首页 > 最新文献

Tissue Engineering Part A最新文献

英文 中文
Antithrombotic revascularization strategy of bioengineered liver using a biomimetic polymer. 使用仿生聚合物的生物工程肝脏抗血栓再血管化策略。
Pub Date : 2024-09-14 DOI: 10.1089/ten.tea.2024.0131
Hiroshi Horie,Yu Oshima,Ken Fukumitsu,Kentaro Iwaki,Fumiaki Munekage,Kenta Makino,Satoshi Wakama,Takashi Ito,Katsuhiro Tomofuji,Saotshi Ogiso,Elena Yukie Uebayashi,Takamichi Ishii,Kazuhiko Ishihara,Etsuro Hatano
A bioengineered liver has the potential to save patients with end-stage liver disease, and a three-dimensional decellularized scaffold is a promising approach for practical use. The main challenge in bioengineered liver transplantation is thrombogenicity during blood perfusion. We aimed to apply a novel antithrombotic polymer to revascularize liver scaffolds and evaluate the thrombogenicity and biosafety of the polymer-treated scaffolds. A biomimetic polymer, 2-metacryloyloxyethyl phosphorylcholine (MPC) was prepared for modification of the extracellular matrix (ECM) in liver scaffolds. The polymer was injected into the rat liver scaffolds' portal vein (PV) and could extensively react to the vessel walls. In an ex-vivo blood perfusion experiment, we demonstrated significantly less platelet deposition in the polymer-treated scaffolds than non-treated or re-endothelialized scaffolds with human umbilical endothelial cells (HUVECs). In the heterotopic transplantation model, liver volume was better maintained in the polymer-treated groups and platelet deposition was suppressed in these groups. Additionally, the polymer-treated liver scaffolds maintained the metabolic function of the recellularized rat primary hepatocytes during perfusion culture. The MPC polymer treatment efficiently suppressed thrombus formation during blood perfusion in liver scaffolds and maintained the function of recellularized hepatocytes. Revascularizing liver scaffolds using this polymer is a promising approach for bioengineered liver transplantation.
生物工程肝脏有可能挽救终末期肝病患者,而三维脱细胞支架是一种很有前景的实用方法。生物工程肝移植的主要挑战是血液灌注过程中的血栓形成。我们旨在应用一种新型抗血栓聚合物对肝脏支架进行血管再造,并评估经聚合物处理的支架的血栓形成性和生物安全性。研究人员制备了一种生物仿生聚合物--2-甲基丙烯酰氧乙基磷酰胆碱(MPC),用于修饰肝脏支架的细胞外基质(ECM)。将该聚合物注入大鼠肝脏支架的门静脉(PV)后,可与血管壁发生广泛反应。在体外血液灌流实验中,我们发现聚合物处理过的支架中血小板沉积明显少于未处理过或用人脐带内皮细胞(HUVECs)重新内皮化过的支架。在异位移植模型中,聚合物处理组能更好地保持肝脏体积,并抑制血小板沉积。此外,经聚合物处理的肝脏支架还能在灌注培养过程中维持再细胞化大鼠原代肝细胞的代谢功能。经 MPC 聚合物处理的肝脏支架可有效抑制血液灌流过程中血栓的形成,并维持再细胞化肝细胞的功能。使用这种聚合物对肝脏支架进行血管再造是一种很有前景的生物工程肝脏移植方法。
{"title":"Antithrombotic revascularization strategy of bioengineered liver using a biomimetic polymer.","authors":"Hiroshi Horie,Yu Oshima,Ken Fukumitsu,Kentaro Iwaki,Fumiaki Munekage,Kenta Makino,Satoshi Wakama,Takashi Ito,Katsuhiro Tomofuji,Saotshi Ogiso,Elena Yukie Uebayashi,Takamichi Ishii,Kazuhiko Ishihara,Etsuro Hatano","doi":"10.1089/ten.tea.2024.0131","DOIUrl":"https://doi.org/10.1089/ten.tea.2024.0131","url":null,"abstract":"A bioengineered liver has the potential to save patients with end-stage liver disease, and a three-dimensional decellularized scaffold is a promising approach for practical use. The main challenge in bioengineered liver transplantation is thrombogenicity during blood perfusion. We aimed to apply a novel antithrombotic polymer to revascularize liver scaffolds and evaluate the thrombogenicity and biosafety of the polymer-treated scaffolds. A biomimetic polymer, 2-metacryloyloxyethyl phosphorylcholine (MPC) was prepared for modification of the extracellular matrix (ECM) in liver scaffolds. The polymer was injected into the rat liver scaffolds' portal vein (PV) and could extensively react to the vessel walls. In an ex-vivo blood perfusion experiment, we demonstrated significantly less platelet deposition in the polymer-treated scaffolds than non-treated or re-endothelialized scaffolds with human umbilical endothelial cells (HUVECs). In the heterotopic transplantation model, liver volume was better maintained in the polymer-treated groups and platelet deposition was suppressed in these groups. Additionally, the polymer-treated