首页 > 最新文献

Tectonics最新文献

英文 中文
Transient Aseismic Vertical Deformation Across the Steeply-Dipping Pisia-Skinos Normal Fault (Gulf of Corinth, Greece) 穿越陡倾皮西亚-斯基诺斯正断层的瞬态地震垂直变形(希腊科林斯湾)
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-02 DOI: 10.1029/2024tc008276
Zoë K. Mildon, Manuel Diercks, Gerald P. Roberts, Joanna P. Faure Walker, Athanassios Ganas, Ioannis Papanikolaou, Vassilis Sakas, Jenni Robertson, Claudia Sgambato, Sam Mitchell
Geodetically-derived deformation rates are sometimes used to infer seismic hazard, implicitly assuming that short-term (annual-decadal) deformation is representative of longer-term deformation. This is despite geological observations indicating that deformation/slip rates are variable over a range of timescales. Using geodetic data from 2016 to 2021, we observe an up to 7-fold increase in vertical deformation rate in mid-2019 across the Pisia-Skinos normal fault in Greece. We hypothesize that this deformation is aseismic as there is no temporally correlated increase in the earthquake activity (M > 1). We explore four possible physical mechanisms, and our preferred hypothesis is that the transient deformation is caused by centimeter-scale slip in the upper 5 km of the Pisia fault zone. This is the first observation of shallow tectonic (i.e., not related to human activities) aseismic deformation on a normal fault globally. Our results suggest that continental normal faults can exhibit variable deformation over shorter timescales than previously observed, and thus care should be taken when utilizing geodetic rates to quantify seismic hazard.
从地质学角度得出的形变率有时被用来推断地震危险性,隐含地假定短期(年-十年)形变代表长期形变。尽管地质观测结果表明,形变/滑动率在一系列时间尺度上都是可变的。利用 2016 年至 2021 年的大地测量数据,我们观测到 2019 年中期希腊皮西亚-斯基诺斯正断层的垂直变形率增加了 7 倍。我们假设这种变形是非地震性的,因为地震活动(M >1)并没有在时间上相关增加。我们探讨了四种可能的物理机制,首选的假设是,瞬态形变是由皮西亚断层带上段 5 公里处厘米级的滑动引起的。这是首次在全球范围内观测到正断层的浅构造(即与人类活动无关)地震变形。我们的研究结果表明,大陆正断层在更短的时间尺度上会出现比以前观测到的更多的变形,因此在利用大地测量速率来量化地震危害时应小心谨慎。
{"title":"Transient Aseismic Vertical Deformation Across the Steeply-Dipping Pisia-Skinos Normal Fault (Gulf of Corinth, Greece)","authors":"Zoë K. Mildon, Manuel Diercks, Gerald P. Roberts, Joanna P. Faure Walker, Athanassios Ganas, Ioannis Papanikolaou, Vassilis Sakas, Jenni Robertson, Claudia Sgambato, Sam Mitchell","doi":"10.1029/2024tc008276","DOIUrl":"https://doi.org/10.1029/2024tc008276","url":null,"abstract":"Geodetically-derived deformation rates are sometimes used to infer seismic hazard, implicitly assuming that short-term (annual-decadal) deformation is representative of longer-term deformation. This is despite geological observations indicating that deformation/slip rates are variable over a range of timescales. Using geodetic data from 2016 to 2021, we observe an up to 7-fold increase in vertical deformation rate in mid-2019 across the Pisia-Skinos normal fault in Greece. We hypothesize that this deformation is aseismic as there is no temporally correlated increase in the earthquake activity (M > 1). We explore four possible physical mechanisms, and our preferred hypothesis is that the transient deformation is caused by centimeter-scale slip in the upper 5 km of the Pisia fault zone. This is the first observation of shallow tectonic (i.e., not related to human activities) aseismic deformation on a normal fault globally. Our results suggest that continental normal faults can exhibit variable deformation over shorter timescales than previously observed, and thus care should be taken when utilizing geodetic rates to quantify seismic hazard.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":"75 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magmatism and Polyphase Deformation in the Middle Jurassic Arc of Central Chile: Implications for the Tectonic Development of the Early Andean Margin 智利中部中侏罗世弧的岩浆活动和多相变形:早期安第斯边缘构造发展的影响
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-31 DOI: 10.1029/2023tc008241
John S. Singleton, Gloria Arancibia, Diego Morata, Ignacia Pérez De La Maza
The ∼173–164 Ma Papudo-Quintero plutonic complex near 32.5°S in central Chile records three deformation events that provide insight into the tectonic development of the early Andean margin. The first event (D1) includes: (a) high-temperature (>600°C), coaxial-dominated strain along NE- to N-striking subvertical shear zones; (b) widespread emplacement of granitic dikes that dip gently to steeply NE; and (c) development of narrow (<10 cm thick) strike-slip and oblique-reverse shear zones. These D1 structures record NW-SE to WNW-ESE transpressional shortening with a component of sinistral shear parallel to the N-S trending magmatic arc. Zircon and apatite U-Pb dates and cross-cutting relations constrain most D1 deformation to ∼166–164 Ma. The second event (D2) occurred during postmagmatic cooling in the Late Jurassic and was characterized by development of pervasive E-W-striking veins with alteration halos and minor strike-slip and normal faults that record N-S extension in a transtensional regime. Structures associated with the last deformation event (D3) include Late Jurassic to Early Cretaceous mafic dikes, veins, and conjugate strike-slip faults that record NW-SE to N-S shortening in a strike-slip regime. D1 deformation is consistent with studies from other areas that document NW-SE shortening ± sinistral transpression along the arc throughout the Jurassic, suggesting this deformation was regional in scale and driven by oblique subduction convergence. Deformation associated with oblique convergence was localized within the active magmatic arc, which was an important process in the early Andean orogeny. As the arc migrated eastward, D2 and D3 structures formed in a low-stress regime in an arc margin or forearc setting.
