Pub Date : 2024-07-24DOI: 10.1007/s00704-024-05111-5
S. De, N. K. Agarwal, Jasti S. Chowdary, Darshana Patekar
El Niño Southern Oscillations (ENSO), being the largest global air-sea interaction phenomena, has a profound effect on global monsoon. In this study, for the first time we have examined the ENSO – Monsoon relation through nonlinear kinetic energy (KE) exchanges outlook across scales. Indian summer monsoon (ISM) and Western North Pacific Summer Monsoon (WNPSM) are considered to be the two major components of global monsoon on which ENSO has a huge impact. The ENSO – Monsoon nonlinearity can be explored by unraveling the unstable (stable) relation between ENSO and Monsoon during El Niño (La Niña) period through the mechanism of scale interactions among El Niño / La Niña, dominant high (HFO) and low frequency oscillation (LFO) considering ENSO itself as a LFO of time period 12–18 months. It is found from the analysis that more (less) KE is transferred to synoptic scale and 10-20 day LFO from El Niño 1997-98 compared to that from 2015 - 16 episode over ISM (WNPSM) region. Moreover, the opposite energy exchange between El Niño and 30-60 day wave is observed over these regions, attributing to contrasting rainfall variation over ISM and WNPSM zone. Sharp (comparatively less) variability in energy exchange among El Niño (La Niña), HFO and LFO over ISM and WNPSM regions make El Niño – Monsoon relation highly unstable whereas La Niña – Monsoon relation a stable one. Unveiling El Niño-ISM, El Niño-WNPSM, La Niña-ISM and La Niña-WNPSM relations in terms of inter-scale KE exchanges for the two El Niño and two La Niña events may lead to enhance the understanding of ENSO-monsoon nonlinearity. This work will make an avenue for further research in the space of nonlinearity between the two large scale systems that may be expected to be more complex due to the global warming and climate change as a futuristic study.
厄尔尼诺南方涛动(ENSO)是全球最大的海气相互作用现象,对全球季风有着深远的影响。在这项研究中,我们首次通过跨尺度的非线性动能(KE)交换展望来研究厄尔尼诺/南方涛动与季风的关系。印度夏季季风(ISM)和西北太平洋夏季季风(WNPSM)被认为是全球季风的两个主要组成部分,厄尔尼诺/南方涛动对其影响巨大。厄尔尼诺/南方涛动与季风的非线性关系可以通过厄尔尼诺/拉尼娜、主导高频振荡(HFO)和低频振荡(LFO)之间的尺度相互作用机制来揭示,厄尔尼诺/南方涛动与季风之间在厄尔尼诺(拉尼娜)期间的不稳定(稳定)关系。分析结果表明,与 2015-16 年在 ISM(WNPSM)地区发生的厄尔尼诺现象相比,1997-98 年厄尔尼诺现象传递到同步尺度和 10-20 天低频振荡的 KE 更多(更少)。此外,在这些区域观察到厄尔尼诺现象与 30-60 天波浪之间的能量交换相反,导致 ISM 和 WNPSM 区域的降雨量变化形成鲜明对比。在 ISM 和 WNPSM 区域,厄尔尼诺(拉尼娜)、HFO 和 LFO 之间能量交换的剧烈变化(相对较小)使得厄尔尼诺-季风关系极不稳定,而拉尼娜-季风关系则很稳定。从两次厄尔尼诺现象和两次拉尼娜现象的尺度间 KE 交换角度揭示厄尔尼诺-ISM、厄尔尼诺-WNPSM、拉尼娜-ISM 和拉尼娜-WNPSM 关系,可能有助于加深对厄尔尼诺/南方涛动-季风非线性的理解。这项工作将为进一步研究这两个大尺度系统之间的非线性空间提供一个途径,由于全球变暖和气候变化,预计这两个大尺度系统之间的非线性空间将更加复杂。
{"title":"Scale interactions during ENSO – a new dynamical mechanism on unveiling ENSO-monsoon nonlinearity","authors":"S. De, N. K. Agarwal, Jasti S. Chowdary, Darshana Patekar","doi":"10.1007/s00704-024-05111-5","DOIUrl":"https://doi.org/10.1007/s00704-024-05111-5","url":null,"abstract":"<p>El Niño Southern Oscillations (ENSO), being the largest global air-sea interaction phenomena, has a profound effect on global monsoon. In this study, for the first time we have examined the ENSO – Monsoon relation through nonlinear kinetic energy (KE) exchanges outlook across scales. Indian summer monsoon (ISM) and Western North Pacific Summer Monsoon (WNPSM) are considered to be the two major components of global monsoon on which ENSO has a huge impact. The ENSO – Monsoon nonlinearity can be explored by unraveling the unstable (stable) relation between ENSO and Monsoon during El Niño (La Niña) period through the mechanism of scale interactions among El Niño / La Niña, dominant high (HFO) and low frequency oscillation (LFO) considering ENSO itself as a LFO of time period 12–18 months. It is found from the analysis that more (less) KE is transferred to synoptic scale and 10-20 day LFO from El Niño 1997-98 compared to that from 2015 - 16 episode over ISM (WNPSM) region. Moreover, the opposite energy exchange between El Niño and 30-60 day wave is observed over these regions, attributing to contrasting rainfall variation over ISM and WNPSM zone. Sharp (comparatively less) variability in energy exchange among El Niño (La Niña), HFO and LFO over ISM and WNPSM regions make El Niño – Monsoon relation highly unstable whereas La Niña – Monsoon relation a stable one. Unveiling El Niño-ISM, El Niño-WNPSM, La Niña-ISM and La Niña-WNPSM relations in terms of inter-scale KE exchanges for the two El Niño and two La Niña events may lead to enhance the understanding of ENSO-monsoon nonlinearity. This work will make an avenue for further research in the space of nonlinearity between the two large scale systems that may be expected to be more complex due to the global warming and climate change as a futuristic study.