Pub Date : 1900-01-01DOI: 10.4018/978-1-5225-7018-9.CH009
Susana C. F. Fernandes, R. Simoes
This chapter aims to explore the contribution of 3D printing technologies as a collaborative resource in higher education teaching. It was conducted in the course “Physics of Materials,” in which the contribution of practical experience in the learning process was analyzed and the degree of interest, motivation, and understanding by students on academic content was assessed. Practical demonstrations with resources prepared by 3D printing can be a very motivational learning facilitator. To this end, the learning styles of students were determined through the Honey-Alonso learning styles questionnaire (CHAEA). A second questionnaire was used to obtain information about the motivational importance of 3D printing technology in teaching activities in the classroom. The authors concluded that 3D printing can positively help teachers to improve students' engagement and proactive behavior, as well as teaching environment, by including different methodological styles in the learning process, particularly in courses with a significant theoretical content.
{"title":"Using 3D Printing as a Strategy for Including Different Student Learning Styles in the Classroom","authors":"Susana C. F. Fernandes, R. Simoes","doi":"10.4018/978-1-5225-7018-9.CH009","DOIUrl":"https://doi.org/10.4018/978-1-5225-7018-9.CH009","url":null,"abstract":"This chapter aims to explore the contribution of 3D printing technologies as a collaborative resource in higher education teaching. It was conducted in the course “Physics of Materials,” in which the contribution of practical experience in the learning process was analyzed and the degree of interest, motivation, and understanding by students on academic content was assessed. Practical demonstrations with resources prepared by 3D printing can be a very motivational learning facilitator. To this end, the learning styles of students were determined through the Honey-Alonso learning styles questionnaire (CHAEA). A second questionnaire was used to obtain information about the motivational importance of 3D printing technology in teaching activities in the classroom. The authors concluded that 3D printing can positively help teachers to improve students' engagement and proactive behavior, as well as teaching environment, by including different methodological styles in the learning process, particularly in courses with a significant theoretical content.","PeriodicalId":231265,"journal":{"name":"Interdisciplinary and International Perspectives on 3D Printing in Education","volume":"482 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116690582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.4018/978-1-5225-7018-9.CH001
Marlo B. Steed
The purpose of this chapter is to inform educational practitioners as to possible frameworks and models for effectively integrating 3D printing into instruction. This will focus on the conceptual ideas that overarch and guide the decisions for integrating 3D printing in education. Educators need a critical perspective and rationale so that the novelty of the tool doesn't overwhelm sound pedagogy. An understanding of how the features of 3D printing match up with the attributes of instructional approaches is the key to designing and orchestrating effective learning experiences. This chapter describes a model of decision making that takes into account the affordances, constraints, and approaches of 3D printing and details the implications for learning activities. The decision-making model will enable educators to effectively integrate 3D printing into educational contexts.
{"title":"Dynamic Decision-Making Model","authors":"Marlo B. Steed","doi":"10.4018/978-1-5225-7018-9.CH001","DOIUrl":"https://doi.org/10.4018/978-1-5225-7018-9.CH001","url":null,"abstract":"The purpose of this chapter is to inform educational practitioners as to possible frameworks and models for effectively integrating 3D printing into instruction. This will focus on the conceptual ideas that overarch and guide the decisions for integrating 3D printing in education. Educators need a critical perspective and rationale so that the novelty of the tool doesn't overwhelm sound pedagogy. An understanding of how the features of 3D printing match up with the attributes of instructional approaches is the key to designing and orchestrating effective learning experiences. This chapter describes a model of decision making that takes into account the affordances, constraints, and approaches of 3D printing and details the implications for learning activities. The decision-making model will enable educators to effectively integrate 3D printing into educational contexts.","PeriodicalId":231265,"journal":{"name":"Interdisciplinary and International Perspectives on 3D Printing in Education","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126453219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.4018/978-1-5225-7018-9.CH003
J. Flowers
Is the primary purpose of a 3D printer to manufacture a product? Yes, but students and teachers can also use 3D printers to learn about and engage in research and experimentation. This could begin with product research and development, then expand to technical areas based on additive manufacturing technologies, the physical and mechanical properties of additive manufacturing materials, and the properties of 3D printed products. Student inquiry can take the form of formal or informal experimentation and observational studies. Although dedicated testing equipment can facilitate more demanding investigations, it is possible for quite a bit of experimentation to be done with little or no dedicated testing equipment. It is hoped that the reader will identify different educational experiences with experimentation that might fit their learners' needs and see 3D printers as tools for conducting and teaching about research, including product research and development and research into process engineering and materials.