liver scaffolds maintained the metabolic function of the recellularized rat primary hepatocytes during perfusion culture. The MPC polymer treatment efficiently suppressed thrombus formation during blood perfusion in liver scaffolds and maintained the function of recellularized hepatocytes. Revascularizing liver scaffolds using this polymer is a promising approach for bioengineered liver transplantation.","PeriodicalId":23133,"journal":{"name":"Tissue Engineering Part A","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Analysis of Commercially Available Extracellular Matrix Soft Tissue Bioscaffolds. 市售细胞外基质软组织生物支架的比较分析
Pub Date : 2024-09-14 DOI: 10.1089/ten.tea.2024.0076
Tarek Kollmetz,Fernanda Castillo-Alcala,Robert W F Veale,Navid Taghavi,Vonne M van Heeswijk,Maarten Persenaire,Barnaby C H May,Sandi Grainne Dempsey
Decellularized extracellular matrix (dECM) products are widely established for soft tissue repair, reconstruction and reinforcement. These regenerative biomaterials mimic native tissue ECM with respect to structure and biology and are produced from a range of tissue sources and species. Optimal source tissue processing requires a balance between removal of cellular material and the preservation of structural and biological properties of tissue ECM. Despite the wide-spread clinical use of dECM products there is a lack of comparative information on these products Structurally, some dECM products showed a well-preserved collagen architecture with a broad porosity distribution, while others showed a significantly altered structure compared with native tissue. Decellularization varied across the products. Some materials surveyed (OFMm, PPN, PPC, OFMo, UBM, SISz, ADM, PADM and BADM) were essentially devoid of nuclear bodies (mean count of <5 cells per high powered field (HPF)), whereas others (SISu and SISb) demonstrated an abundance of nuclear bodies (>50 cells per HPF). Pathology assessment of the products demonstrated that OFMm, OFMo and PADM had the highest qualitative assessment score for collagen fiber orientation and arrangement, matrix porosity, decellularization efficiency, and residual vascular channels scoring 10.5±0.8, 12.8±1.0, and 9.7±0.7 out of a maximum total score of 16, respectively This analysis of commercially available dECM products in terms of their structure and cellularity includes 12 different commercial materials The findings highlight the variability of the products in terms of matrix structure and the efficacy of decellularization.
脱细胞细胞外基质(dECM)产品已广泛用于软组织修复、重建和加固。这些再生生物材料在结构和生物特性方面模仿原生组织的 ECM,可从各种组织来源和物种中生产。最佳的源组织处理要求在去除细胞物质与保留组织 ECM 的结构和生物特性之间取得平衡。尽管 dECM 产品已广泛应用于临床,但仍缺乏有关这些产品的比较信息。 从结构上看,一些 dECM 产品显示出保存完好的胶原结构和广泛的孔隙分布,而另一些产品则显示出与原生组织相比明显改变的结构。不同产品的脱细胞效果各不相同。调查的一些材料(OFMm、PPN、PPC、OFMo、UBM、SISz、ADM、PADM 和 BADM)基本上没有核体(平均每 HPF 50 个细胞)。产品的病理学评估表明,OFMm、OFMo 和 PADM 在胶原纤维取向和排列、基质孔隙度、脱细胞效率和残留血管通道方面的定性评估得分最高,分别为 10.5±0.8、12.8±1.0 和 9.7±0.7(总分最高)。这项对市售 dECM 产品结构和细胞性的分析包括 12 种不同的商用材料。
{"title":"Comparative Analysis of Commercially Available Extracellular Matrix Soft Tissue Bioscaffolds.","authors":"Tarek Kollmetz,Fernanda Castillo-Alcala,Robert W F Veale,Navid Taghavi,Vonne M van Heeswijk,Maarten Persenaire,Barnaby C H May,Sandi Grainne Dempsey","doi":"10.1089/ten.tea.2024.0076","DOIUrl":"https://doi.org/10.1089/ten.tea.2024.0076","url":null,"abstract":"Decellularized extracellular matrix (dECM) products are widely established for soft tissue repair, reconstruction and reinforcement. These regenerative biomaterials mimic native tissue ECM with respect to structure and biology and are produced from a range of tissue sources and species. Optimal source tissue processing requires a balance between removal of cellular material and the preservation of structural and biological properties of tissue ECM. Despite the wide-spread clinical use of dECM products there is a lack of comparative information on these products Structurally, some dECM products showed a well-preserved collagen architecture