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":"21 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141784275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study has been undertaken to predict the Surface Latent Heat Flux (SLHF) over the North Indian Ocean (NIO) in the future period (2020–2099) under different emission scenarios. For this 12 Coupled Model Inter-comparison Project 6 (CMIP6), Global Climate Models (GCMs) SLHF and ERA5 SLHF data have been used. It is observed that the SLHF is going to increase in the far future (2060–2099) under all emission scenarios probably due to higher warming. In the near future (2020–2059) particularly in the first half (2020–2039) a clear fall in the SLHF is noticed. It is also observed that the SLHF rise under the Shared Socioeconomic Pathways 5 (SSP5) is more than that under the SSP2 in the far future due to higher warming. Seasonal variation of the SLHF depicts that under SSP5 in the far future, the rise in the SLHF is the maximum in MAM. The rise of the SLHF in the far future can be attributed to the rise in the SST over the NIO but the reason for the fall of the SLHF in the first half of the near future is not clear.
{"title":"CMIP6 projections of surface latent heat flux over the North Indian Ocean","authors":"Pravat Rabi Naskar, Mrutyunjay Mohapatra, Gyan Prakash Singh","doi":"10.1007/s00704-024-05114-2","DOIUrl":"https://doi.org/10.1007/s00704-024-05114-2","url":null,"abstract":"<p>This study has been undertaken to predict the Surface Latent Heat Flux (SLHF) over the North Indian Ocean (NIO) in the future period (2020–2099) under different emission scenarios. For this 12 Coupled Model Inter-comparison Project 6 (CMIP6), Global Climate Models (GCMs) SLHF and ERA5 SLHF data have been used. It is observed that the SLHF is going to increase in the far future (2060–2099) under all emission scenarios probably due to higher warming. In the near future (2020–2059) particularly in the first half (2020–2039) a clear fall in the SLHF is noticed. It is also observed that the SLHF rise under the Shared Socioeconomic Pathways 5 (SSP5) is more than that under the SSP2 in the far future due to higher warming. Seasonal variation of the SLHF depicts that under SSP5 in the far future, the rise in the SLHF is the maximum in MAM. The rise of the SLHF in the far future can be attributed to the rise in the SST over the NIO but the reason for the fall of the SLHF in the first half of the near future is not clear.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":"24 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141784274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1007/s00704-024-05120-4
Hasan Aldashti, Zaher AlAbadla, Mohamed F. Yassin, Mohamed Magdy Abdel Wahab
Droughts and climate change are causing severe and persistent dust storms in the arid and hot regions. The potential existence of significant relationships between the Oceanic Niño Index (ONI), Indian Ocean Dipole (IOD), and the MERRA-2 dust column mass density data are thus investigated in the State of Kuwait during 1990–2021 as a study case in the hot and arid regions. The findings show that the correlation starts from ONI-DJF (December–January-February) with the Pearson test value of -0.36 and increasing to a value of -0.55 on ONI-AMJ (April-May-June), the same results were obtained when applying the Spearman correlation test. The correlation exists between the July dust column mass density and IOD-January with a value of -0.484 and − 0.544 over Pearson and ' ‘Spearman’s test, respectively, all estimated p-values are lower than 0.05. The results of the One-Way ANOVA show that the output is pretty straightforward and statistically significant at p > 0.05, which was confirmed by the nonparametric Kruskal–Walli’s test and Mann-Whitney Test. This considerable correlation means that active dust storms are linked with La Niña, while light dust storms occur during the El Niño event. A positive correlation occurs between precipitation and ONI - SON (September-October-November), while a negative correlation is found between precipitation and IOD-July. Our preliminary findings in this paper indicate that an appearance of -0.7°C in ONI-DJF could serve as a definitive marker of the La Nina phase and an indicator for at-risk communities to prepare for the expected activity dust storm.
