首页 > 最新文献

2018 4th International Conference on Computer and Technology Applications (ICCTA)最新文献

英文 中文
Adaptive speckle reducing anisotropic diffusion filter for positron emission tomography images based on anatomical prior 基于解剖先验的正电子发射断层图像自适应消斑各向异性扩散滤波
Pub Date : 2018-03-05 DOI: 10.1109/CATA.2018.8398682
Mousa Alrefaya
Positron Emission Tomography (PET)/Computed Tomography (CT) is the main medical imaging technique which used for diagnosing cancer. PET image is showing the functional activities in the patient while CT imaging presents the anatomical information. The PET raw-projection data (sinogram) contains a very high level of Poisson noise, while the reconstructed image through filtered back-projection algorithm (FBP) is contaminated with unknown noise that is very similar to speckle noise distribution. This noise may lead to increase the doze of radioactive material that given to the patient for imaging PET and to errors in the diagnosis results. Applying a suitable filtering approach can increase the effectiveness of the diagnosing process. Using the high resolution information in the CT, we propose in this work an adaptive post-reconstruction curvature motion filtering technique for PET image. The proposed filter consider computing the diffusivity function (edge stopping function) based on the fused image (PET/CT) to guide the smoothing and the sharpening process in the image. Experiments demonstrate through simulated images that the performance of the proposed method significantly enhance the reconstructed PET using FBP algorithm. Further, it compared with recently published methods, both visually and in terms of statistical measures.
正电子发射断层扫描(PET)/计算机断层扫描(CT)是诊断癌症的主要医学成像技术。PET图像显示患者的功能活动,CT图像显示患者的解剖信息。PET原始投影数据(sinogram)含有非常高水平的泊松噪声(Poisson noise),而通过滤波后的反投影算法(filtering back-projection algorithm, FBP)重建的图像含有与散斑噪声分布非常相似的未知噪声(unknown noise)。这种噪音可能会增加给予患者PET成像的放射性物质的剂量,并导致诊断结果的错误。采用合适的滤波方法可以提高诊断过程的有效性。本文利用CT图像的高分辨率信息,提出了一种PET图像自适应重建后曲率运动滤波技术。该滤波器考虑计算基于融合图像(PET/CT)的扩散函数(边缘停止函数)来指导图像的平滑和锐化过程。仿真图像实验表明,该方法的性能显著增强了用FBP算法重建的PET。此外,它还与最近发表的方法进行了比较,无论是在视觉上还是在统计度量方面。
{"title":"Adaptive speckle reducing anisotropic diffusion filter for positron emission tomography images based on anatomical prior","authors":"Mousa Alrefaya","doi":"10.1109/CATA.2018.8398682","DOIUrl":"https://doi.org/10.1109/CATA.2018.8398682","url":null,"abstract":"Positron Emission Tomography (PET)/Computed Tomography (CT) is the main medical imaging technique which used for diagnosing cancer. PET image is showing the functional activities in the patient while CT imaging presents the anatomical information. The PET raw-projection data (sinogram) contains a very high level of Poisson noise, while the reconstructed image through filtered back-projection algorithm (FBP) is contaminated with unknown noise that is very similar to speckle noise distribution. This noise may lead to increase the doze of radioactive material that given to the patient for imaging PET and to errors in the diagnosis results. Applying a suitable filtering approach can increase the effectiveness of the diagnosing process. Using the high resolution information in the CT, we propose in this work an adaptive post-reconstruction curvature motion filtering technique for PET image. The proposed filter consider computing the diffusivity function (edge stopping function) based on the fused image (PET/CT) to guide the smoothing and the sharpening process in the image. Experiments demonstrate through simulated images that the performance of the proposed method significantly enhance the reconstructed PET using FBP algorithm. Further, it compared with recently published methods, both visually and in terms of statistical measures.","PeriodicalId":231024,"journal":{"name":"2018 4th International Conference on Computer and Technology Applications (ICCTA)","volume":"122 3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133430622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
2018 4th International Conference on Computer and Technology Applications (ICCTA)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1