with a broad porosity distribution, while others showed a significantly altered structure compared with native tissue. Decellularization varied across the products. Some materials surveyed (OFMm, PPN, PPC, OFMo, UBM, SISz, ADM, PADM and BADM) were essentially devoid of nuclear bodies (mean count of <5 cells per high powered field (HPF)), whereas others (SISu and SISb) demonstrated an abundance of nuclear bodies (>50 cells per HPF). Pathology assessment of the products demonstrated that OFMm, OFMo and PADM had the highest qualitative assessment score for collagen fiber orientation and arrangement, matrix porosity, decellularization efficiency, and residual vascular channels scoring 10.5±0.8, 12.8±1.0, and 9.7±0.7 out of a maximum total score of 16, respectively This analysis of commercially available dECM products in terms of their structure and cellularity includes 12 different commercial materials The findings highlight the variability of the products in terms of matrix structure and the efficacy of decellularization.","PeriodicalId":23133,"journal":{"name":"Tissue Engineering Part A","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biofabricated adipose-derived mesenchymal cell sheets recover cryo-injured kidneys in rats. 生物制造的脂肪间充质细胞片可恢复大鼠冷冻损伤的肾脏。
Pub Date : 2024-09-14 DOI: 10.1089/ten.tea.2024.0164
Ryo Kitahara,Tetsuya Imamura,Takahisa Domen,Yuki Matsumoto,Yoshihiro Inoue,Noriyuki Ogawa,Tetsuichi Saito,Manabu Ueno,Tomonori Minagawa,Teruyuki Ogawa,Osamu Ishizuka
This study aimed to develop a treatment for chronic kidney disease (CKD) by investigating whether transplantation of biofabricated adipose-derived mesenchymal cell (AMC) sheets could improve renal tissue and function. Thirty-nine 10-week-old male Sprague-Dawley rats underwent the harvesting of adipose tissues and right nephrectomy. AMCs that were collected from adipose tissues were labeled and cultured on temperature-responsive dishes, and applied to a gelatin hydrogel sheet. Subsequently, two identical AMC-gelatin sheets were attached together to biofabricate a bilayered AMC-gelatin sheet. Further, 3 weeks after nephrectomy, the renal artery and vein of the left kidney were clamped, and the kidney was sprayed with liquid nitrogen for 60 seconds. The biofabricated AMC sheet was autologously transplanted into the renal capsule of the cryo-injured region (n = 14). Control rats were given acellular sheet (n = 25). One day before and four weeks after transplantation, blood and 24-hour urinary specimens were collected. Histological analysis of the experimental kidneys was performed four weeks after transplantation. Four weeks after transplantation, in the acellular control-transplanted rats, creatinine clearance levels tended to increase, while serum creatinine levels significantly increased. However, in the biofabricated AMC sheet-transplanted rats, creatinine clearance levels significantly increased, and serum creatinine levels remained unchanged and were significantly lower than that of the control rats. The ratio of damaged to undamaged renal tubules in the AMC sheet-transplanted rats was lower than that in the control rats. In addition, the occupancy rate of fibrotic areas in the renal cortex under the AMC sheet-transplanted regions was significantly lower than that in the control regions. After transplantation, while the expressions of transforming growth factor-beta 1 and hypoxia-inducible factor-1 alpha were observed in both the control- and AMC sheet-transplanted regions, these expressions tended to be lower in the AMC sheet-transplanted rats than in the control rats. The labeled transplanted AMCs were detected in the transplanted regions, with some of them also showing positive staining for the vascular endothelial growth factor antibody. In conclusion, the biofabricated AMC sheets improved renal functions by ameliorating renal tubule disorders and renal fibrosis. Therefore, biofabricated AMC sheets would serve as a potential treatment for CKD.