{"title":"An investigation of dust-sand events and possible prediction in hot arid regions of Kuwait","authors":"Hasan Aldashti, Zaher AlAbadla, Mohamed F. Yassin, Mohamed Magdy Abdel Wahab","doi":"10.1007/s00704-024-05120-4","DOIUrl":"https://doi.org/10.1007/s00704-024-05120-4","url":null,"abstract":"<p>Droughts and climate change are causing severe and persistent dust storms in the arid and hot regions. The potential existence of significant relationships between the Oceanic Niño Index (ONI), Indian Ocean Dipole (IOD), and the MERRA-2 dust column mass density data are thus investigated in the State of Kuwait during 1990–2021 as a study case in the hot and arid regions. The findings show that the correlation starts from ONI-DJF (December–January-February) with the Pearson test value of -0.36 and increasing to a value of -0.55 on ONI-AMJ (April-May-June), the same results were obtained when applying the Spearman correlation test. The correlation exists between the July dust column mass density and IOD-January with a value of -0.484 and − 0.544 over Pearson and ' ‘Spearman’s test, respectively, all estimated <i>p</i>-values are lower than 0.05. The results of the One-Way ANOVA show that the output is pretty straightforward and statistically significant at p > 0.05, which was confirmed by the nonparametric Kruskal–Walli’s test and Mann-Whitney Test. This considerable correlation means that active dust storms are linked with La Niña, while light dust storms occur during the El Niño event. A positive correlation occurs between precipitation and ONI - SON (September-October-November), while a negative correlation is found between precipitation and IOD-July. Our preliminary findings in this paper indicate that an appearance of -0.7°C in ONI-DJF could serve as a definitive marker of the La Nina phase and an indicator for at-risk communities to prepare for the expected activity dust storm.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":"44 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1007/s00704-024-05104-4
Prabhjyot-Kaur, Samanpreet Kaur, Abhishek Dhir, Harsimran Kaur, B. B. Vashisht
Punjab state has set the standard for agricultural growth and was the initiator of the Green Revolution in India, producing the highest quality wheat, rice, cotton and other crops. Although Punjab’s land is fertile but over time, but ecological resources, i.e. climate, soil and groundwater have got altered due to which farmers are still unaware to decide which crops are best to grow in their areas for the highest yields and highest financial returns. Agro-Eco-Resource zonation (AERZ) is a classification technique that uses meteorological, soil and groundwater data of the targeted region for proper zonation with higher priority towards crop suitability factors. In the present study 8 major factors (minimum temperature, maximum temperature, rainfall, soil organic carbon, soil texture, soil pH, groundwater depth and groundwater level fluctuations) were used for creating zones for the entire state of Punjab. Analytical Hierarchy Process (AHP) was used for assigning weightage to each factor and the inverse distance weighting interpolation was used to create the thematic maps after importing the data into a Geographic Information Systems (GIS) using attribute tables. These maps were then superimposed so that it would be possible for zoning by using all the stated factors. Based on the degree of suitability for agriculture from highest to lowest, AERZ were identified on a final map. The AERZ map were then validated by comparing them with the rice and wheat productivity data maps. The state was classified into 4 major classes, wherein the zone 4 had conditions most suitable for agricultural crops while zone 1 had constraints and so was least suitable for cultivating crops. The geographical area under zone 3 was nearly 50% followed by zone 4 (30%), zone 2 (19%) and zone 1 (0.7%). The roadmap for sustaining the agricultural productivity in the state revealed that cultivation of resource intensive crops (Rice/ Basmati rice, Wheat, Maize and Vegetables) should be curtailed to only 30% (zone 4) of the total geographical area of the state. Further, the agro-eco-resource constrained ~ 1% (zone 1) of the land area may preferably be kept fallow or used for forest cover. Therefore, AERZ using AHP and GIS techniques is a useful tool for agricultural planning and management. It helps in identifying the best crops that can be grown in a particular region, which in turn helps in improving the efficiency and productivity of agricultural production.
