Pub Date : 2013-09-01Epub Date: 2013-07-19DOI: 10.1007/s11693-013-9117-3
Jenny Rooke
Synthetic biology has the potential to contribute breakthrough innovations to the pursuit of new global health solutions. Wishing to harness the emerging tools of synthetic biology for the goals of global health, in 2011 the Bill & Melinda Gates Foundation put out a call for grant applications to "Apply Synthetic Biology to Global Health Challenges" under its "Grand Challenges Explorations" program. A highly diverse pool of over 700 applications was received. Proposed applications of synthetic biology to global health needs included interventions such as therapeutics, vaccines, and diagnostics, as well as strategies for biomanufacturing, and the design of tools and platforms that could further global health research.
{"title":"Synthetic biology as a source of global health innovation.","authors":"Jenny Rooke","doi":"10.1007/s11693-013-9117-3","DOIUrl":"https://doi.org/10.1007/s11693-013-9117-3","url":null,"abstract":"<p><p>Synthetic biology has the potential to contribute breakthrough innovations to the pursuit of new global health solutions. Wishing to harness the emerging tools of synthetic biology for the goals of global health, in 2011 the Bill & Melinda Gates Foundation put out a call for grant applications to \"Apply Synthetic Biology to Global Health Challenges\" under its \"Grand Challenges Explorations\" program. A highly diverse pool of over 700 applications was received. Proposed applications of synthetic biology to global health needs included interventions such as therapeutics, vaccines, and diagnostics, as well as strategies for biomanufacturing, and the design of tools and platforms that could further global health research. </p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11693-013-9117-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31658615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-09-01Epub Date: 2013-08-02DOI: 10.1007/s11693-013-9116-4
Thomas Landrain, Morgan Meyer, Ariel Martin Perez, Remi Sussan
The do-it-yourself biology (DIYbio) community is emerging as a movement that fosters open access to resources permitting modern molecular biology, and synthetic biology among others. It promises in particular to be a source of cheaper and simpler solutions for environmental monitoring, personal diagnostic and the use of biomaterials. The successful growth of a global community of DIYbio practitioners will depend largely on enabling safe access to state-of-the-art molecular biology tools and resources. In this paper we analyze the rise of DIYbio, its community, its material resources and its applications. We look at the current projects developed for the international genetically engineered machine competition in order to get a sense of what amateur biologists can potentially create in their community laboratories over the coming years. We also show why and how the DIYbio community, in the context of a global governance development, is putting in place a safety/ethical framework for guarantying the pursuit of its activity. And finally we argue that the global spread of DIY biology potentially reconfigures and opens up access to biological information and laboratory equipment and that, therefore, it can foster new practices and transversal collaborations between professional scientists and amateurs.
{"title":"Do-it-yourself biology: challenges and promises for an open science and technology movement.","authors":"Thomas Landrain, Morgan Meyer, Ariel Martin Perez, Remi Sussan","doi":"10.1007/s11693-013-9116-4","DOIUrl":"https://doi.org/10.1007/s11693-013-9116-4","url":null,"abstract":"<p><p>The do-it-yourself biology (DIYbio) community is emerging as a movement that fosters open access to resources permitting modern molecular biology, and synthetic biology among others. It promises in particular to be a source of cheaper and simpler solutions for environmental monitoring, personal diagnostic and the use of biomaterials. The successful growth of a global community of DIYbio practitioners will depend largely on enabling safe access to state-of-the-art molecular biology tools and resources. In this paper we analyze the rise of DIYbio, its community, its material resources and its applications. We look at the current projects developed for the international genetically engineered machine competition in order to get a sense of what amateur biologists can potentially create in their community laboratories over the coming years. We also show why and how the DIYbio community, in the context of a global governance development, is putting in place a safety/ethical framework for guarantying the pursuit of its activity. And finally we argue that the global spread of DIY biology potentially reconfigures and opens up access to biological information and laboratory equipment and that, therefore, it can foster new practices and transversal collaborations between professional scientists and amateurs. </p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11693-013-9116-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32036062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-09-01Epub Date: 2013-07-17DOI: 10.1007/s11693-013-9120-8