本研究旨在通过研究移植生物制造的脂肪间充质细胞(AMC)片能否改善肾组织和肾功能,开发慢性肾病(CKD)的治疗方法。39 只 10 周大的雄性 Sprague-Dawley 大鼠接受了脂肪组织采集和右肾切除术。从脂肪组织中收集的AMC经标记后在温度反应皿中培养,并涂在明胶水凝胶片上。随后,将两个相同的 AMC-明胶薄片连接在一起,形成双层 AMC-明胶薄片。此外,在肾切除术 3 周后,夹住左肾的肾动脉和静脉,用液氮喷洒肾脏 60 秒。将生物制造的 AMC 片自体移植到低温损伤区域的肾囊(n = 14)。对照组大鼠使用无细胞薄片(n = 25)。移植前一天和移植后四周收集血液和 24 小时尿液标本。移植四周后对实验肾脏进行组织学分析。移植四周后,无细胞对照组移植大鼠的肌酐清除率水平趋于上升,而血清肌酐水平明显升高。然而,在生物制造的 AMC 片移植大鼠中,肌酐清除率水平明显升高,血清肌酐水平保持不变,且明显低于对照组大鼠。AMC 片移植大鼠受损肾小管与未受损肾小管之比低于对照组大鼠。此外,AMC片移植区肾皮质纤维化区域的占位率也明显低于对照区。移植后,虽然在对照组大鼠和AMC片移植区都观察到了转化生长因子-β1和缺氧诱导因子-1α的表达,但AMC片移植大鼠的这些表达往往低于对照组大鼠。在移植区域检测到标记的移植 AMC,其中一些还显示出血管内皮生长因子抗体的阳性染色。总之,生物制造的 AMC 片可改善肾小管功能紊乱和肾脏纤维化,从而改善肾功能。因此,生物制造的AMC薄片将成为治疗慢性肾脏病的一种潜在方法。
{"title":"Biofabricated adipose-derived mesenchymal cell sheets recover cryo-injured kidneys in rats.","authors":"Ryo Kitahara,Tetsuya Imamura,Takahisa Domen,Yuki Matsumoto,Yoshihiro Inoue,Noriyuki Ogawa,Tetsuichi Saito,Manabu Ueno,Tomonori Minagawa,Teruyuki Ogawa,Osamu Ishizuka","doi":"10.1089/ten.tea.2024.0164","DOIUrl":"https://doi.org/10.1089/ten.tea.2024.0164","url":null,"abstract":"This study aimed to develop a treatment for chronic kidney disease (CKD) by investigating whether transplantation of biofabricated adipose-derived mesenchymal cell (AMC) sheets could improve renal tissue and function. Thirty-nine 10-week-old male Sprague-Dawley rats underwent the harvesting of adipose tissues and right nephrectomy. AMCs that were collected from adipose tissues were labeled and cultured on temperature-responsive dishes, and applied to a gelatin hydrogel sheet. Subsequently, two identical AMC-gelatin sheets were attached together to biofabricate a bilayered AMC-gelatin sheet. Further, 3 weeks after nephrectomy, the renal artery and vein of the left kidney were clamped, and the kidney was sprayed with liquid nitrogen for 60 seconds. The biofabricated AMC sheet was autologously transplanted into the renal capsule of the cryo-injured region (n = 14). Control rats were given acellular sheet (n = 25). One day before and four weeks after transplantation, blood and 24-hour urinary specimens were collected. Histological analysis of the experimental kidneys was performed four weeks after transplantation. Four weeks after transplantation, in the acellular control-transplanted rats, creatinine clearance levels tended to increase, while serum creatinine levels significantly increased. However, in the biofabricated AMC sheet-transplanted rats, creatinine clearance levels significantly increased, and serum creatinine levels remained unchanged and were significantly lower than that of the control rats. The ratio of damaged to undamaged renal tubules in the AMC sheet-transplanted rats was lower than that in the control rats. In addition, the occupancy rate of fibrotic areas in the renal cortex under the AMC sheet-transplanted regions was significantly lower than that in the control regions. After transplantation, while the expressions of transforming growth factor-beta 1 and hypoxia-inducible factor-1 alpha were observed in both the control- and AMC sheet-transplanted regions, these expressions tended to be lower in the AMC sheet-transplanted rats than in the control rats. The labeled transplanted AMCs were detected in the transplanted regions, with some of them also showing positive staining for the vascular endothelial growth factor antibody. In conclusion, the biofabricated AMC sheets improved renal functions by ameliorating renal tubule disorders and renal fibrosis. Therefore, biofabricated AMC sheets would serve as a potential treatment for CKD.","PeriodicalId":23133,"journal":{"name":"Tissue Engineering Part A","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organotypic 3D cellular models mimicking the epithelio-ectomesenchymal bi-layer during odontogenesis. 组织型三维细胞模型模拟牙体形成过程中的上皮-外胚层双层结构。