{"title":"Agro-Eco-Resource Zonation (AERZ) for sustainable agriculture using GIS and AHP techniques in Indian Punjab","authors":"Prabhjyot-Kaur, Samanpreet Kaur, Abhishek Dhir, Harsimran Kaur, B. B. Vashisht","doi":"10.1007/s00704-024-05104-4","DOIUrl":"https://doi.org/10.1007/s00704-024-05104-4","url":null,"abstract":"<p>Punjab state has set the standard for agricultural growth and was the initiator of the Green Revolution in India, producing the highest quality wheat, rice, cotton and other crops. Although Punjab’s land is fertile but over time, but ecological resources, i.e. climate, soil and groundwater have got altered due to which farmers are still unaware to decide which crops are best to grow in their areas for the highest yields and highest financial returns. Agro-Eco-Resource zonation (AERZ) is a classification technique that uses meteorological, soil and groundwater data of the targeted region for proper zonation with higher priority towards crop suitability factors. In the present study 8 major factors (minimum temperature, maximum temperature, rainfall, soil organic carbon, soil texture, soil pH, groundwater depth and groundwater level fluctuations) were used for creating zones for the entire state of Punjab. Analytical Hierarchy Process (AHP) was used for assigning weightage to each factor and the inverse distance weighting interpolation was used to create the thematic maps after importing the data into a Geographic Information Systems (GIS) using attribute tables. These maps were then superimposed so that it would be possible for zoning by using all the stated factors. Based on the degree of suitability for agriculture from highest to lowest, AERZ were identified on a final map. The AERZ map were then validated by comparing them with the rice and wheat productivity data maps. The state was classified into 4 major classes, wherein the zone 4 had conditions most suitable for agricultural crops while zone 1 had constraints and so was least suitable for cultivating crops. The geographical area under zone 3 was nearly 50% followed by zone 4 (30%), zone 2 (19%) and zone 1 (0.7%). The roadmap for sustaining the agricultural productivity in the state revealed that cultivation of resource intensive crops (Rice/ Basmati rice, Wheat, Maize and Vegetables) should be curtailed to only 30% (zone 4) of the total geographical area of the state. Further, the agro-eco-resource constrained ~ 1% (zone 1) of the land area may preferably be kept fallow or used for forest cover. Therefore, AERZ using AHP and GIS techniques is a useful tool for agricultural planning and management. It helps in identifying the best crops that can be grown in a particular region, which in turn helps in improving the efficiency and productivity of agricultural production.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":"70 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We analyzed long-term soil CO2 concentrations, soil temperature and moisture, with simultaneous canopy microclimate measurements, in a subtropical 20 years old oak forest in Huainan, China, in the East Asian monsoon region. Daily soil CO2 effluxes were quantified using the gradient method. We investigated the relationship between soil CO2 concentrations and efflux, and both soil temperature and water content, and the effects of phenological stages and seasons. explored how abiotic factors (soil temperature and moisture) along with LAI influence soil CO2 efflux. Subsurface soil CO2 concentration and efflux showed clear seasonal variations, with an increase in spring to a small peak, reaching a maximum in summer, then a decrease in autumn but with a sharp second peak when precipitation season began, and finally a decrease to a minimum in winter. In this forest ecosystem, the calculated soil subsurface CO2 efflux at 0.02 m averaged 1.40 µmol m−2 s−1 and ranged from 0.24 to 4.11 µmol m−2 s−1 over a whole year from September 1, 2018 to August 31, 2019. Seasonal fluctuations in soil CO2 concentrations and efflux were primarily influenced by soil temperature, with soil moisture exerting secondary effects throughout the entire study period and in most cases. However, during warm, dry periods like summer or maturity stages, soil water content emerged as the primary factor governing CO2 efflux. The combined influences of soil temperature and water content were different in different phenological stages, and highly regulated by drought and rains. For instance, in the phenological mature stage, soil CO2 concentration was mainly affected by soil water content. In the mature stage, soil CO2 efflux correlated more closely with soil water content than with soil temperature following a spring drought episode.
