the automaton depicts the normal level of metabolism and production of good cholesterol as an end product. The rejection state of this machine shows the inhibition of enzymatic activity in cholesterol synthesis and removal of free fatty acids. The deficiency in human cholesterol metabolism pathway results in abnormal accumulation of cholesterol in plasma, arterial tissues leading to diseases such as hypercholesterolemia, atherosclerosis respectively and formation of gallstones. The designed machine can be used to monitor the cholesterol metabolism at molecular level through regulation of enzymes involved in the biosynthesis and metabolism of cholesterol for the treatment of diseases incident due to the respective metabolic disorder. In addition, an algorithm for this machine has been developed to compare the programmed string with the given string. This study demonstrates the construction of a machine that is used for the development of molecular targeted therapy for the disorders in cholesterol metabolism. </p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":"8 4","pages":"307-11"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11693-014-9152-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34094482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present a computational toolkit consisting of five utility tools, for performing basic operations on a protein structure file in PDB format. The toolkit consists of five different programs which can be integrated as part of a pipeline for computational protein structure characterization or as a standalone analysis package. The programs include tools for chirality check for amino acids (ProChiral), contact map generation (CoMa), data redundancy (DaRe), hydrogen bond potential energy (HyPE) and electrostatic interaction energy (EsInE). All programs in the toolkit can be accessed and downloaded through the following link: http://www.iitg.ac.in/bpetoolkit/.
{"title":"bPE toolkit: toolkit for computational protein engineering.","authors":"Gaurav Jerath, Prakash Kishore Hazam, Vibin Ramakrishnan","doi":"10.1007/s11693-014-9156-4","DOIUrl":"https://doi.org/10.1007/s11693-014-9156-4","url":null,"abstract":"<p><p>We present a computational toolkit consisting of five utility tools, for performing basic operations on a protein structure file in PDB format. The toolkit consists of five different programs which can be integrated as part of a pipeline for computational protein structure characterization or as a standalone analysis package. The programs include tools for chirality check for amino acids (ProChiral), contact map generation (CoMa), data redundancy (DaRe), hydrogen bond potential energy (HyPE) and electrostatic interaction energy (EsInE). All programs in the toolkit can be accessed and downloaded through the following link: http://www.iitg.ac.in/bpetoolkit/. </p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":"8 4","pages":"337-41"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11693-014-9156-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34094485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}