Christopher L Haga, Cori N Booker, Ana Carvalho, Siddaraju V Boregowda, Donald G Phinney
Despite extensive clinical testing, mesenchymal stem/stromal cell (MSC)-based therapies continue to underperform with respect to efficacy, which reflects the paucity of biomarkers that predict potency prior to patient administration. Previously, we reported that TWIST1 predicts inter-donor differences in MSC quality attributes that confer potency. To define the full spectrum of TWIST1 activity in MSCs, the present work employed integrated omics-based profiling to identify a high-confidence set of TWIST1 targets, which mapped to cellular processes related to ECM structure/organization, skeletal and circulatory system development, interferon gamma signaling, and inflammation. These targets are implicated in contributing to both stem/progenitor and paracrine activities of MSCs indicating these processes are linked mechanistically in a TWIST1-dependent manner. Targets implicated in extracellular matrix dynamics further implicate TWIST1 in modulating cellular responses to niche remodeling. Novel TWIST1-regulated genes identified herein may be prioritized for future mechanistic and functional studies.
{"title":"Transcriptional Targets of TWIST1 in Human Mesenchymal Stem/Stromal Cells Mechanistically Link Stem/Progenitor and Paracrine Functions.","authors":"Christopher L Haga, Cori N Booker, Ana Carvalho, Siddaraju V Boregowda, Donald G Phinney","doi":"10.1093/stmcls/sxad070","DOIUrl":"10.1093/stmcls/sxad070","url":null,"abstract":"<p><p>Despite extensive clinical testing, mesenchymal stem/stromal cell (MSC)-based therapies continue to underperform with respect to efficacy, which reflects the paucity of biomarkers that predict potency prior to patient administration. Previously, we reported that TWIST1 predicts inter-donor differences in MSC quality attributes that confer potency. To define the full spectrum of TWIST1 activity in MSCs, the present work employed integrated omics-based profiling to identify a high-confidence set of TWIST1 targets, which mapped to cellular processes related to ECM structure/organization, skeletal and circulatory system development, interferon gamma signaling, and inflammation. These targets are implicated in contributing to both stem/progenitor and paracrine activities of MSCs indicating these processes are linked mechanistically in a TWIST1-dependent manner. Targets implicated in extracellular matrix dynamics further implicate TWIST1 in modulating cellular responses to niche remodeling. Novel TWIST1-regulated genes identified herein may be prioritized for future mechanistic and functional studies.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"1185-1200"},"PeriodicalIF":4.0,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723815/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10144506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuya Sekiguchi, Aya Fukuda, Ken Nishimura, Koji Hisatake
Articular cartilage plays vital roles as a friction minimizer and shock absorber during joint movement but has a poor capacity to self-repair when damaged through trauma or disease. Cartilage tissue engineering is an innovative technique for cartilage regeneration, yet its therapeutic application requires chondrocytes in large numbers. Direct reprogramming of somatic cells to chondrocytes by expressing SOX9, KLF4, and c-MYC offers a promising option to generate chondrocytes in sufficient numbers; however, the low efficiency of the reprogramming system warrants further improvement. Here we referred to structural and functional features of SOX9 and performed alanine-scanning mutagenesis of functionally critical residues in the HMG box and at putative posttranslational modification (PTM) sites. We discovered that a SOX9 variant H131A/K398A, doubly mutated in the HMG box (H131) and at a PTM site (K398), significantly upregulated expression of chondrogenic genes and potently induced chondrocytes from mouse embryonic fibroblasts. The H131A/K398A variant remained unsumoylated in cells and exhibited a stronger DNA-binding activity than wild-type SOX9, especially when complexed with other proteins. Our results show that the novel SOX9 variant may be useful for efficient induction of chondrocytes and illuminate the strategic feasibility of mutating a transcription factor at functionally critical residues to expedite discovery of an optimized reprogramming factor.