智利中部南纬 32.5°附近的 ∼ 173-164 Ma 帕普多-金特罗(Papudo-Quintero)岩浆岩复合体记录了三个变形事件,有助于深入了解早期安第斯边缘的构造发展。第一个事件(D1)包括(a) 高温(>600°C)、同轴为主的应变,沿东北向至北向冲击的俯冲剪切带;(b) 花岗岩长脉的广泛喷出,向东北方向平缓至陡峭地倾斜;(c) 形成狭窄(<10 厘米厚)的走向滑动和斜向反向剪切带。这些 D1 构造记录了 NW-SE 到 WNW-ESE 的换位缩短,其中有一部分正弦剪切与 N-S 向岩浆弧平行。锆石和磷灰石的 U-Pb 年代和横切关系将大部分 D1 变形推定为 166-164 Ma。第二次变形(D2)发生在晚侏罗世的岩浆后冷却时期,其特征是发育了普遍的带有蚀变晕的东西走向矿脉,以及在横断构造中记录了南北向延伸的小型走向滑动断层和正断层。与最后一次变形事件(D3)相关的构造包括晚侏罗世至早白垩世的岩浆岩尖峰、岩脉和共轭走向滑动断层,它们在走向滑动机制中记录了西北-东南向到北-南向的缩短。D1变形与其他地区的研究相一致,其他地区的研究记录了整个侏罗纪沿弧线的NW-SE缩短和±正弦转位,这表明这种变形是区域性的,是由斜向俯冲辐合驱动的。与斜向辐合相关的变形集中在活跃的岩浆弧内,这是早期安第斯造山运动的一个重要过程。随着岩浆弧的东移,D2 和 D3 结构在岩浆弧边缘或前弧的低应力环境中形成。
{"title":"Magmatism and Polyphase Deformation in the Middle Jurassic Arc of Central Chile: Implications for the Tectonic Development of the Early Andean Margin","authors":"John S. Singleton, Gloria Arancibia, Diego Morata, Ignacia Pérez De La Maza","doi":"10.1029/2023tc008241","DOIUrl":"https://doi.org/10.1029/2023tc008241","url":null,"abstract":"The ∼173–164 Ma Papudo-Quintero plutonic complex near 32.5°S in central Chile records three deformation events that provide insight into the tectonic development of the early Andean margin. The first event (D<sub>1</sub>) includes: (a) high-temperature (&gt;600°C), coaxial-dominated strain along NE- to N-striking subvertical shear zones; (b) widespread emplacement of granitic dikes that dip gently to steeply NE; and (c) development of narrow (&lt;10 cm thick) strike-slip and oblique-reverse shear zones. These D<sub>1</sub> structures record NW-SE to WNW-ESE transpressional shortening with a component of sinistral shear parallel to the N-S trending magmatic arc. Zircon and apatite U-Pb dates and cross-cutting relations constrain most D<sub>1</sub> deformation to ∼166–164 Ma. The second event (D<sub>2</sub>) occurred during postmagmatic cooling in the Late Jurassic and was characterized by development of pervasive E-W-striking veins with alteration halos and minor strike-slip and normal faults that record N-S extension in a transtensional regime. Structures associated with the last deformation event (D<sub>3</sub>) include Late Jurassic to Early Cretaceous mafic dikes, veins, and conjugate strike-slip faults that record NW-SE to N-S shortening in a strike-slip regime. D<sub>1</sub> deformation is consistent with studies from other areas that document NW-SE shortening ± sinistral transpression along the arc throughout the Jurassic, suggesting this deformation was regional in scale and driven by oblique subduction convergence. Deformation associated with oblique convergence was localized within the active magmatic arc, which was an important process in the early Andean orogeny. As the arc migrated eastward, D<sub>2</sub> and D<sub>3</sub> structures formed in a low-stress regime in an arc margin or forearc setting.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":"217 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D Structure of Low-Angle Normal Faults and Tectono-Sedimentary Processes of Nascent Continental Core-Complexes in the SE South China Sea 中国南海东南部低角度正断层的三维结构与新生大陆核心复合体的构造沉积过程
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-29 DOI: 10.1029/2023tc008218
E. Legeay, G. Mohn, J. C. Ringenbach, W. Vetel, F. Sapin
This contribution explores the formation and evolution of hyper-extended basins, associated with the early stage of core complex formation, controlled by low-angle normal faults active at <30°. Based on a high-resolution industrial 3D seismic reflection survey along the southern margin of the South China Sea (SCS) (Dangerous Grounds), we mapped and analyzed the 3D geometry of low-angle normal fault systems and the related stratigraphy. Two main hyper-extended basins were documented, filled by up to 6 km of sediments including pre- to post-rift sequences. The observed normal faults on depth migrated seismic sections show an average dip angle of <30° and appear planar, characterized by continuous reflections with no clear steepening at depth and sole-out on distinct decollement levels. Detailed fault surface mapping reveals the occurrence of km-scale corrugations together with large wavelength undulation. The formation of these hyper-extended basins is associated with polyphased syn-rift infill during the development of the low-angle normal faults. The first syn-rift sequence appears as chaotic and discontinuous packages that has been dismembered and fragmented during the activity of low-angle normal faults. The second syn-rift package shows unexpected sedimentary wedges developing successively toward the footwall and the hangingwall. This geometry results from the interplay between the main low-angle normal fault and antithetic faults defining a so-called extensional fishtail. The deep structure of these basins shows nascent domes with limited evidence of magmatism. Eventually, these basins likely capture the earliest stage of core complex development in the proximal margin of the southern SCS.