{"title":"Seasonal variations of soil CO2 concentrations and efflux and their influencing factors in a subtropical hilly oak forest in Huainan, China","authors":"Qiudan Dai, Zhenhai Guo, Zhenghui Xie, Xia Zhang, Heng Yan, Xia Xiao","doi":"10.1007/s00704-024-05107-1","DOIUrl":"https://doi.org/10.1007/s00704-024-05107-1","url":null,"abstract":"<p>We analyzed long-term soil CO<sub>2</sub> concentrations, soil temperature and moisture, with simultaneous canopy microclimate measurements, in a subtropical 20 years old oak forest in Huainan, China, in the East Asian monsoon region. Daily soil CO<sub>2</sub> effluxes were quantified using the gradient method. We investigated the relationship between soil CO<sub>2</sub> concentrations and efflux, and both soil temperature and water content, and the effects of phenological stages and seasons. explored how abiotic factors (soil temperature and moisture) along with LAI influence soil CO<sub>2</sub> efflux. Subsurface soil CO<sub>2</sub> concentration and efflux showed clear seasonal variations, with an increase in spring to a small peak, reaching a maximum in summer, then a decrease in autumn but with a sharp second peak when precipitation season began, and finally a decrease to a minimum in winter. In this forest ecosystem, the calculated soil subsurface CO<sub>2</sub> efflux at 0.02 m averaged 1.40 µmol m<sup>−2</sup> s<sup>−1</sup> and ranged from 0.24 to 4.11 µmol m<sup>−2</sup> s<sup>−1</sup> over a whole year from September 1, 2018 to August 31, 2019. Seasonal fluctuations in soil CO<sub>2</sub> concentrations and efflux were primarily influenced by soil temperature, with soil moisture exerting secondary effects throughout the entire study period and in most cases. However, during warm, dry periods like summer or maturity stages, soil water content emerged as the primary factor governing CO<sub>2</sub> efflux. The combined influences of soil temperature and water content were different in different phenological stages, and highly regulated by drought and rains. For instance, in the phenological mature stage, soil CO<sub>2</sub> concentration was mainly affected by soil water content. In the mature stage, soil CO<sub>2</sub> efflux correlated more closely with soil water content than with soil temperature following a spring drought episode.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":"47 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1007/s00704-024-05116-0
Chenxuan Li, Zhigang Wei
By using ERA5 reanalysis data, this paper combined existing research definitions of gale processes to analyze the variation characteristics of gale processes occurring in the South China Sea region, and to study the response of the gale process to East Pacific sea surface temperature. The results indicate that the gale process shows the significant annual variation and the most frequent in winter and least frequent in summer. While there is no significant trend in the frequency of gale processes in each season. There is a significant negative correlation between the frequency of gale process and the East Pacific sea surface temperature in spring, autumn, and winter. When the sea surface temperature in the eastern Pacific rises abnormally, the frequency of gale processes in the South China Sea decreases. When abnormally high, the frequency of gale process in the South China Sea increases. In summer, this relationship is the opposite. When sea surface temperature is abnormal, the anomalous anticyclone triggered in the western Pacific, and has a weakening effect on the prevailing winds in the South China Sea, leading to a reduction in high wind speed and gale events, thereby reducing the frequency of gale process.
{"title":"Variation of the gale process over the South China Sea from 1979 to 2021 and its response to East Pacific Sea surface temperature","authors":"Chenxuan Li, Zhigang Wei","doi":"10.1007/s00704-024-05116-0","DOIUrl":"https://doi.org/10.1007/s00704-024-05116-0","url":null,"abstract":"<p>By using ERA5 reanalysis data, this paper combined existing research definitions of gale processes to analyze the variation characteristics of gale processes occurring in the South China Sea region, and to study the response of the gale process to East Pacific sea surface temperature. The results indicate that the gale process shows the significant annual variation and the most frequent in winter and least frequent in summer. While there is no significant trend in the frequency of gale processes in each season. There is a significant negative correlation between the frequency of gale process and the East Pacific sea surface temperature in spring, autumn, and winter. When the sea surface temperature in the eastern Pacific rises abnormally, the frequency of gale processes in the South China Sea decreases. When abnormally high, the frequency of gale process in the South China Sea increases. In summer, this relationship is the opposite. When sea surface temperature is abnormal, the anomalous anticyclone triggered in the western Pacific, and has a weakening effect on the prevailing winds in the South China Sea, leading to a reduction in high wind speed and gale events, thereby reducing the frequency of gale process.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":"18 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1007/s00704-024-05024-3
Madiha Asif, Muhammad Yaseen, Syed Umair Shahid, Yasir Latif, Salma Anwar, Sohail Abbas
The management of water resources is no longer an option but a necessity especially in countries with a high rate of population growth like Pakistan. Pakistan has a high-water scarcity, an extremely varying topography, and is also one of the countries encountering the problem of climate change. Therefore, prudent utilization of available water resources is a matter in the plains of Pakistan as in its high-altitude regions. Instead of wasting water which is a valuable resource, rainwater harvesting is a way of saving rainwater as an alternative source of fresh water for better use. The aim of this study was to search for potential rainwater-harvesting areas in a high-altitude Gilgit River basin. This research employed the SCS-CN technique in estimating surface runoff in the GIS environment. The geospatial study used four input parameters: slope of the land, land covers, surface runoff and drainage density. The research concluded that some lands, especially those that are deserted in dry area and agricultural lands, can serve as the sites of rainwater harvesting, with only 4% of area that was highly suitable for the purpose. Nevertheless, 37% of the investigated area was shown as totally unviable for rainwater collection installations because of steep slopes and substantial volume of snow. Simultaneously, the rainwater storage design solutions suggested were check dam, percolation tank, and agricultural ponds with the area of 3.5%, 1%, and 0.75% of the given land area, respectively, for rainwater harvesting. The locations of potential catchment and planned rainwater harvesting structures would assist the local authorities and the policy makers to provide plans and design on the construction of water storages and also the optimization of water use.