Conor M W Douglas, Dirk Stemerding
{"title":"Special issue editorial: synthetic biology, global health, and its global governance.","authors":"Conor M W Douglas, Dirk Stemerding","doi":"10.1007/s11693-013-9120-8","DOIUrl":"https://doi.org/10.1007/s11693-013-9120-8","url":null,"abstract":"","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11693-013-9120-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32037159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-09-01Epub Date: 2013-07-17DOI: 10.1007/s11693-013-9115-5
Aidan Hollis
Synthetic biology (SynBio) has tremendous, transformative potential. Like other technologies, it can be used for good or ill. Currently, the structure of the allocation of potential benefits and risks is biased in favor of richer countries. The underlying problem is simple: most risks from SynBio are universal and affect both the rich and the poor with equal force; but benefits from SynBio can be expected to accrue chiefly to the rich. The risk/benefit balance is therefore skewed in a way that may lead to inefficient and unfair decisions. One potential solution is presented in this paper, using the principles that underlie the Health Impact Fund (HIF). The HIF is designed to reward companies based on assessed health impact, no matter where it occurs in the world, so that extending the life of a poor person is as profitable as extending the life of a rich person. This paper considers both the potential benefits and costs of SynBio; examines how the current global pharmaceutical industry is structured; introduces the HIF proposal; and finally explores how the principles underlying the HIF could be used productively with SynBio for global health.
{"title":"Synthetic biology: ensuring the greatest global value.","authors":"Aidan Hollis","doi":"10.1007/s11693-013-9115-5","DOIUrl":"10.1007/s11693-013-9115-5","url":null,"abstract":"<p><p>Synthetic biology (SynBio) has tremendous, transformative potential. Like other technologies, it can be used for good or ill. Currently, the structure of the allocation of potential benefits and risks is biased in favor of richer countries. The underlying problem is simple: most risks from SynBio are universal and affect both the rich and the poor with equal force; but benefits from SynBio can be expected to accrue chiefly to the rich. The risk/benefit balance is therefore skewed in a way that may lead to inefficient and unfair decisions. One potential solution is presented in this paper, using the principles that underlie the Health Impact Fund (HIF). The HIF is designed to reward companies based on assessed health impact, no matter where it occurs in the world, so that extending the life of a poor person is as profitable as extending the life of a rich person. This paper considers both the potential benefits and costs of SynBio; examines how the current global pharmaceutical industry is structured; introduces the HIF proposal; and finally explores how the principles underlying the HIF could be used productively with SynBio for global health. </p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740104/pdf/11693_2013_Article_9115.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32036060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-09-01Epub Date: 2012-08-28DOI: 10.1007/s11693-012-9097-8
Joy Y Zhang
Synthetic biology raises few, if any, social concerns that are distinctively new. Similar to many other convergent technologies, synthetic biology's interface across various scientific communities and interests groups presents an incessant challenge to political and conceptual boundaries. However, the scale and intensity of these interfaces seem to necessitate a reflection over how corresponding governance capacities can be developed. This paper argues that, in addition to existing regulatory approaches, such capacities may be gained through the art of trans-boundary governance, which is not only attentive to the crossing and erosion of particular boundaries but also adept in keeping up with the dynamics among evolving networks of actors.