{"title":"Engineering Critical Residues of SOX9 Discovers a Variant With Potent Capacity to Induce Chondrocytes.","authors":"Yuya Sekiguchi, Aya Fukuda, Ken Nishimura, Koji Hisatake","doi":"10.1093/stmcls/sxad066","DOIUrl":"10.1093/stmcls/sxad066","url":null,"abstract":"<p><p>Articular cartilage plays vital roles as a friction minimizer and shock absorber during joint movement but has a poor capacity to self-repair when damaged through trauma or disease. Cartilage tissue engineering is an innovative technique for cartilage regeneration, yet its therapeutic application requires chondrocytes in large numbers. Direct reprogramming of somatic cells to chondrocytes by expressing SOX9, KLF4, and c-MYC offers a promising option to generate chondrocytes in sufficient numbers; however, the low efficiency of the reprogramming system warrants further improvement. Here we referred to structural and functional features of SOX9 and performed alanine-scanning mutagenesis of functionally critical residues in the HMG box and at putative posttranslational modification (PTM) sites. We discovered that a SOX9 variant H131A/K398A, doubly mutated in the HMG box (H131) and at a PTM site (K398), significantly upregulated expression of chondrogenic genes and potently induced chondrocytes from mouse embryonic fibroblasts. The H131A/K398A variant remained unsumoylated in cells and exhibited a stronger DNA-binding activity than wild-type SOX9, especially when complexed with other proteins. Our results show that the novel SOX9 variant may be useful for efficient induction of chondrocytes and illuminate the strategic feasibility of mutating a transcription factor at functionally critical residues to expedite discovery of an optimized reprogramming factor.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"1157-1170"},"PeriodicalIF":5.2,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10125094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaofeng Qi, Yali Luo, Mengyong Xiao, Qiuju Zhang, Jing Luo, Linna Ma, Linfeng Ruan, Nini Lian, Yongqi Liu
Diffuse alveolar epithelial cell (AEC) death occurs extensively during acute lung injury (ALI). Due to the limited proliferative capacity of alveolar type 1 epithelial (AT1) cells, the differentiation and regenerative capacity of alveolar type 2 epithelial (AT2) cells are required to restore the barrier function of AECs. However, during lung injury, AT1 cells are particularly susceptible to injury, and ATII cells die in the presence of severe or certain types of injury. This disruption ultimately results in a hindrance to the ability of AT2 cells to proliferate and differentiate into AT1 cells in time to repair the extensively damaged AECs. Therefore, understanding the mechanism of injury death of AT2 cells may be beneficial to reverse the above situation. This article reviews the main death modes of AT2 cells, including apoptosis, necrosis, necroptosis, pyroptosis, autophagic cell death, and ferroptosis. It compares the various forms of death, showing that various cell injury death modes have unique action mechanisms and partially overlapping pathways. Studying the mechanism of AT2 cell death is helpful in screening and analyzing the target pathway of AEC barrier function recovery. It opens up new ideas and strategies for preventing and treating ALI.