{"title":"Geospatial identification of possible rainwater harvesting locations within a high-altitude Gilgit River basin, Pakistan","authors":"Madiha Asif, Muhammad Yaseen, Syed Umair Shahid, Yasir Latif, Salma Anwar, Sohail Abbas","doi":"10.1007/s00704-024-05024-3","DOIUrl":"https://doi.org/10.1007/s00704-024-05024-3","url":null,"abstract":"<p>The management of water resources is no longer an option but a necessity especially in countries with a high rate of population growth like Pakistan. Pakistan has a high-water scarcity, an extremely varying topography, and is also one of the countries encountering the problem of climate change. Therefore, prudent utilization of available water resources is a matter in the plains of Pakistan as in its high-altitude regions. Instead of wasting water which is a valuable resource, rainwater harvesting is a way of saving rainwater as an alternative source of fresh water for better use. The aim of this study was to search for potential rainwater-harvesting areas in a high-altitude Gilgit River basin. This research employed the SCS-CN technique in estimating surface runoff in the GIS environment. The geospatial study used four input parameters: slope of the land, land covers, surface runoff and drainage density. The research concluded that some lands, especially those that are deserted in dry area and agricultural lands, can serve as the sites of rainwater harvesting, with only 4% of area that was highly suitable for the purpose. Nevertheless, 37% of the investigated area was shown as totally unviable for rainwater collection installations because of steep slopes and substantial volume of snow. Simultaneously, the rainwater storage design solutions suggested were check dam, percolation tank, and agricultural ponds with the area of 3.5%, 1%, and 0.75% of the given land area, respectively, for rainwater harvesting. The locations of potential catchment and planned rainwater harvesting structures would assist the local authorities and the policy makers to provide plans and design on the construction of water storages and also the optimization of water use.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":"64 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1007/s00704-024-05108-0
Ugochukwu K. Okoro, Wen Chen, Victor N. Dike
The near-term performance efficiency in predicting the dry and wet years in the West African monsoon (WAM) season (May to October) has been studied from 1979 to 2050 using the CRU observational rainfall, NCEP RII atmospheric circulation fields, and CORDEX-Africa outputs in the historical and RCP 8.5 experiments. The dry and wet years from the 6-month SPI at the Western Sudano Sahel (WSS), Eastern Sudano Sahel (ESS), and Guinea Coast (GC) rainfall regions, respectively, have shown consistency in the associated features during such WAM season extremes. The ensemble mean of the historical outputs (1979 to 2005) shows varying simulations of the WAM season; non-significant correlation in rainfall in GC and its overestimation at the three regions, the underestimating (overestimating) of Moisture Flux Convergence (MFC) in the Sahel (GC), and the “non-reasonable” performance by the Kling-Gupta efficiency in simulating the zonal moisture flux in GC and meridional moisture flux in ESS. The bias-correction of the RCP 8.5 outputs has shown improved performance efficiency of the models simulations from 2006 to 2021, however, with the attendant limitations in the technique. The bias-corrected rainfall showed underestimation at all regions although indicating negative significant correlation at the GC (r = -0.33, at 99.9% Confidence level from t-test) whereas the MFC has shown reasonable performance in the GC (KGE = -0.39). However, the ensemble mean of the models presents greater efficiency in projecting the WAM dry and wet years although there are yet huge uncertainties in the projections indicated by the MBE values. The 6-month SPI projections from the improved RCP 8.5 simulation present 2048 to be dry and 2035, 2042 and 2047 to be wet years during the WAM from 2022 to 2050. Noteworthy is the impact of MFC on rainfall being consistent in both the historical and the bias-corrected models’ outputs, having a greater impact by 2050.