这篇论文探讨了超延伸盆地的形成和演化,这些盆地与岩心复合体形成的早期阶段有关,由30°活动的低角度正断层控制。基于沿中国南海(SCS)南缘(危险地层)的高分辨率工业三维地震反射勘探,我们绘制并分析了低角度正断层系统的三维几何以及相关地层。我们记录了两个主要的超延伸盆地,由长达 6 千米的沉积物填充,包括断裂前至断裂后的序列。在地震剖面图上观察到的正断层平均倾角为 30°,呈平面状,其特征是反射连续,在深度上没有明显的陡峭化,并在明显的解理层上独显。详细的断层面测绘显示出千米级的波纹和大波长的起伏。这些超延伸盆地的形成与低角度正断层发育过程中的多期同步断裂填充有关。第一个同步断裂序列表现为混乱和不连续的包裹体,在低角度正断层活动期间被肢解和破碎。第二个同步断裂序列显示出意想不到的沉积楔,这些沉积楔相继向岩脚和悬壁方向发展。这种几何形状是主要的低角度正断层与反断层相互作用的结果,形成了所谓的延伸鱼尾。这些盆地的深部结构显示出新生穹隆,岩浆活动的证据有限。最终,这些盆地很可能捕捉到了南南中国海近缘核心复合体发展的最早阶段。
{"title":"3D Structure of Low-Angle Normal Faults and Tectono-Sedimentary Processes of Nascent Continental Core-Complexes in the SE South China Sea","authors":"E. Legeay, G. Mohn, J. C. Ringenbach, W. Vetel, F. Sapin","doi":"10.1029/2023tc008218","DOIUrl":"https://doi.org/10.1029/2023tc008218","url":null,"abstract":"This contribution explores the formation and evolution of hyper-extended basins, associated with the early stage of core complex formation, controlled by low-angle normal faults active at &lt;30°. Based on a high-resolution industrial 3D seismic reflection survey along the southern margin of the South China Sea (SCS) (Dangerous Grounds), we mapped and analyzed the 3D geometry of low-angle normal fault systems and the related stratigraphy. Two main hyper-extended basins were documented, filled by up to 6 km of sediments including pre- to post-rift sequences. The observed normal faults on depth migrated seismic sections show an average dip angle of &lt;30° and appear planar, characterized by continuous reflections with no clear steepening at depth and sole-out on distinct decollement levels. Detailed fault surface mapping reveals the occurrence of km-scale corrugations together with large wavelength undulation. The formation of these hyper-extended basins is associated with polyphased syn-rift infill during the development of the low-angle normal faults. The first syn-rift sequence appears as chaotic and discontinuous packages that has been dismembered and fragmented during the activity of low-angle normal faults. The second syn-rift package shows unexpected sedimentary wedges developing successively toward the footwall and the hangingwall. This geometry results from the interplay between the main low-angle normal fault and antithetic faults defining a so-called extensional fishtail. The deep structure of these basins shows nascent domes with limited evidence of magmatism. Eventually, these basins likely capture the earliest stage of core complex development in the proximal margin of the southern SCS.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":"2 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Post-Collisional Reorganisation of the Eastern Alps in 4D – Crust and Mantle Structure 东阿尔卑斯山碰撞后的四维重组--地壳和地幔结构
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-28 DOI: 10.1029/2024tc008374
Peter J. McPhee, Mark R. Handy
The Eastern Alps were affected by a profound post-collisional tectonic reorganisation in Neogene time, featuring indentation by the Adriatic upper plate, rapid uplift and filling of the eastern Molasse Basin, exhumation and eastward orogen-parallel transport of Paleogene metamorphic units in the orogenic core, and a shift from northward thrust propagation in the European plate to southward propagation in the Adriatic plate. We test the idea that these events were triggered by slab detachment by reconstructing the indentation process. This involves sequentially restoring N-S and E-W cross-sections of the orogenic wedge and correcting for out-of-section orogen-parallel transport with a map-view reconstruction. We propose two phases of indentation: Initially (23 and 14 Ma), the whole Adriatic crust acted as an indenter. Its northward motion was accommodated by upright folding and orogen-parallel extensional exhumation in the Tauern Window. This phase was followed (14 Ma to Present) by continued orogen-parallel transport of the orogenic wedge into the Pannonian Basin and deformation of the leading edge of the Adriatic indenter, forming the Southern Alps fold-thrust belt. The lower crust of the Southern Alps indented the base of the Venediger Nappes in the Tauern Window, forming a high-velocity (6.8–7.25 km/s) ridge in map view at 30–45 km depth. By correlating the post-23 Ma orogenic evolution with presently imaged European slab segments in P-wave teleseismic tomography, we discern two possible Neogene slab removal events: One from 23 to 19 Ma triggering tectonic reorganisation of the Eastern Alps and its foreland basin, and potentially a second event after 14 Ma.
东阿尔卑斯山在新近纪受到了碰撞后构造重组的深刻影响,其特点是亚得里亚海上板块的压入、莫拉塞盆地东部的快速隆起和充填、造山核心区古近纪变质单元的掘起和向东的造山平行运移,以及欧洲板块从向北的推力传播向亚得里亚海板块向南传播的转变。我们通过重建板块剥离过程来验证这些事件是由板块剥离引发的这一观点。这包括依次恢复造山楔的 N-S 和 E-W 截面,并通过地图视图重建校正断面外的造山平行运移。我们提出了两个缩进阶段:最初(23 和 14 马年),整个亚得里亚海地壳充当压痕器。它的向北运动被直立褶皱和陶恩窗(Tauern Window)中与造山运动平行的扩展掘进所容纳。在这一阶段之后(14Ma至今),造山楔继续向潘诺尼亚盆地平行移动,亚得里亚海压入体的前缘发生变形,形成了南阿尔卑斯山褶皱-推覆带。南阿尔卑斯山的下地壳在陶恩窗(Tauern Window)中压入了文迪格断陷岩(Venediger Nappes)的底部,在地图上形成了一个位于 30-45 千米深处的高速(6.8-7.25 千米/秒)山脊。通过将 23 Ma 后的造山演化与目前在 P 波远震断层扫描中成像的欧洲板块段进行关联,我们发现了两个可能的新近纪板块移除事件:一次发生在 23 至 19 马年,引发了东阿尔卑斯山及其前陆盆地的构造重组,另一次可能发生在 14 马年之后。
{"title":"Post-Collisional Reorganisation of the Eastern Alps in 4D – Crust and Mantle Structure","authors":"Peter J. McPhee, Mark R. Handy","doi":"10.1029/2024tc008374","DOIUrl":"https://doi.org/10.1029/2024tc008374","url":null,"abstract":"The Eastern Alps were affected by a profound post-collisional tectonic reorganisation in Neogene time, featuring indentation by the Adriatic upper plate, rapid uplift and filling of the eastern Molasse Basin, exhumation and eastward orogen-parallel transport of Paleogene metamorphic units in the orogenic core, and a shift from northward thrust propagation in the European plate to southward propagation in the Adriatic plate. We test the idea that these events were triggered by slab detachment by reconstructing the indentation process. This involves sequentially restoring N-S and E-W cross-sections of the orogenic wedge and correcting for out-of-section orogen-parallel transport with a map-view reconstruction. We propose two phases of indentation: Initially (23 and 14 Ma), the whole Adriatic crust acted as an indenter. Its northward motion was accommodated by upright folding and orogen-parallel extensional exhumation in the Tauern Window. This phase was followed (14 Ma to Present) by continued orogen-parallel transport of the orogenic wedge into the Pannonian Basin and deformation of the leading edge of the Adriatic indenter, forming the Southern Alps fold-thrust belt. The lower crust of the Southern Alps indented the base of the Venediger Nappes in the Tauern Window, forming a high-velocity (6.8–7.25 km/s) ridge in map view at 30–45 km depth. By correlating the post-23 Ma orogenic evolution with presently imaged European slab segments in P-wave teleseismic tomography, we discern two possible Neogene slab removal events: One from 23 to 19 Ma triggering tectonic reorganisation of the Eastern Alps and its foreland basin, and potentially a second event after 14 Ma.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":"78 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geodynamic and Climatic Forcing on Late-Cenozoic Exhumation of the Southern Patagonian Andes (Fitz Roy and Torres del Paine massifs) 南巴塔哥尼亚安第斯山脉(菲茨-罗伊和托雷斯-德尔-潘恩山丘)晚新生代侵蚀的地球动力和气候作用力
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-23 DOI: 10.1029/2023tc007914
Veleda A. P. Muller, Christian Sue, Pierre G. Valla, Pietro Sternai, Thibaud Simon-Labric, Cécile Gautheron, Kurt M. Cuffey, Djordje Grujic, Matthias Bernet, Joseph Martinod, Matias C. Ghiglione, Peter Reiners, Chelsea Willett, David Shuster, Frédéric Herman, Lukas Baumgartner, Jean Braun
High-relief glacial valleys shape the modern topography of the Southern Patagonian Andes, but their formation remains poorly understood. Two Miocene plutonic complexes in the Andean retroarc, the Fitz Roy (49°S) and Torres del Paine (51°S) massifs, were emplaced between 16.9–16.4 Ma and 12.6–12.4 Ma, respectively. Subduction of oceanic ridge segments initiated ca. 16 Ma at 54°S, leading to northward opening of a slab window with associated mantle upwelling. The onset of major glaciations caused drastic topographic changes since ca. 7 Ma. To constrain the respective contributions of tectonic-mantle dynamics and fluvio-glacial erosion to rock exhumation and landscape evolution, we perform inverse thermal modeling of a new data set of zircon and apatite (U-Th)/He from the two massifs, complemented by apatite 4He/3He data for Torres del Paine. Our results show rapid rock exhumation recorded only in the Fitz Roy massif between 10 and 8 Ma, which we ascribe to local mantle upwelling forcing surface uplift and intensified erosion around 49°S. Both massifs record a pulse of rock exhumation between 7 and 4 Ma, which we interpret as enhanced erosion during the beginning of Patagonian glaciations. After a period of erosional and tectonic quiescence in the Pliocene, increased rock exhumation since 3–2 Ma is interpreted as the result of alpine glacial valley carving promoted by reinforced glacial-interglacial cycles. This study highlights that glacial erosion was the main driver to rock exhumation in the Patagonian retroarc since 7 Ma, but that mantle upwelling might be a driving force to rock exhumation as well.