{"title":"The art of trans-boundary governance: the case of synthetic biology.","authors":"Joy Y Zhang","doi":"10.1007/s11693-012-9097-8","DOIUrl":"https://doi.org/10.1007/s11693-012-9097-8","url":null,"abstract":"<p><p>Synthetic biology raises few, if any, social concerns that are distinctively new. Similar to many other convergent technologies, synthetic biology's interface across various scientific communities and interests groups presents an incessant challenge to political and conceptual boundaries. However, the scale and intensity of these interfaces seem to necessitate a reflection over how corresponding governance capacities can be developed. This paper argues that, in addition to existing regulatory approaches, such capacities may be gained through the art of trans-boundary governance, which is not only attentive to the crossing and erosion of particular boundaries but also adept in keeping up with the dynamics among evolving networks of actors. </p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11693-012-9097-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32036061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-09-01Epub Date: 2013-07-27DOI: 10.1007/s11693-013-9113-7
A Wieke Betten, Anneloes Roelofsen, Jacqueline E W Broerse
The emerging field of synthetic biology has the potential to improve global health. For example, synthetic biology could contribute to efforts at vaccine development in a context in which vaccines and immunization have been identified by the international community as being crucial to international development efforts and, in particular, the millennium development goals. However, past experience with innovations shows that realizing a technology's potential can be difficult and complex. To achieve better societal embedding of synthetic biology and to make sure it reaches its potential, science and technology development should be made more inclusive and interactive. Responsible research and innovation is based on the premise that a broad range of stakeholders with different views, needs and ideas should have a voice in the technological development and deployment process. The interactive learning and action (ILA) approach has been developed as a methodology to bring societal stakeholders into a science and technology development process. This paper proposes an ILA in five phases for an international effort, with national case studies, to develop socially robust applications of synthetic biology for global health, based on the example of vaccine development. The design is based on results of a recently initiated ILA project on synthetic biology; results from other interactive initiatives described in the literature; and examples of possible applications of synthetic biology for global health that are currently being developed.
{"title":"Interactive learning and action: realizing the promise of synthetic biology for global health.","authors":"A Wieke Betten, Anneloes Roelofsen, Jacqueline E W Broerse","doi":"10.1007/s11693-013-9113-7","DOIUrl":"10.1007/s11693-013-9113-7","url":null,"abstract":"<p><p>The emerging field of synthetic biology has the potential to improve global health. For example, synthetic biology could contribute to efforts at vaccine development in a context in which vaccines and immunization have been identified by the international community as being crucial to international development efforts and, in particular, the millennium development goals. However, past experience with innovations shows that realizing a technology's potential can be difficult and complex. To achieve better societal embedding of synthetic biology and to make sure it reaches its potential, science and technology development should be made more inclusive and interactive. Responsible research and innovation is based on the premise that a broad range of stakeholders with different views, needs and ideas should have a voice in the technological development and deployment process. The interactive learning and action (ILA) approach has been developed as a methodology to bring societal stakeholders into a science and technology development process. This paper proposes an ILA in five phases for an international effort, with national case studies, to develop socially robust applications of synthetic biology for global health, based on the example of vaccine development. The design is based on results of a recently initiated ILA project on synthetic biology; results from other interactive initiatives described in the literature; and examples of possible applications of synthetic biology for global health that are currently being developed. </p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11693-013-9113-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32036063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-09-01Epub Date: 2013-07-20DOI: 10.1007/s11693-013-9114-6
Prerna Vohra, Garry W Blakely
The Millennium Declaration committed the 193 member states of the United Nations to end poverty by 2015. Despite the efforts of the UN and World Health Organisation, and the G8 commitment to spend a fixed proportion of gross national income on overseas aid, more than 2.6 billion people still lack access to proper sanitation. The absence of effective public health strategies in developing countries results in significant health burdens following gastrointestinal infections. Diarrhoea associated with infections resulting from oral-faecal contamination is the second leading cause of death in children under 5 years of age, primarily in Africa and South Asia. Currently there are no appropriate vaccines that could be easily administered on a global scale to prevent these infections. Synthetic biology has the potential to contribute to development of such vaccines. Our work is directed at developing a range of multivalent oral vaccines against the most common diarrhoea-causing bacteria, e.g., Escherichia coli, Shigella and Salmonella. If synthetic biology is to avoid the suspicion and possible revulsion of the public, scientists need to demonstrate that this new field has something real to offer.