{"title":"Mechanisms of Alveolar Type 2 Epithelial Cell Death During Acute Lung Injury.","authors":"Xiaofeng Qi, Yali Luo, Mengyong Xiao, Qiuju Zhang, Jing Luo, Linna Ma, Linfeng Ruan, Nini Lian, Yongqi Liu","doi":"10.1093/stmcls/sxad074","DOIUrl":"10.1093/stmcls/sxad074","url":null,"abstract":"<p><p>Diffuse alveolar epithelial cell (AEC) death occurs extensively during acute lung injury (ALI). Due to the limited proliferative capacity of alveolar type 1 epithelial (AT1) cells, the differentiation and regenerative capacity of alveolar type 2 epithelial (AT2) cells are required to restore the barrier function of AECs. However, during lung injury, AT1 cells are particularly susceptible to injury, and ATII cells die in the presence of severe or certain types of injury. This disruption ultimately results in a hindrance to the ability of AT2 cells to proliferate and differentiate into AT1 cells in time to repair the extensively damaged AECs. Therefore, understanding the mechanism of injury death of AT2 cells may be beneficial to reverse the above situation. This article reviews the main death modes of AT2 cells, including apoptosis, necrosis, necroptosis, pyroptosis, autophagic cell death, and ferroptosis. It compares the various forms of death, showing that various cell injury death modes have unique action mechanisms and partially overlapping pathways. Studying the mechanism of AT2 cell death is helpful in screening and analyzing the target pathway of AEC barrier function recovery. It opens up new ideas and strategies for preventing and treating ALI.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"1113-1132"},"PeriodicalIF":5.2,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10617923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tanja Ilmarinen, Meri Vattulainen, Jeyalakshmi Kandhavelu, Dominique Bremond-Gignac, Daniel Aberdam, Heli Skottman
Congenital aniridia is caused by heterozygous mutations on the PAX6 gene leading to reduced amount of PAX6 protein (haploinsufficiency), abnormal eye development, and aniridia-associated keratopathy (AAK). This progressive corneal opacification resembles late-onset limbal stem cell (LSC) deficiency, leading to disrupted corneal epithelial renewal. The factors leading to AAK are not known and defects in native LSC differentiation and/or features leading to ocular surface dysfunction like inflammation and loss of innervation could contribute to development of AAK. Here, we produced induced pluripotent stem cells (hiPSC) from 3 AAK patients and examined whether PAX6 haploinsufficiency affects LSC lineage commitment. During LSC differentiation, characterization of the AAK lines showed lowered PAX6 expression as compared to wild type (WT) controls and expression peak of PAX6 during early phase of differentiation was detected only in the WT hiPSC lines. Whether it reflects developmental regulation remains to be studied further. Nevertheless, the AAK-hiPSCs successfully differentiated toward LSC lineage, in line with the presence of LSCs in young patients before cell loss later in life. In addition, patient-specific LSCs showed similar wound healing capacity as WT cells. However, extensive batch-related variation in the LSC marker expression and wound healing efficacy was detected without clear correlation to AAK. As development and maintenance of corneal epithelium involves an interplay between LSCs and their environment, the AAK-hiPSCs generated here can be further used to study the crosstalk between LSCs and limbal niche including, eg, corneal immune cells, stroma cells, and neurons.
{"title":"Production and Limbal Lineage Commitment of Aniridia Patient-Derived Induced Pluripotent Stem Cells.","authors":"Tanja Ilmarinen, Meri Vattulainen, Jeyalakshmi Kandhavelu, Dominique Bremond-Gignac, Daniel Aberdam, Heli Skottman","doi":"10.1093/stmcls/sxad067","DOIUrl":"10.1093/stmcls/sxad067","url":null,"abstract":"<p><p>Congenital aniridia is caused by heterozygous mutations on the PAX6 gene leading to reduced amount of PAX6 protein (haploinsufficiency), abnormal eye development, and aniridia-associated keratopathy (AAK). This progressive corneal opacification resembles late-onset limbal stem cell (LSC) deficiency, leading to disrupted corneal epithelial renewal. The factors leading to AAK are not known and defects in native LSC differentiation and/or features leading to ocular surface dysfunction like inflammation and loss of innervation could contribute to development of AAK. Here, we produced induced pluripotent stem cells (hiPSC) from 3 AAK patients and examined whether PAX6 haploinsufficiency affects LSC lineage commitment. During