高凸冰川谷塑造了南巴塔哥尼亚安第斯山脉的现代地形,但人们对它们的形成却知之甚少。安第斯弧后部的两个中新世火山岩群,即菲茨罗伊(南纬 49°)和托雷斯德尔帕恩(南纬 51°)岩块,分别在 16.9-16.4 Ma 和 12.6-12.4 Ma 之间形成。大洋脊段的俯冲开始于南纬 54°,约 16 Ma,导致板块窗口向北打开,并伴有地幔上涌。自约 7 Ma 开始的大冰川作用导致了地形的急剧变化。7 Ma。为了确定构造-地幔动力学和河流-冰川侵蚀作用各自对岩石掘起和地貌演变的贡献,我们对来自这两个山丘的锆石和磷灰石(U-Th)/He新数据集进行了逆热建模,并对托雷斯德尔潘恩的磷灰石4He/3He数据进行了补充。我们的研究结果表明,只有菲茨罗伊山丘在10-8Ma之间记录到了快速的岩石掘起,我们将其归因于当地地幔上升流迫使地表隆起和南纬49°附近的侵蚀加剧。两个山丘都记录了 7 至 4 Ma 之间的岩石掘起,我们将其解释为巴塔哥尼亚冰川期开始时侵蚀作用的加强。在经历了上新世时期的侵蚀和构造静止期之后,自 3-2 Ma 以来岩石掘出量的增加被解释为冰川-间冰期循环加强所导致的高山冰川峡谷开凿的结果。这项研究强调,冰川侵蚀是巴塔哥尼亚后弧自7Ma以来岩石掘出的主要驱动力,但地幔上升流也可能是岩石掘出的驱动力。
{"title":"Geodynamic and Climatic Forcing on Late-Cenozoic Exhumation of the Southern Patagonian Andes (Fitz Roy and Torres del Paine massifs)","authors":"Veleda A. P. Muller, Christian Sue, Pierre G. Valla, Pietro Sternai, Thibaud Simon-Labric, Cécile Gautheron, Kurt M. Cuffey, Djordje Grujic, Matthias Bernet, Joseph Martinod, Matias C. Ghiglione, Peter Reiners, Chelsea Willett, David Shuster, Frédéric Herman, Lukas Baumgartner, Jean Braun","doi":"10.1029/2023tc007914","DOIUrl":"https://doi.org/10.1029/2023tc007914","url":null,"abstract":"High-relief glacial valleys shape the modern topography of the Southern Patagonian Andes, but their formation remains poorly understood. Two Miocene plutonic complexes in the Andean retroarc, the Fitz Roy (49°S) and Torres del Paine (51°S) massifs, were emplaced between 16.9–16.4 Ma and 12.6–12.4 Ma, respectively. Subduction of oceanic ridge segments initiated ca. 16 Ma at 54°S, leading to northward opening of a slab window with associated mantle upwelling. The onset of major glaciations caused drastic topographic changes since ca. 7 Ma. To constrain the respective contributions of tectonic-mantle dynamics and fluvio-glacial erosion to rock exhumation and landscape evolution, we perform inverse thermal modeling of a new data set of zircon and apatite (U-Th)/He from the two massifs, complemented by apatite <sup>4</sup>He/<sup>3</sup>He data for Torres del Paine. Our results show rapid rock exhumation recorded only in the Fitz Roy massif between 10 and 8 Ma, which we ascribe to local mantle upwelling forcing surface uplift and intensified erosion around 49°S. Both massifs record a pulse of rock exhumation between 7 and 4 Ma, which we interpret as enhanced erosion during the beginning of Patagonian glaciations. After a period of erosional and tectonic quiescence in the Pliocene, increased rock exhumation since 3–2 Ma is interpreted as the result of alpine glacial valley carving promoted by reinforced glacial-interglacial cycles. This study highlights that glacial erosion was the main driver to rock exhumation in the Patagonian retroarc since 7 Ma, but that mantle upwelling might be a driving force to rock exhumation as well.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":"19 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141780107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Tectonic Structure and Evolution of the Potiguar-Ceará Rifted Margin of Brazil 巴西波蒂瓜尔-卡拉裂谷边缘的构造和演化
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-22 DOI: 10.1029/2023tc008184
Julia C. Fonseca, Cesar R. Ranero, Paola Vannucchi, David Iacopini, Helenice Vital
The Brazilian Equatorial Margin (BEM) is interpreted as a transform margin, where the last segment opened during Gondwana rifting. However, margin evolution, and break-up age remain unconstrained. We interpret >10k km of crustal-scale seismic images extending along ∼600 km of the margin calibrated with drillholes. We determine the style and timing of tectonics across the rift system. We link changes in crustal-scale structure and age of sediment deposits to interpret variations with the style of extension and intensity of thinning across the BEM. Observations support a rift evolution where deformation is initially distributed forming a shallow basin, subsequently focusses, and later migrates basin-ward forming the deep-water domain. We interpret that tectonic activity started ∼140–136 Ma and stopped earlier in the shallow basin causing minor thinning, than in the deep-water domain with a ∼60 km wide area with 4–8 km thick crust extended in Late Aptian to Early Albian (116–110 Ma). Constraints from seismic and drilling help define an abrupt continent to ocean transition (COT) where continental crust may be abutted by oceanic crust, and breakup occurred at early Albian time. Basin sedimentation from the onset to the Late Aptian is continental, indicating an isolated environment disconnected from Atlantic oceans. During late-most Aptian to Early Albian basin sedimentation changes and indicates a comparatively rapid marine water infill. Rifting of the BEM is not dominated by transcurrent deformation as previously inferred, with strike-slip faulting limited to comparatively small sectors, whereas most of the margin extended by normal faulting deformation.