Pub Date : 2024-09-14 DOI: 10.1089/ten.tea.2024.0118
Fadi Jerbaka,Varvara Gribova,Tristan Rey,Soufian El-Faloussi,Marzena Kawczynski,Naji Kharouf,Yann Hérault,Youri Arntz,Agnès Bloch-Zupan,Isaac Maximiliano Maximiliano Bugueno Valdebenito
Odontogenesis, the intricate process of tooth development, involves complex interactions between oral ectoderm epithelial cells and ectomesenchymal cells derived from the cephalic neural crest, regulated by major signaling pathways. Dental developmental anomalies provide valuable insights for clinical diagnosis of rare diseases. More than 30% of rare diseases patients who undergo molecular analysis suffer from diagnostic errancy. In the search for up-to-date technologies and methods to study the pathophysiology of new candidate genetic variants, causing tooth mineralized tissues anomalies, we have developed an original model of tooth organoids with human or mouse cell lines of ameloblast-like cells and odontoblasts derived from the pulp. This in vitro 3D cellular model reproducing the two main compartments of the bell stage of tooth development between ameloblasts and odontoblasts, specific to enamel and dentin morphogenesis, respectively, mimics the epithelio-mesenchymal interactions during the dental bell stage of tooth morphogenesis and will facilitate the study of enamel and dentin genetic anomalies, allowing the functional validation of newly identified mutations (variants of uncertain significance -VUS- or new candidate genes).
牙齿生成是牙齿发育的复杂过程,涉及口腔外胚层上皮细胞和来自头神经嵴的外充质细胞之间复杂的相互作用,并受主要信号通路的调控。牙齿发育异常为罕见病的临床诊断提供了宝贵的启示。在接受分子分析的罕见病患者中,有超过 30% 的人诊断错误。为了寻找最新的技术和方法来研究导致牙齿矿化组织异常的新的候选基因变异的病理生理学,我们利用从牙髓中提取的人类或小鼠髓母细胞样细胞系和牙本质母细胞,开发了一种独创的牙齿有机体模型。这种体外三维细胞模型再现了牙齿发育钟形阶段釉母细胞和牙本质母细胞之间的两个主要区室,分别是釉质和牙本质形态发生的特异区室,模拟了牙齿形态发生钟形阶段的上皮-间质相互作用,将有助于研究釉质和牙本质遗传异常,从而对新发现的突变(意义不确定的变异-VUS-或新的候选基因)进行功能验证。
{"title":"Organotypic 3D cellular models mimicking the epithelio-ectomesenchymal bi-layer during odontogenesis.","authors":"Fadi Jerbaka,Varvara Gribova,Tristan Rey,Soufian El-Faloussi,Marzena Kawczynski,Naji Kharouf,Yann Hérault,Youri Arntz,Agnès Bloch-Zupan,Isaac Maximiliano Maximiliano Bugueno Valdebenito","doi":"10.1089/ten.tea.2024.0118","DOIUrl":"https://doi.org/10.1089/ten.tea.2024.0118","url":null,"abstract":"Odontogenesis, the intricate process of tooth development, involves complex interactions between oral ectoderm epithelial cells and ectomesenchymal cells derived from the cephalic neural crest, regulated by major signaling pathways. Dental developmental anomalies provide valuable insights for clinical diagnosis of rare diseases. More than 30% of rare diseases patients who undergo molecular analysis suffer from diagnostic errancy. In the search for up-to-date technologies and methods to study the pathophysiology of new candidate genetic variants, causing tooth mineralized tissues anomalies, we have developed an original model of tooth organoids with human or mouse cell lines of ameloblast-like cells and odontoblasts derived from the pulp. This in vitro 3D cellular model reproducing the two main compartments of the bell stage of tooth development between ameloblasts and odontoblasts, specific to enamel and dentin morphogenesis, respectively, mimics the epithelio-mesenchymal interactions during the dental bell stage of tooth morphogenesis and will facilitate the study of enamel and dentin genetic anomalies, allowing the functional validation of newly identified mutations (variants of uncertain significance -VUS- or new candidate genes).","PeriodicalId":23133,"journal":{"name":"Tissue Engineering Part A","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for Tissue Engineering Part A. 罗莎琳德-富兰克林学会自豪地宣布 2023 年度组织工程 A 部分获奖者。