{"title":"Using 3D Printers to Engage Students in Research","authors":"J. Flowers","doi":"10.4018/978-1-5225-7018-9.CH003","DOIUrl":"https://doi.org/10.4018/978-1-5225-7018-9.CH003","url":null,"abstract":"Is the primary purpose of a 3D printer to manufacture a product? Yes, but students and teachers can also use 3D printers to learn about and engage in research and experimentation. This could begin with product research and development, then expand to technical areas based on additive manufacturing technologies, the physical and mechanical properties of additive manufacturing materials, and the properties of 3D printed products. Student inquiry can take the form of formal or informal experimentation and observational studies. Although dedicated testing equipment can facilitate more demanding investigations, it is possible for quite a bit of experimentation to be done with little or no dedicated testing equipment. It is hoped that the reader will identify different educational experiences with experimentation that might fit their learners' needs and see 3D printers as tools for conducting and teaching about research, including product research and development and research into process engineering and materials.","PeriodicalId":231265,"journal":{"name":"Interdisciplinary and International Perspectives on 3D Printing in Education","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121822316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.4018/978-1-5225-7018-9.CH012
Daniel A. Tillman, Ross C. Teller, Paul E. Perez, Song A. An
This chapter examines the theories, strategies, and techniques for employing 3D printing technologies to fabricate education-appropriate augmented reality (AR) headsets and provides a concrete example of an AR headset that the authors developed. The chapter begins by discussing theories and historically relevant events that provide a context for the chapter's narrative about use of 3D printers to support AR in education. Next, the chapter presents the strategies that were employed while developing and 3D fabricating a custom-designed AR headset that was intended for supporting middle school students learning science and mathematics content knowledge. Afterward, the chapter provides directions and resources for the reader describing how to build the presented AR headset design themselves by using a 3D printer and affordable electronic components, as well as information about how to join the Maker community and participate in the designing and producing of similar projects. Lastly, the chapter delivers a summarization of all findings discussed.
{"title":"Employing 3D Printing to Fabricate Augmented Reality Headsets for Middle School STEM Education","authors":"Daniel A. Tillman, Ross C. Teller, Paul E. Perez, Song A. An","doi":"10.4018/978-1-5225-7018-9.CH012","DOIUrl":"https://doi.org/10.4018/978-1-5225-7018-9.CH012","url":null,"abstract":"This chapter examines the theories, strategies, and techniques for employing 3D printing technologies to fabricate education-appropriate augmented reality (AR) headsets and provides a concrete example of an AR headset that the authors developed. The chapter begins by discussing theories and historically relevant events that provide a context for the chapter's narrative about use of 3D printers to support AR in education. Next, the chapter presents the strategies that were employed while developing and 3D fabricating a custom-designed AR headset that was intended for supporting middle school students learning science and mathematics content knowledge. Afterward, the chapter provides directions and resources for the reader describing how to build the presented AR headset design themselves by using a 3D printer and affordable electronic components, as well as information about how to join the Maker community and participate in the designing and producing of similar projects. Lastly, the chapter delivers a summarization of all findings discussed.","PeriodicalId":231265,"journal":{"name":"Interdisciplinary and International Perspectives on 3D Printing in Education","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132962616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}