巴西赤道边缘(BEM)被解释为一个转换边缘,其最后一段在冈瓦纳断裂过程中打开。然而,边缘的演化和断裂年龄仍未确定。我们解释了沿边缘 600 千米延伸的 1 万千米地壳尺度地震图像,并用钻孔进行了校准。我们确定了整个裂谷系统的构造风格和时间。我们将地壳尺度结构的变化和沉积物沉积的年龄联系起来,以解释整个 BEM 的延伸方式和变薄强度的变化。观测结果支持这样一种断裂演化过程:变形最初分布形成浅盆地,随后集中,然后向盆地方向迁移,形成深水域。我们的解释是,构造活动开始于140-136Ma,在浅盆地较早停止,造成轻微的变薄,而在深水域,构造活动在晚奥陶纪到早阿尔卑纪(116-110Ma)延伸出一个宽60km、厚4-8km的地壳区域。地震和钻探资料有助于确定大陆向海洋的突然过渡(COT),大陆地壳可能与大洋地壳相接,断裂发生在早阿尔比世。从始新世到晚始新世的盆地沉积为大陆沉积,表明当时的环境与大西洋隔绝。在最晚始新世至早白垩世,盆地沉积发生了变化,表明海水注入相对较快。BEM的断裂并不像以前推断的那样以横断面变形为主,走向滑动断层仅限于相对较小的区域,而大部分边缘则以正断层变形延伸。
{"title":"The Tectonic Structure and Evolution of the Potiguar-Ceará Rifted Margin of Brazil","authors":"Julia C. Fonseca, Cesar R. Ranero, Paola Vannucchi, David Iacopini, Helenice Vital","doi":"10.1029/2023tc008184","DOIUrl":"https://doi.org/10.1029/2023tc008184","url":null,"abstract":"The Brazilian Equatorial Margin (BEM) is interpreted as a transform margin, where the last segment opened during Gondwana rifting. However, margin evolution, and break-up age remain unconstrained. We interpret &gt;10k km of crustal-scale seismic images extending along ∼600 km of the margin calibrated with drillholes. We determine the style and timing of tectonics across the rift system. We link changes in crustal-scale structure and age of sediment deposits to interpret variations with the style of extension and intensity of thinning across the BEM. Observations support a rift evolution where deformation is initially distributed forming a shallow basin, subsequently focusses, and later migrates basin-ward forming the deep-water domain. We interpret that tectonic activity started ∼140–136 Ma and stopped earlier in the shallow basin causing minor thinning, than in the deep-water domain with a ∼60 km wide area with 4–8 km thick crust extended in Late Aptian to Early Albian (116–110 Ma). Constraints from seismic and drilling help define an abrupt continent to ocean transition (COT) where continental crust may be abutted by oceanic crust, and breakup occurred at early Albian time. Basin sedimentation from the onset to the Late Aptian is continental, indicating an isolated environment disconnected from Atlantic oceans. During late-most Aptian to Early Albian basin sedimentation changes and indicates a comparatively rapid marine water infill. Rifting of the BEM is not dominated by transcurrent deformation as previously inferred, with strike-slip faulting limited to comparatively small sectors, whereas most of the margin extended by normal faulting deformation.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":"8 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141780182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural Variation Along the Southern Hikurangi Subduction Zone, Aotearoa New Zealand, From Seismic Reflection and Retro-Deformation Analysis 从地震反射和逆变形分析看新西兰奥特亚罗瓦南 Hikurangi 俯冲带的构造变化
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-17 DOI: 10.1029/2023tc008212
D. E. Stevens, Y. L. C. McNeill, T. J. Henstock, P. M. Barnes, G. Crutchley, N. Bangs, S. Henrys, H. J. A. Van Avendonk
The southern Hikurangi subduction zone exhibits significant along-strike variation in convergence rate and obliquity, sediment thickness and, uniquely, the increasing proximity of southern Hikurangi to, and impingement on, the incoming continental Chatham Rise, an ancient Gondwana accretionary complex. There are corresponding changes in the morphology and structure of the Hikurangi accretionary prism. We combine widely spaced multichannel seismic reflection profiles with high resolution bathymetry and previous interpretations to characterize the structure and the history of the accretionary prism since 2 Ma. The southern Hikurangi margin can be divided into three segments. A northeastern segment (A) characterized by a moderately wide (∼70 km), low taper (∼5°) prism recording uninhibited outward growth in the last ∼1 Myr. Deformation resolvable in seismic reflection data accounts for ∼20 % of plate convergence, comparable with the central Hikurangi margin further North. A central segment (B) characterized by a narrow (∼30 km), moderate taper (∼8°) prism, with earlier (∼2-∼1 Ma) shortening than segment A. Outward prism growth ceased coincidentally with development of major strike-slip faults in the prism interior, reduced margin-normal convergence rate, and the onset of impingement on the incoming Chatham Rise to the south. A southwestern segment (C) marks the approximate southern termination of subduction but widens to ∼50 km due to rapid outward migration of the deformation front via fault reactivation within the now-underthrusting corner of the Chatham Rise. Segment C exhibits minimal shortening as margin-normal subduction velocity decreases and plate motion is increasingly taken up by interior thrusts and strike-slip faults.