{"title":"Near-term efficient predictability of dry and wet years during West African monsoon season","authors":"Ugochukwu K. Okoro, Wen Chen, Victor N. Dike","doi":"10.1007/s00704-024-05108-0","DOIUrl":"https://doi.org/10.1007/s00704-024-05108-0","url":null,"abstract":"<p>The near-term performance efficiency in predicting the dry and wet years in the West African monsoon (WAM) season (May to October) has been studied from 1979 to 2050 using the CRU observational rainfall, NCEP RII atmospheric circulation fields, and CORDEX-Africa outputs in the historical and RCP 8.5 experiments. The dry and wet years from the 6-month SPI at the Western Sudano Sahel (WSS), Eastern Sudano Sahel (ESS), and Guinea Coast (GC) rainfall regions, respectively, have shown consistency in the associated features during such WAM season extremes. The ensemble mean of the historical outputs (1979 to 2005) shows varying simulations of the WAM season; non-significant correlation in rainfall in GC and its overestimation at the three regions, the underestimating (overestimating) of Moisture Flux Convergence (MFC) in the Sahel (GC), and the “non-reasonable” performance by the Kling-Gupta efficiency in simulating the zonal moisture flux in GC and meridional moisture flux in ESS. The bias-correction of the RCP 8.5 outputs has shown improved performance efficiency of the models simulations from 2006 to 2021, however, with the attendant limitations in the technique. The bias-corrected rainfall showed underestimation at all regions although indicating negative significant correlation at the GC (<i>r</i> = -0.33, at 99.9% Confidence level from t-test) whereas the MFC has shown reasonable performance in the GC (KGE = -0.39). However, the ensemble mean of the models presents greater efficiency in projecting the WAM dry and wet years although there are yet huge uncertainties in the projections indicated by the MBE values. The 6-month SPI projections from the improved RCP 8.5 simulation present 2048 to be dry and 2035, 2042 and 2047 to be wet years during the WAM from 2022 to 2050. Noteworthy is the impact of MFC on rainfall being consistent in both the historical and the bias-corrected models’ outputs, having a greater impact by 2050.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":"21 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141746431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1007/s00704-024-05105-3
Baqer Al-Ramadan, Adel S. Aldosary, Abdulla Al Kafy, Saleh Alsulamy, Zullyadini A. Rahaman
In the rapidly changing climate of arid desert regions, evaluating the comprehensive characteristics of humidity levels is crucial for agricultural, urban, and infrastructural planning, as well as for minimizing potential public health impacts. We investigated variability and trends of humidity levels in major Saudi Arabian cities during 1982–2022, focusing on the influence of meteorological factors such as average, maximum and minimum temperature, rainfall, and windspeed. Employing the Probability Density Function and descriptive statistics, variability of climatic factors was analyzed. The Mann–Kendall Test (MKT) and Innovative Trend Analysis (ITA) were employed to identify monthly and annual trends. The magnitude and changing patterns were determined by calculating Sen’s Slope and ITA slope. Findings of the MKT and ITA showed similar trends in humidity levels across all the cities. ITA result revealed that humidity in Riyadh and Taif decreased at a rate of 0.012% and 0.016% per year, respectively, while increased in Jeddah, Makkah, and Madinah at a 0.05 confidence level. The influence of climatic factors on humidity was assessed using Pearson’s correlation coefficients, multiple regression model, and wavelet transform coherence (WTC) for each city, pinpointing temperature as the key driver of humidity variability. The dominance of temperature features was corroborated by strong power spectrums in the WTC across various time periods and scales. The in-depth analysis of humidity dynamics in this study provides critical insights for the development of climate-resilient infrastructure and formulation of public health strategies in Saudi Arabian cities.
{"title":"Unraveling the spatiotemporal dynamics of relative humidity in major Saudi Arabian cities: A synergy of climate modeling, regression analysis, and wavelet coherence","authors":"Baqer Al-Ramadan, Adel S. Aldosary, Abdulla Al Kafy, Saleh Alsulamy, Zullyadini A. Rahaman","doi":"10.1007/s00704-024-05105-3","DOIUrl":"https://doi.org/10.1007/s00704-024-05105-3","url":null,"abstract":"<p>In the rapidly changing climate of arid desert regions, evaluating the comprehensive characteristics of humidity levels is crucial for agricultural, urban, and infrastructural planning, as well as for minimizing potential public health impacts. We investigated variability and trends of humidity levels in major Saudi Arabian cities during 1982–2022, focusing on the influence of meteorological factors such as average, maximum and minimum temperature, rainfall, and windspeed. Employing the Probability Density Function and descriptive statistics, variability of climatic factors was analyzed. The Mann–Kendall Test (MKT) and Innovative Trend Analysis (ITA) were employed to identify monthly and annual trends. The magnitude and changing patterns were determined by calculating Sen’s Slope and ITA slope. Findings of the MKT and ITA showed similar trends in humidity levels across all the cities. ITA result revealed that humidity in Riyadh and Taif decreased at a rate of 0.012% and 0.016% per year, respectively, while increased in Jeddah, Makkah, and Madinah at a 0.05 confidence level. The influence of climatic factors on humidity was assessed using Pearson’s correlation coefficients, multiple regression model, and wavelet transform coherence (WTC) for each city, pinpointing temperature as the key driver of humidity variability. The dominance of temperature features was corroborated by strong power spectrums in the WTC across various time periods and scales. The in-depth analysis of humidity dynamics in this study provides critical insights for the development of climate-resilient infrastructure and formulation of public health strategies in Saudi Arabian cities.