LSC differentiation, characterization of the AAK lines showed lowered PAX6 expression as compared to wild type (WT) controls and expression peak of PAX6 during early phase of differentiation was detected only in the WT hiPSC lines. Whether it reflects developmental regulation remains to be studied further. Nevertheless, the AAK-hiPSCs successfully differentiated toward LSC lineage, in line with the presence of LSCs in young patients before cell loss later in life. In addition, patient-specific LSCs showed similar wound healing capacity as WT cells. However, extensive batch-related variation in the LSC marker expression and wound healing efficacy was detected without clear correlation to AAK. As development and maintenance of corneal epithelium involves an interplay between LSCs and their environment, the AAK-hiPSCs generated here can be further used to study the crosstalk between LSCs and limbal niche including, eg, corneal immune cells, stroma cells, and neurons.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"1133-1141"},"PeriodicalIF":5.2,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10075479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In early embryogenesis, the primitive streak (PrS) generates the mesendoderm and is essential for organogenesis. However, because the PrS is a minute and transient tissue, elucidating the mechanism of its formation has been challenging. We performed comprehensive screening of 2 knockout mouse databases based on the fact that failure of PrS formation is lethal. We identified 812 genes involved in various cellular functions and responses that might be linked to PrS formation, with the category of greatest abundance being "Metabolism." In this study, we focused on genes of sphingolipid metabolism and investigated their roles in PrS formation using an in vitro mouse ES cell differentiation system. We show here that elevated intracellular ceramide negatively regulates gene expression essential for PrS formation and instead induces neurogenesis. In addition, sphingosine-1-phosphate (a ceramide derivative) positively regulates neural maturation. Our results indicate that ceramide regulates both PrS formation and the induction of neural differentiation.
{"title":"Lethal Phenotype-Based Database Screening Identifies Ceramide as a Negative Regulator of Primitive Streak Formation.","authors":"Jing Pu, Satoshi Kofuji, Yoshimi Okamoto-Uchida, Keiko Danzaki, Ruoxing Yu, Akira Suzuki, Satoshi Kitajima, Hiroshi Nishina","doi":"10.1093/stmcls/sxad071","DOIUrl":"10.1093/stmcls/sxad071","url":null,"abstract":"<p><p>In early embryogenesis, the primitive streak (PrS) generates the mesendoderm and is essential for organogenesis. However, because the PrS is a minute and transient tissue, elucidating the mechanism of its formation has been challenging. We performed comprehensive screening of 2 knockout mouse databases based on the fact that failure of PrS formation is lethal. We identified 812 genes involved in various cellular functions and responses that might be linked to PrS formation, with the category of greatest abundance being \"Metabolism.\" In this study, we focused on genes of sphingolipid metabolism and investigated their roles in PrS formation using an in vitro mouse ES cell differentiation system. We show here that elevated intracellular ceramide negatively regulates gene expression essential for PrS formation and instead induces neurogenesis. In addition, sphingosine-1-phosphate (a ceramide derivative) positively regulates neural maturation. Our results indicate that ceramide regulates both PrS formation and the induction of neural differentiation.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"1142-1156"},"PeriodicalIF":5.2,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41186716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yinghua Wu, Wenrui Ye, Yong Gao, Zhenjie Yi, Zhuohui Chen, Chunrun Qu, Jing Huang, Fangkun Liu, Zhixiong Liu
Regenerative medicine mainly relies on heterologous transplantation, often hindered by sample availability and ethical issues. Furthermore, patients are required to take immunosuppressive medications to prevent adverse side effects. Stem cell-derived 3D-organoid culture has provided new alternatives for transplantation and regenerative medicine. Scholars have combined organoids with tissue engineering technology to improve reproducibility, the accuracy of constitution and throughput, and genetic correction to achieve a more personalized therapy. Here, we review the available applications of organoids in regenerative medicine and the current challenges concerning this field.