希库兰芝俯冲带南部在辐合速率和倾角、沉积厚度方面都有显著的沿线变化,尤其是希库兰芝南部越来越靠近并撞击着来袭的大陆查塔姆隆起,这是一个古老的冈瓦纳增生复合体。希库兰芝吸积棱柱的形态和结构也发生了相应的变化。我们将大间隔多道地震反射剖面、高分辨率水深测量和以前的解释结合起来,描述了自 2 Ma 以来吸积棱柱的结构和历史特征。彦兰芝南缘可分为三段。东北段(A)以中等宽度(∼70 千米)、低锥度(∼5°)棱柱为特征,记录了过去 ∼1 Myr 不受抑制的向外增长。地震反射数据可解析的形变占板块聚合的 20%,与更北的彦兰芝中部边缘相当。中部地段(B)的特征是一个狭窄(∼30 公里)、中等锥度(∼8°)的棱柱,其缩短时间(∼2-∼1 Ma)早于地段 A。棱柱内部主要走向-滑动断层的发展、边缘正常汇聚速度的降低以及南面开始撞击来袭的查塔姆隆起,使得棱柱停止向外生长。西南段(C)标志着俯冲向南大致终止,但由于在查塔姆海隆现在的下推角内断层重新激活,变形前沿迅速向外迁移,该段扩大到 50 公里。随着边缘正常俯冲速度的降低,板块运动越来越多地由内部推力和走向滑动断层所承担,C段的缩短幅度极小。
{"title":"Structural Variation Along the Southern Hikurangi Subduction Zone, Aotearoa New Zealand, From Seismic Reflection and Retro-Deformation Analysis","authors":"D. E. Stevens, Y. L. C. McNeill, T. J. Henstock, P. M. Barnes, G. Crutchley, N. Bangs, S. Henrys, H. J. A. Van Avendonk","doi":"10.1029/2023tc008212","DOIUrl":"https://doi.org/10.1029/2023tc008212","url":null,"abstract":"The southern Hikurangi subduction zone exhibits significant along-strike variation in convergence rate and obliquity, sediment thickness and, uniquely, the increasing proximity of southern Hikurangi to, and impingement on, the incoming continental Chatham Rise, an ancient Gondwana accretionary complex. There are corresponding changes in the morphology and structure of the Hikurangi accretionary prism. We combine widely spaced multichannel seismic reflection profiles with high resolution bathymetry and previous interpretations to characterize the structure and the history of the accretionary prism since 2 Ma. The southern Hikurangi margin can be divided into three segments. A northeastern segment (A) characterized by a moderately wide (∼70 km), low taper (∼5°) prism recording uninhibited outward growth in the last ∼1 Myr. Deformation resolvable in seismic reflection data accounts for ∼20 % of plate convergence, comparable with the central Hikurangi margin further North. A central segment (B) characterized by a narrow (∼30 km), moderate taper (∼8°) prism, with earlier (∼2-∼1 Ma) shortening than segment A. Outward prism growth ceased coincidentally with development of major strike-slip faults in the prism interior, reduced margin-normal convergence rate, and the onset of impingement on the incoming Chatham Rise to the south. A southwestern segment (C) marks the approximate southern termination of subduction but widens to ∼50 km due to rapid outward migration of the deformation front via fault reactivation within the now-underthrusting corner of the Chatham Rise. Segment C exhibits minimal shortening as margin-normal subduction velocity decreases and plate motion is increasingly taken up by interior thrusts and strike-slip faults.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":"11 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141746370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Slab Tear of Subducted Indian Lithosphere Beneath the Eastern Himalayan Syntaxis Region 东喜马拉雅同轴区下方俯冲印度岩石圈的板块撕裂
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-11 DOI: 10.1029/2024tc008248
Ziqing Li, Bo Zhang, Lei Guo, Zhaoliang Hou, Bernhard Grasemann, Fulong Cai, Houqi Wang
In the southeastern Tibetan Plateau, region-scale dextral strike-slip shear zones, crucial for India-Asia convergence, were investigated along the Dulongjiang shear zone near the Eastern Himalayan Syntaxis (EHS). Structural, kinematic, and geochronological data from Dulongjiang and Nabang regions in western Yunnan, China, reveal dextral strike-slip shearing between 30 and 15 Ma. Various rocks were affected by moderate-temperature shear deformation (∼450–550°C), inferred from microstructures and quartz CPO patterns, during dextral strike-slip and exhumation of the shear zone. Combined with structures of pre-, syn-, and post-shearing leucogranites, zircon U-Pb dating indicates that the dextral shear along the shear zone began in the Early Oligocene (30–29 Ma) subsequent to the India-Asia collision. Micas in mylonitic granites yield 40Ar/39Ar ages, suggesting that the principal dextral shear deformation occurred approximately between 18 and 15 Ma. The Dulongjiang shear zone is linked to the Parlung, Nabang shear zone, and Sagaing Fault, forming a regional Cenozoic dextral shear system around the EHS. The study, combined with tomographic anomalies beneath the India-Asia collision zone, highlights distinct lithospheric-scale evolution in southeastern and eastern Tibet. Continuous intracontinental strike-slip shearing indicates a tectonic shift from Tibetan extension to block rotation around the EHS. From 30 to 15 Ma, slab tear, accompanied by clockwise rotation and dextral strike-slip shearing, suggests a warmer geodynamic setting influenced by hot mantle flow associated with ongoing subduction of the Indian lithosphere. Oligocene-Miocene dextral strike-slip shearing around the EHS, linking southwards with the Sagaing Fault, may correspond to the rotation necessary for slab to bend, stretch, and eventually tear beneath the region.