{"title":"Easing the global burden of diarrhoeal disease: can synthetic biology help?","authors":"Prerna Vohra, Garry W Blakely","doi":"10.1007/s11693-013-9114-6","DOIUrl":"10.1007/s11693-013-9114-6","url":null,"abstract":"<p><p>The Millennium Declaration committed the 193 member states of the United Nations to end poverty by 2015. Despite the efforts of the UN and World Health Organisation, and the G8 commitment to spend a fixed proportion of gross national income on overseas aid, more than 2.6 billion people still lack access to proper sanitation. The absence of effective public health strategies in developing countries results in significant health burdens following gastrointestinal infections. Diarrhoea associated with infections resulting from oral-faecal contamination is the second leading cause of death in children under 5 years of age, primarily in Africa and South Asia. Currently there are no appropriate vaccines that could be easily administered on a global scale to prevent these infections. Synthetic biology has the potential to contribute to development of such vaccines. Our work is directed at developing a range of multivalent oral vaccines against the most common diarrhoea-causing bacteria, e.g., Escherichia coli, Shigella and Salmonella. If synthetic biology is to avoid the suspicion and possible revulsion of the public, scientists need to demonstrate that this new field has something real to offer. </p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740103/pdf/11693_2013_Article_9114.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32037160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-09-01Epub Date: 2013-07-20DOI: 10.1007/s11693-013-9118-2
James M Carothers
Many of the synthetic biological devices, pathways and systems that can be engineered are multi-use, in the sense that they could be used both for commercially-important applications and to help meet global health needs. The on-going development of models and simulation tools for assembling component parts into functionally-complex devices and systems will enable successful engineering with much less trial-and-error experimentation and laboratory infrastructure. As illustrations, I draw upon recent examples from my own work and the broader Keasling research group at the University of California Berkeley and the Joint BioEnergy Institute, of which I was formerly a part. By combining multi-use synthetic biology research agendas with advanced computer-aided design tool creation, it may be possible to more rapidly engineer safe and effective synthetic biology technologies that help address a wide range of global health problems.
{"title":"Design-driven, multi-use research agendas to enable applied synthetic biology for global health.","authors":"James M Carothers","doi":"10.1007/s11693-013-9118-2","DOIUrl":"https://doi.org/10.1007/s11693-013-9118-2","url":null,"abstract":"<p><p>Many of the synthetic biological devices, pathways and systems that can be engineered are multi-use, in the sense that they could be used both for commercially-important applications and to help meet global health needs. The on-going development of models and simulation tools for assembling component parts into functionally-complex devices and systems will enable successful engineering with much less trial-and-error experimentation and laboratory infrastructure. As illustrations, I draw upon recent examples from my own work and the broader Keasling research group at the University of California Berkeley and the Joint BioEnergy Institute, of which I was formerly a part. By combining multi-use synthetic biology research agendas with advanced computer-aided design tool creation, it may be possible to more rapidly engineer safe and effective synthetic biology technologies that help address a wide range of global health problems. </p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11693-013-9118-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32037161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-09-01Epub Date: 2012-10-30DOI: 10.1007/s11693-012-9098-7
Henk van den Belt
The legal and moral issues that synthetic biology (SB) and its medical applications are likely to raise with regard to intellectual property (IP) and patenting are best approached through the lens of a theoretical framework highlighting the "co-construction" or "co-evolution" of patent law and technology. The current situation is characterized by a major contest between the so-called IP frame and the access-to-knowledge frame. In SB this contest is found in the contrasting approaches of Craig Venter's chassis school and the BioBricks school. The stakes in this contest are high as issues of global health and global justice are implied. Patents are not simply to be seen as neutral incentives, but must also be judged on their effects for access to essential medicines, a more balanced pattern of innovation and the widest possible social participation in innovative activity. We need moral imagination to design new institutional systems and new ways of practising SB that meet the new demands of global justice.