{"title":"Application of Organoids in Regenerative Medicine.","authors":"Yinghua Wu, Wenrui Ye, Yong Gao, Zhenjie Yi, Zhuohui Chen, Chunrun Qu, Jing Huang, Fangkun Liu, Zhixiong Liu","doi":"10.1093/stmcls/sxad072","DOIUrl":"10.1093/stmcls/sxad072","url":null,"abstract":"<p><p>Regenerative medicine mainly relies on heterologous transplantation, often hindered by sample availability and ethical issues. Furthermore, patients are required to take immunosuppressive medications to prevent adverse side effects. Stem cell-derived 3D-organoid culture has provided new alternatives for transplantation and regenerative medicine. Scholars have combined organoids with tissue engineering technology to improve reproducibility, the accuracy of constitution and throughput, and genetic correction to achieve a more personalized therapy. Here, we review the available applications of organoids in regenerative medicine and the current challenges concerning this field.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"1101-1112"},"PeriodicalIF":5.2,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10311425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miriam Duci, Ludovica De Cesare, Agner Henrique Dorigo Hochuli, Maurizio Muraca, Mara Cananzi, Piergiorgio Gamba, Francesco Fascetti-Leon, Michela Pozzobon
This review focuses on the crucial role of the intestinal epithelium in maintaining intestinal homeostasis and its significance in the pathogenesis of necrotizing enterocolitis (NEC) and inflammatory bowel diseases (IBD). NEC is a devastating neonatal disease, while IBD represents a global healthcare problem with increasing incidence. The breakdown of the intestinal barrier in neonates is considered pivotal in the development and progression of both disorders. This review provides an overview of the current state of in vitro, ex vivo, and animal models to study epithelial injury in NEC and IBD, addressing pertinent questions that engage clinicians and researchers alike. Despite significant advancements in early recognition and aggressive treatment, no single therapy has been conclusively proven effective in reducing the severity of these disorders. Although early interventions have improved clinical outcomes, NEC and IBD continue to impose substantial morbidity, mortality, and economic burdens on affected individuals and society. Consequently, exploring alternative therapeutic options capable of preventing and treating the sequelae of NEC and IBD has become a pressing necessity. In recent decades, extracellular vehicles (EVs) have emerged as a potential solution to modulate the pathogenic mechanism in these multifactorial and complex disorders. Despite the diverse array of proposed models, a comprehensive model to investigate and decelerate the progression of NEC and IBD remains to be established. To bridge the translational gap between preclinical studies and clinical applications, enhancements in the technical development of gut-on-a-chip models and EVs hold considerable promise.
这篇综述的重点是肠上皮在维持肠道平衡中的关键作用及其在坏死性小肠结肠炎(NEC)和炎症性肠病(IBD)发病机制中的重要性。坏死性小肠结肠炎是一种破坏性的新生儿疾病,而炎症性肠病则是发病率不断上升的全球性医疗保健问题。新生儿肠道屏障的破坏被认为是这两种疾病发生和发展的关键。本综述概述了研究 NEC 和 IBD 上皮损伤的体外、体内和动物模型的现状,探讨了临床医生和研究人员共同关心的相关问题。尽管在早期识别和积极治疗方面取得了重大进展,但目前还没有任何一种疗法能有效降低这些疾病的严重程度。虽然早期干预改善了临床疗效,但 NEC 和 IBD 仍给患者和社会带来了巨大的发病率、死亡率和经济负担。因此,探索能够预防和治疗 NEC 和 IBD 后遗症的替代疗法已成为当务之急。近几十年来,细胞外载体(EVs)已成为调节这些多因素复杂疾病致病机制的潜在解决方案。尽管提出了各种各样的模型,但研究和减缓 NEC 和 IBD 进展的综合模型仍有待建立。为了弥合临床前研究与临床应用之间的转化差距,加强肠道芯片模型和 EV 的技术开发大有可为。
{"title":"Research Models to Mimic Necrotizing Enterocolitis and Inflammatory Bowel Diseases: Focus on Extracellular Vesicles Action.","authors":"Miriam Duci, Ludovica De Cesare, Agner Henrique Dorigo Hochuli, Maurizio Muraca, Mara Cananzi, Piergiorgio Gamba, Francesco Fascetti-Leon, Michela Pozzobon","doi":"10.1093/stmcls/sxad068","DOIUrl":"10.1093/stmcls/sxad068","url":null,"abstract":"<p><p>This review focuses on the crucial role of the intestinal epithelium in maintaining intestinal homeostasis and its significance in the pathogenesis of necrotizing enterocolitis (NEC) and inflammatory bowel diseases (IBD). NEC is a devastating neonatal disease, while IBD represents a global healthcare problem with increasing incidence. The breakdown