在青藏高原东南部,沿东喜马拉雅轴(EHS)附近的独龙江剪切带研究了对印度-亚洲辐合至关重要的区域尺度右旋走向滑动剪切带。来自中国云南西部独龙江和那邦地区的构造、运动学和地质年代数据揭示了 30-15 Ma 之间的右旋走向剪切。根据微结构和石英CPO模式推断,在右旋走向滑动和剪切带的剥蚀过程中,各种岩石受到中温剪切变形(450-550°C)的影响。结合剪切前、同步和剪切后白榴石的结构,锆石U-Pb年代测定表明,剪切带的右旋剪切始于印度-亚洲碰撞之后的早渐新世(30-29 Ma)。麦饭石花岗岩中的云母产生的40Ar/39Ar年龄表明,主要的右旋剪切变形大约发生在18至15Ma之间。独龙江剪切带与帕隆剪切带、纳邦剪切带和实皆断层相连,在东高止山脉周围形成了一个区域性新生代右旋剪切系统。这项研究与印度-亚洲碰撞带下的断层异常相结合,凸显了西藏东南部和东部岩石圈尺度的明显演化。持续的大陆内部走向-滑动剪切表明,构造从西藏延伸转变为EHS周围的块体旋转。从 30 到 15 Ma,板块撕裂,伴随着顺时针旋转和右旋走向剪切,表明当时的地球动力环境较为温暖,受到与印度岩石圈持续俯冲有关的热地幔流的影响。EHS周围的渐新世-中新世向南与实皆断层相连的右旋向斜剪切可能与板块在该地区下方弯曲、拉伸并最终撕裂所需的旋转相对应。
{"title":"Slab Tear of Subducted Indian Lithosphere Beneath the Eastern Himalayan Syntaxis Region","authors":"Ziqing Li, Bo Zhang, Lei Guo, Zhaoliang Hou, Bernhard Grasemann, Fulong Cai, Houqi Wang","doi":"10.1029/2024tc008248","DOIUrl":"https://doi.org/10.1029/2024tc008248","url":null,"abstract":"In the southeastern Tibetan Plateau, region-scale dextral strike-slip shear zones, crucial for India-Asia convergence, were investigated along the Dulongjiang shear zone near the Eastern Himalayan Syntaxis (EHS). Structural, kinematic, and geochronological data from Dulongjiang and Nabang regions in western Yunnan, China, reveal dextral strike-slip shearing between 30 and 15 Ma. Various rocks were affected by moderate-temperature shear deformation (∼450–550°C), inferred from microstructures and quartz CPO patterns, during dextral strike-slip and exhumation of the shear zone. Combined with structures of pre-, syn-, and post-shearing leucogranites, zircon U-Pb dating indicates that the dextral shear along the shear zone began in the Early Oligocene (30–29 Ma) subsequent to the India-Asia collision. Micas in mylonitic granites yield <sup>40</sup>Ar/<sup>39</sup>Ar ages, suggesting that the principal dextral shear deformation occurred approximately between 18 and 15 Ma. The Dulongjiang shear zone is linked to the Parlung, Nabang shear zone, and Sagaing Fault, forming a regional Cenozoic dextral shear system around the EHS. The study, combined with tomographic anomalies beneath the India-Asia collision zone, highlights distinct lithospheric-scale evolution in southeastern and eastern Tibet. Continuous intracontinental strike-slip shearing indicates a tectonic shift from Tibetan extension to block rotation around the EHS. From 30 to 15 Ma, slab tear, accompanied by clockwise rotation and dextral strike-slip shearing, suggests a warmer geodynamic setting influenced by hot mantle flow associated with ongoing subduction of the Indian lithosphere. Oligocene-Miocene dextral strike-slip shearing around the EHS, linking southwards with the Sagaing Fault, may correspond to the rotation necessary for slab to bend, stretch, and eventually tear beneath the region.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":"29 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constraining Displacement Magnitude on Crustal-Scale Extensional Faults Using Thermochronology Combined With Flexural-Kinematic and Thermal-Kinematic Modeling: An Example From the Teton Fault, Wyoming, USA 利用热年代学结合挠曲-线性和热-线性建模对地壳尺度伸展断层的位移幅度进行约束:以美国怀俄明州泰顿断层为例
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-09 DOI: 10.1029/2024tc008308
Autumn L. Helfrich, J. Ryan Thigpen, Victoria M. Buford-Parks, Nadine McQuarrie, Summer J. Brown, Ryan C. Goldsby
Constraining the geometry and displacement of crustal-scale normal faults has historically been challenging, owing to difficulties with geophysical imaging and inability to identify precise cut-offs at depth. Using a modified workflow previously applied to contractional systems, flexural-kinematic (Move) and thermal-kinematic (Pecube) models are integrated with apatite (U-Th)/He (AHe) and apatite fission track (AFT) data from Teton footwall transects to constrain total Teton fault displacement (Dmax). Models with slip onset at ∼10 Ma and flexure parameters that best match the observed Teton flexural profile require Dmax > 8 km to produce young (<10 Ma) AHe ages observed at low elevation footwall positions in the Tetons. For the same slip onset, models with Dmax of 11–13 km provide the best match to observed AHe data, but displacements ≥16 km are required to produce observed AFT ages (13.6–12.0 Ma) at low elevations. A more complex model with slow slip onset at ∼25 Ma followed by faster slip at ∼10 Ma yields a good match between modeled and observed AHe ages at a Dmax of 13–15 km. However, this model predicts low elevation AFT ages 6–8 Ma older than observed ages, even at Dmax values of 16–17 km. Based on this analysis and integration with previous studies, we propose a unified evolution wherein the Teton fault likely experienced 11–13 km of Miocene-recent displacement, with AFT data likely indicating a pre-to early Miocene cooling history. Importantly, this study highlights the utility of using integrated flexural- and thermal-kinematic models to resolve displacement histories in extensional systems.
由于地球物理成像方面的困难以及无法确定深度的精确截断点,对地壳尺度正断层的几何形状和位移进行约束一直是一项挑战。利用以前用于收缩系统的改进工作流程,将挠曲运动学(Move)和热运动学(Pecube)模型与来自泰顿脚墙横断面的磷灰石(U-Th)/氦(AHe)和磷灰石裂变轨迹(AFT)数据相结合,以确定泰顿断层的总位移(Dmax)。滑动起始时间为 ∼10 Ma、挠曲参数与观察到的泰顿挠曲剖面最匹配的模型需要 Dmax > 8 km 才能产生在泰顿低海拔脚墙位置观察到的年轻(<10 Ma)AHe 年龄。对于相同的滑动起始点,Dmax 为 11-13 km 的模型与观测到的 AHe 数据最匹配,但需要位移≥16 km 才能产生在低海拔地区观测到的 AFT 年龄(13.6-12.0 Ma)。一个更复杂的模型是在 ∼25 Ma 开始缓慢滑动,然后在 ∼10 Ma 开始快速滑动,结果在 Dmax 为 13-15 km 时,模型年龄与观测到的 AHe 年龄非常吻合。然而,该模型预测的低海拔AFT年龄比观测年龄早6-8 Ma,即使在Dmax值为16-17 km时也是如此。根据上述分析并结合之前的研究,我们提出了一个统一的演化过程,即泰顿断层可能经历了 11-13 千米的中新世近期位移,而 AFT 数据可能显示了中新世前至中新世早期的冷却历史。重要的是,这项研究强调了使用综合挠曲和热运动学模型来解析伸展系统位移历史的实用性。