Pub Date : 2024-09-01 DOI: 10.1089/ten.tea.2024.25467.rfs2023
Mary Beth B Monroe
{"title":"Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for Tissue Engineering Part A.","authors":"Mary Beth B Monroe","doi":"10.1089/ten.tea.2024.25467.rfs2023","DOIUrl":"https://doi.org/10.1089/ten.tea.2024.25467.rfs2023","url":null,"abstract":"","PeriodicalId":23133,"journal":{"name":"Tissue Engineering Part A","volume":"31 1","pages":"511"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling viral infection with tissue engineering: COVID-19 and the next outbreaks 用组织工程模拟病毒感染:新冠肺炎和下一次疫情
Pub Date : 2022-01-28 DOI: 10.1016/B978-0-12-824064-9.00015-0
A. Tatara
{"title":"Modeling viral infection with tissue engineering: COVID-19 and the next outbreaks","authors":"A. Tatara","doi":"10.1016/B978-0-12-824064-9.00015-0","DOIUrl":"https://doi.org/10.1016/B978-0-12-824064-9.00015-0","url":null,"abstract":"","PeriodicalId":23133,"journal":{"name":"Tissue Engineering Part A","volume":"1 1","pages":"647 - 667"},"PeriodicalIF":0.0,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42521797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Future of nanotechnology in tissue engineering 纳米技术在组织工程中的未来
Pub Date : 2022-01-01 DOI: 10.1016/b978-0-12-824064-9.00003-4
V. Vijayan, Gerardo Hernandez-Moreno, V. Thomas
{"title":"Future of nanotechnology in tissue engineering","authors":"V. Vijayan, Gerardo Hernandez-Moreno, V. Thomas","doi":"10.1016/b978-0-12-824064-9.00003-4","DOIUrl":"https://doi.org/10.1016/b978-0-12-824064-9.00003-4","url":null,"abstract":"","PeriodicalId":23133,"journal":{"name":"Tissue Engineering Part A","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"53910022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Dental pulp tissue regeneration 牙髓组织再生
Pub Date : 2022-01-01 DOI: 10.1016/b978-0-12-824064-9.00005-8
I. J. de Souza Araújo, E. Münchow, S. Tootla, M. Bottino
{"title":"Dental pulp tissue regeneration","authors":"I. J. de Souza Araújo, E. Münchow, S. Tootla, M. Bottino","doi":"10.1016/b978-0-12-824064-9.00005-8","DOIUrl":"https://doi.org/10.1016/b978-0-12-824064-9.00005-8","url":null,"abstract":"","PeriodicalId":23133,"journal":{"name":"Tissue Engineering Part A","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"53910034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Tissue regeneration: Fetal to adult transition 组织再生:胎儿到成人的转变
Pub Date : 2022-01-01 DOI: 10.1016/b978-0-12-824064-9.00020-4
Ajoy Aloysius
{"title":"Tissue regeneration: Fetal to adult transition","authors":"Ajoy Aloysius","doi":"10.1016/b978-0-12-824064-9.00020-4","DOIUrl":"https://doi.org/10.1016/b978-0-12-824064-9.00020-4","url":null,"abstract":"","PeriodicalId":23133,"journal":{"name":"Tissue Engineering Part A","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"53910657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosensors in tissue engineering 组织工程中的生物传感器
Pub Date : 2022-01-01 DOI: 10.1016/b978-0-12-824064-9.00026-5
Yubin Zhou, Huizhi Chen, Lianxian Guo, Jianqiang Liu, Hui Zhou, Liyan Wang, H. S. Nanda, Xinsheng Peng
{"title":"Biosensors in tissue engineering","authors":"Yubin Zhou, Huizhi Chen, Lianxian Guo, Jianqiang Liu, Hui Zhou, Liyan Wang, H. S. Nanda, Xinsheng Peng","doi":"10.1016/b978-0-12-824064-9.00026-5","DOIUrl":"https://doi.org/10.1016/b978-0-12-824064-9.00026-5","url":null,"abstract":"","PeriodicalId":23133,"journal":{"name":"Tissue Engineering Part A","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"53910710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Tissue Engineering Part A
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1