of the intestinal barrier in neonates is considered pivotal in the development and progression of both disorders. This review provides an overview of the current state of in vitro, ex vivo, and animal models to study epithelial injury in NEC and IBD, addressing pertinent questions that engage clinicians and researchers alike. Despite significant advancements in early recognition and aggressive treatment, no single therapy has been conclusively proven effective in reducing the severity of these disorders. Although early interventions have improved clinical outcomes, NEC and IBD continue to impose substantial morbidity, mortality, and economic burdens on affected individuals and society. Consequently, exploring alternative therapeutic options capable of preventing and treating the sequelae of NEC and IBD has become a pressing necessity. In recent decades, extracellular vehicles (EVs) have emerged as a potential solution to modulate the pathogenic mechanism in these multifactorial and complex disorders. Despite the diverse array of proposed models, a comprehensive model to investigate and decelerate the progression of NEC and IBD remains to be established. To bridge the translational gap between preclinical studies and clinical applications, enhancements in the technical development of gut-on-a-chip models and EVs hold considerable promise.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"1091-1100"},"PeriodicalIF":5.2,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723814/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10540180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmed Ismaeel, Jensen Goh, C. B. Mobley, Kevin A. Murach, Jamie O Brett, Antoine de Morrée, Thomas A Rando, Charlotte A. Peterson, Yuan Wen, John J. McCarthy
Adult muscle stem cells (MuSCs) are known to replicate upon activation before differentiating and fusing to regenerate myofibers. It is unclear whether MuSC differentiation is intrinsically linked to cell division, which has implications for stem cell population maintenance. We use single-cell RNA-seq (scRNA-seq) to identify transcriptionally diverse subpopulations of MuSCs after 5 days of a growth stimulus in adult muscle. Trajectory inference in combination with a novel mouse model for tracking MuSC-derived myonuclei and in vivo labeling of DNA replication revealed a MuSC population that exhibited division-independent differentiation and fusion. These findings demonstrate that in response to a growth stimulus in the presence of intact myofibers, MuSC division is not obligatory.
{"title":"Division-Independent Differentiation of Muscle Stem Cells During a Growth Stimulus","authors":"Ahmed Ismaeel, Jensen Goh, C. B. Mobley, Kevin A. Murach, Jamie O Brett, Antoine de Morrée, Thomas A Rando, Charlotte A. Peterson, Yuan Wen, John J. McCarthy","doi":"10.1093/stmcls/sxad091","DOIUrl":"https://doi.org/10.1093/stmcls/sxad091","url":null,"abstract":"\u0000 Adult muscle stem cells (MuSCs) are known to replicate upon activation before differentiating and fusing to regenerate myofibers. It is unclear whether MuSC differentiation is intrinsically linked to cell division, which has implications for stem cell population maintenance. We use single-cell RNA-seq (scRNA-seq) to identify transcriptionally diverse subpopulations of MuSCs after 5 days of a growth stimulus in adult muscle. Trajectory inference in combination with a novel mouse model for tracking MuSC-derived myonuclei and in vivo labeling of DNA replication revealed a MuSC population that exhibited division-independent differentiation and fusion. These findings demonstrate that in response to a growth stimulus in the presence of intact myofibers, MuSC division is not obligatory.","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":"35 38","pages":""},"PeriodicalIF":5.2,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138588959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gert Vanmarcke, Jonathan Sai-Hong Chui, Axelle Cooreman, Kristof De Vos, Lana Cleuren, Rob Van Rossom, Guillem García-Llorens, Teresa Izuel Idoype, Ruben Boon, Manoj Kumar Gautam, José V Castell, Pieter Annaert, Frederic Lluis, Catherine M Verfaillie
Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) hold great promise for liver disease modeling, drug discovery, and drug toxicity screens. Yet, several hurdles still need to be overcome, including among others decrease in the cost of goods to generate HLCs and automation of the differentiation process. We here describe that the use of an automated liquid handling system results in highly reproducible HLC differentiation from hPSCs. This enabled us to screen 92 chemicals to replace expensive growth factors at each step of the differentiation protocol to reduce the cost of goods of the differentiation protocol by approximately 79%. In addition, we also evaluated several recombinant extracellular matrices to replace Matrigel. We demonstrated that differentiation of hPSCs on Laminin-521 using an optimized small molecule combination resulted in HLCs that were transcriptionally identical to HLCs generated using the growth factor combinations. In addition, the HLCs created using the optimized small molecule combination secreted similar amounts of albumin and urea, and relatively low concentrations of alfa-fetoprotein, displayed similar CYP3A4 functionality, and a similar drug toxicity susceptibility as HLCs generated with growth factor cocktails. The broad applicability of the new differentiation protocol was demonstrated for 4 different hPSC lines. This allowed the creation of a scalable, xeno-free, and cost-efficient hPSC-derived HLC culture, suitable for high throughput disease modeling and drug screenings, or even for the creation of HLCs for regenerative therapies.
{"title":"Automated Generation of hiPSC-Derived Hepatic Progeny by Cost-Efficient Compounds.","authors":"Gert Vanmarcke, Jonathan Sai-Hong Chui, Axelle Cooreman, Kristof De Vos, Lana Cleuren, Rob Van Rossom, Guillem García-Llorens, Teresa Izuel Idoype, Ruben Boon, Manoj Kumar Gautam, José V Castell, Pieter Annaert, Frederic Lluis, Catherine M Verfaillie","doi":"10.1093/stmcls/sxad065","DOIUrl":"10.1093/stmcls/sxad065","url":null,"abstract":"<p><p>Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) hold great promise for liver disease modeling, drug discovery, and drug toxicity screens. Yet, several hurdles still need to be overcome, including among others decrease in the cost of goods to generate HLCs and automation of the differentiation process. We here describe that the use of an automated liquid handling system results in highly reproducible HLC differentiation from hPSCs. This enabled us to screen 92 chemicals to replace expensive growth factors at each step of the differentiation protocol to reduce the cost of goods of the differentiation protocol by approximately 79%. In addition, we also evaluated several recombinant extracellular matrices to replace Matrigel. We demonstrated that differentiation of hPSCs on Laminin-521 using an optimized small molecule combination resulted in HLCs that were transcriptionally identical to HLCs generated using the growth factor combinations. In addition, the HLCs created using the optimized small molecule combination secreted similar amounts of albumin and urea, and relatively low concentrations of alfa-fetoprotein, displayed similar CYP3A4 functionality, and a similar drug toxicity susceptibility as HLCs generated with growth factor cocktails. The broad applicability of the new differentiation protocol was demonstrated for 4 different hPSC lines. This allowed the creation of a scalable, xeno-free, and cost-efficient hPSC-derived HLC culture, suitable for high throughput disease modeling and drug screenings, or even for the creation of HLCs for regenerative therapies.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"1076-1088"},"PeriodicalIF":5.2,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10443148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: TGF-β secreted by human umbilical cord blood-derived mesenchymal stem cells ameliorates atopic dermatitis by inhibiting secretion of TNF-α and IgE.","authors":"","doi":"10.1093/stmcls/sxad073","DOIUrl":"10.1093/stmcls/sxad073","url":null,"abstract":"","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"1089"},"PeriodicalIF":5.2,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41104543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}