{"title":"Constraining Displacement Magnitude on Crustal-Scale Extensional Faults Using Thermochronology Combined With Flexural-Kinematic and Thermal-Kinematic Modeling: An Example From the Teton Fault, Wyoming, USA","authors":"Autumn L. Helfrich, J. Ryan Thigpen, Victoria M. Buford-Parks, Nadine McQuarrie, Summer J. Brown, Ryan C. Goldsby","doi":"10.1029/2024tc008308","DOIUrl":"https://doi.org/10.1029/2024tc008308","url":null,"abstract":"Constraining the geometry and displacement of crustal-scale normal faults has historically been challenging, owing to difficulties with geophysical imaging and inability to identify precise cut-offs at depth. Using a modified workflow previously applied to contractional systems, flexural-kinematic (<i>Move</i>) and thermal-kinematic (<i>Pecube</i>) models are integrated with apatite (U-Th)/He (AHe) and apatite fission track (AFT) data from Teton footwall transects to constrain total Teton fault displacement (<i>D</i><sub><i>max</i></sub>). Models with slip onset at ∼10 Ma and flexure parameters that best match the observed Teton flexural profile require <i>D</i><sub><i>max</i></sub> &gt; 8 km to produce young (&lt;10 Ma) AHe ages observed at low elevation footwall positions in the Tetons. For the same slip onset, models with <i>D</i><sub><i>max</i></sub> of 11–13 km provide the best match to observed AHe data, but displacements ≥16 km are required to produce observed AFT ages (13.6–12.0 Ma) at low elevations. A more complex model with slow slip onset at ∼25 Ma followed by faster slip at ∼10 Ma yields a good match between modeled and observed AHe ages at a <i>D</i><sub><i>max</i></sub> of 13–15 km. However, this model predicts low elevation AFT ages 6–8 Ma older than observed ages, even at <i>D</i><sub><i>max</i></sub> values of 16–17 km. Based on this analysis and integration with previous studies, we propose a unified evolution wherein the Teton fault likely experienced 11–13 km of Miocene-recent displacement, with AFT data likely indicating a pre-to early Miocene cooling history. Importantly, this study highlights the utility of using integrated flexural- and thermal-kinematic models to resolve displacement histories in extensional systems.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":"49 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Late Miocene Oroclinal Bending of the Mazatagh Thrust Belt in the Central Tarim Basin and Its Tectonic Implications 塔里木盆地中部马扎塔格隆起带的晚中新世弧形弯曲及其构造影响
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-07 DOI: 10.1029/2023tc008233
Bingshuai Li, Maodu Yan, Heng Peng, Weilin Zhang, Jinbo Zan, Tao Zhang, Xiaomin Fang
The arcuate Mazatagh thrust belt (MTB) in the central Tarim Basin is one of the key regions for understanding the Cenozoic intracontinental deformation in response to the India–Eurasia collision. However, whether it was formed due to oroclinal bending and its kinematic processes remain unclear. Here, we present a detailed paleomagnetic rotation study at Hongbaishan in the middle MTB to shed new light on the deformation in this region. Positive fold and reversal tests of 50 site means suggest primary magnetizations. The paleomagnetic declinations indicate ∼14.6 ± 8.5° absolute clockwise rotation at Hongbaishan since the late Miocene (∼7.6 Ma). Together with the rotation results calculated from Hongbaishan-1 and Mazatagh magnetostratigraphic data sets in the southeastern MTB, these results reveal an increasing magnitude of clockwise rotation along the belt toward its southeastern tip. Positive oroclinal tests along the MTB suggest the occurrence of oroclinal bending that curved the originally straight MTB before and during the deposition of its lower part, and nearly half of the bending had occurred during the deposition of its upper part. This oroclinal bending is mostly attributed to the northward indentation of the West Kunlun Mountains along the décollement salt‒gypsum layers and further implies ∼7.9° absolute clockwise rotation of the Tarim Basin since the late Miocene. Integrating these findings with other lines of geological evidence around the Tarim Basin, we propose that episodic widespread tectonic deformation with basinward propagation occurred since the late Miocene due to the far-field effect of the continuous northward indentation of the Indian Plate into Eurasia.
塔里木盆地中部的弧形马扎塔格推力带(MTB)是了解新生代印度-欧亚大陆碰撞引起的大陆内部变形的关键区域之一。然而,它是否是由口向弯曲及其运动过程形成的仍不清楚。在此,我们对中MTB红白山地区进行了详细的古地磁旋转研究,以揭示该地区变形的新情况。对50个地点的正褶皱和反转测试表明了原生磁化。古地磁偏角表明,自中新世晚期(∼7.6Ma)以来,红白山绝对顺时针旋转角度为∼14.6 ± 8.5°。这些结果与根据红白山一号和马扎塔格磁地层数据集计算出的东南MTB的旋转结果相结合,揭示了顺时针旋转的幅度沿该带向其东南端不断增大。沿山地带的正岩性测试表明,在山地带下部沉积之前和沉积过程中发生了岩性弯曲,使原本笔直的山地带发生弯曲,近一半的弯曲发生在山地带上部沉积过程中。这种折向弯曲主要是由于西昆仑山沿脱落的盐-石膏层向北凹陷造成的,进一步意味着塔里木盆地自中新世晚期以来绝对顺时针旋转了7.9°。将这些发现与塔里木盆地周围的其他地质证据相结合,我们提出,自中新世晚期以来,由于印度板块持续向北切入欧亚大陆的远场效应,塔里木盆地发生了向盆地传播的偶发性大范围构造变形。
{"title":"Late Miocene Oroclinal Bending of the Mazatagh Thrust Belt in the Central Tarim Basin and Its Tectonic Implications","authors":"Bingshuai Li, Maodu Yan, Heng Peng, Weilin Zhang, Jinbo Zan, Tao Zhang, Xiaomin Fang","doi":"10.1029/2023tc008233","DOIUrl":"https://doi.org/10.1029/2023tc008233","url":null,"abstract":"The arcuate Mazatagh thrust belt (MTB) in the central Tarim Basin is one of the key regions for understanding the Cenozoic intracontinental deformation in response to the India–Eurasia collision. However, whether it was formed due to oroclinal bending and its kinematic processes remain unclear. Here, we present a detailed paleomagnetic rotation study at Hongbaishan in the middle MTB to shed new light on the deformation in this region. Positive fold and reversal tests of 50 site means suggest primary magnetizations. The paleomagnetic declinations indicate ∼14.6 ± 8.5° absolute clockwise rotation at Hongbaishan since the late Miocene (∼7.6 Ma). Together with the rotation results calculated from Hongbaishan-1 and Mazatagh magnetostratigraphic data sets in the southeastern MTB, these results reveal an increasing magnitude of clockwise rotation along the belt toward its southeastern tip. Positive oroclinal tests along the MTB suggest the occurrence of oroclinal bending that curved the originally straight MTB before and during the deposition of its lower part, and nearly half of the bending had occurred during the deposition of its upper part. This oroclinal bending is mostly attributed to the northward indentation of the West Kunlun Mountains along the décollement salt‒gypsum layers and further implies ∼7.9° absolute clockwise rotation of the Tarim Basin since the late Miocene. Integrating these findings with other lines of geological evidence around the Tarim Basin, we propose that episodic widespread tectonic deformation with basinward propagation occurred since the late Miocene due to the far-field effect of the continuous northward indentation of the Indian Plate into Eurasia.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":"54 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Tectonics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1