{"title":"Synthetic biology, patenting, health and global justice.","authors":"Henk van den Belt","doi":"10.1007/s11693-012-9098-7","DOIUrl":"10.1007/s11693-012-9098-7","url":null,"abstract":"<p><p>The legal and moral issues that synthetic biology (SB) and its medical applications are likely to raise with regard to intellectual property (IP) and patenting are best approached through the lens of a theoretical framework highlighting the \"co-construction\" or \"co-evolution\" of patent law and technology. The current situation is characterized by a major contest between the so-called IP frame and the access-to-knowledge frame. In SB this contest is found in the contrasting approaches of Craig Venter's chassis school and the BioBricks school. The stakes in this contest are high as issues of global health and global justice are implied. Patents are not simply to be seen as neutral incentives, but must also be judged on their effects for access to essential medicines, a more balanced pattern of innovation and the widest possible social participation in innovative activity. We need moral imagination to design new institutional systems and new ways of practising SB that meet the new demands of global justice. </p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740100/pdf/11693_2012_Article_9098.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32037162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-09-01Epub Date: 2013-07-20DOI: 10.1007/s11693-013-9119-1
Conor M W Douglas, Dirk Stemerding
Synthetic biology (SynBio) is a global endeavour with research and development programs in many countries, and due (in part) to its multi-use characteristics it has potential to improve global health in the area of vaccine development, diagnostics, drug synthesis, and the detection and remediation of environmental toxins. However, SynBio will also concurrently require global governance. Here we present what we have learnt from the articles in this Special Issue, and the workshop we hosted in The Hague in February of 2012 on SynBio, global health, and global governance that generated many of the papers appearing here. Importantly we take the notion of 'responsible research and innovation' as a guiding perspective. In doing so our understanding of governance is one that shifts its focus from preventing risks and other potential negative implications, and instead is concerned with institutions and practices involved in the inclusive steering of science and technology towards socially desirable outcomes. We first provide a brief overview of the notion of global health, and SynBio's relation to global health issues. The core of the paper explores some of the dynamics involved in fostering SynBio's global health pursuits; paying particular attention to of intellectual property, incentives, and commercialization regimes. We then examines how DIYbio, Interactive Learning and Action, and road-mapping activities can be seen as positive and productive forms of governance that can lead to more inclusive SynBio global health research programs.
{"title":"Governing synthetic biology for global health through responsible research and innovation.","authors":"Conor M W Douglas, Dirk Stemerding","doi":"10.1007/s11693-013-9119-1","DOIUrl":"https://doi.org/10.1007/s11693-013-9119-1","url":null,"abstract":"<p><p>Synthetic biology (SynBio) is a global endeavour with research and development programs in many countries, and due (in part) to its multi-use characteristics it has potential to improve global health in the area of vaccine development, diagnostics, drug synthesis, and the detection and remediation of environmental toxins. However, SynBio will also concurrently require global governance. Here we present what we have learnt from the articles in this Special Issue, and the workshop we hosted in The Hague in February of 2012 on SynBio, global health, and global governance that generated many of the papers appearing here. Importantly we take the notion of 'responsible research and innovation' as a guiding perspective. In doing so our understanding of governance is one that shifts its focus from preventing risks and other potential negative implications, and instead is concerned with institutions and practices involved in the inclusive steering of science and technology towards socially desirable outcomes. We first provide a brief overview of the notion of global health, and SynBio's relation to global health issues. The core of the paper explores some of the dynamics involved in fostering SynBio's global health pursuits; paying particular attention to of intellectual property, incentives, and commercialization regimes. We then examines how DIYbio, Interactive Learning and Action, and road-mapping activities can be seen as positive and productive forms of governance that can lead to more inclusive SynBio global health research programs. </p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11693-013-9119-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32036064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}