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":"14 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141721467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work investigates the spatio-temporal variability of planetary boundary layer height (PBLH) characteristics by leveraging multi-decadal (1980–2019) data from India’s first high-resolution regional atmospheric reanalysis–IMDAA, in conjunction with ERA5 and MERRA-2. The spatial variability in the seasonal and annual climatological mean PBLH obtained from IMDAA agrees well with ERA5 and MERRA-2, albeit with some differences. The IMDAA and ERA5 PBLH exhibit a high correlation (> 0.6) over the entire India and also show a significant positive (negative) correlation with MERRA-2 over northwest and central (southern and eastern) Indian regions. However, IMDAA tends to overestimate ERA5 PBLH ( ~ < 500 m) and underestimate MERRA-2 PBLH ( ~ > 500 m) during all seasons. Despite these discrepancies, IMDAA successfully captures the diurnal changes in PBLH similar to ERA5 and MERRA-2. Furthermore, the evaluation of IMDAA PBLH in conjunction with other meteorological factors suggests that PBLH exhibits a negative correlation with relative humidity (RH), indicating a decrease in PBLH as RH increases. On the other hand, PBLH shows positive correlations with surface temperature and surface zonal winds. Surface sensible and latent heat flux exhibit positive and negative correlations with PBLH, respectively, over Indian sub-regions throughout all seasons. Moreover, IMDAA realistically represents the declining trend of PBLH (-1.1 to -76.2 m decade− 1) compared to ERA5 in India during all seasons. The results from IMDAA, in concurrence with other reanalyses, demonstrate that the decreasing trend in PBLH over India is associated with rising surface temperatures and weakening surface zonal winds. This trend is also attributed to increasing latent heat flux and decreasing sensible heat flux. The changes in surface fluxes over India are attributed to the intensification of Indian monsoon rainfall in the last three decades. Moreover, El Niño appears to be an important control on PBLH variability over India during different seasons, which is realistically represented by IMDAA as in ERA5 and MERRA-2.
{"title":"Climatology, trends, and variability of planetary boundary layer height over India using high-resolution Indian reanalysis","authors":"Krishna Kumar Shukla, Raju Attada, Akash Pathaikara","doi":"10.1007/s00704-024-05102-6","DOIUrl":"https://doi.org/10.1007/s00704-024-05102-6","url":null,"abstract":"<p>This work investigates the spatio-temporal variability of planetary boundary layer height (PBLH) characteristics by leveraging multi-decadal (1980–2019) data from India’s first high-resolution regional atmospheric reanalysis–IMDAA, in conjunction with ERA5 and MERRA-2. The spatial variability in the seasonal and annual climatological mean PBLH obtained from IMDAA agrees well with ERA5 and MERRA-2, albeit with some differences. The IMDAA and ERA5 PBLH exhibit a high correlation (> 0.6) over the entire India and also show a significant positive (negative) correlation with MERRA-2 over northwest and central (southern and eastern) Indian regions. However, IMDAA tends to overestimate ERA5 PBLH ( ~ < 500 m) and underestimate MERRA-2 PBLH ( ~ > 500 m) during all seasons. Despite these discrepancies, IMDAA successfully captures the diurnal changes in PBLH similar to ERA5 and MERRA-2. Furthermore, the evaluation of IMDAA PBLH in conjunction with other meteorological factors suggests that PBLH exhibits a negative correlation with relative humidity (RH), indicating a decrease in PBLH as RH increases. On the other hand, PBLH shows positive correlations with surface temperature and surface zonal winds. Surface sensible and latent heat flux exhibit positive and negative correlations with PBLH, respectively, over Indian sub-regions throughout all seasons. Moreover, IMDAA realistically represents the declining trend of PBLH (-1.1 to -76.2 m decade<sup>− 1</sup>) compared to ERA5 in India during all seasons. The results from IMDAA, in concurrence with other reanalyses, demonstrate that the decreasing trend in PBLH over India is associated with rising surface temperatures and weakening surface zonal winds. This trend is also attributed to increasing latent heat flux and decreasing sensible heat flux. The changes in surface fluxes over India are attributed to the intensification of Indian monsoon rainfall in the last three decades. Moreover, El Niño appears to be an important control on PBLH variability over India during different seasons, which is realistically represented by IMDAA as in ERA5 and MERRA-2.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":"75 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141721468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}