The current paper presents a single-cell model developed using the continuous-energy Serpent 2 Monte Carlo reactor physics software. It was employed to establish a Serpent- based method for finding the equilibrium core composition and core depletion of the Molten Salt Breeder Reactor (MSBR).
{"title":"Online Reprocessing Simulation for Thorium-Fueled Molten Salt Breeder Reactor","authors":"Andrei Rykhlevskii, A. Lindsay, K. Huff","doi":"10.31224/osf.io/38gaq","DOIUrl":"https://doi.org/10.31224/osf.io/38gaq","url":null,"abstract":"The current paper presents a single-cell model developed using the continuous-energy Serpent 2 Monte Carlo reactor physics software. It was employed to establish a Serpent- based method for finding the equilibrium core composition and core depletion of the Molten Salt Breeder Reactor (MSBR).","PeriodicalId":23138,"journal":{"name":"Transactions of the American Nuclear Society","volume":"1 1","pages":"239-242"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88745165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01DOI: 10.6084/M9.FIGSHARE.1250143.V1
C. Bates, E. Biondo, K. Huff, K. Kiesling, A. Scopatz, R. Carlsen, Andrew A. Davis, M. Gidden, Timothy Haines, Joshua Howland, Blake Huff, K. Manalo, A. Opotowsky, R. Slaybaugh, E. Relson, P. Romano, P. Shriwise, J. Xia, P. Wilson, J. Zachman
PyNE Progress Report Cameron R. Bates 1,2 , Elliott Biondo 3 , Kathryn Huff 2 , Kalin Kiesling 3 , Anthony Scopatz 3 Robert Carlsen 3 , Andrew Davis 3 , Matthew Gidden 3 , Tim Haines 3 , Joshua Howland 2 , Blake Huff 2 , Kevin Manalo 4 , Arielle Opotowsky 3 , Rachel Slaybaugh 2 , Eric Relson 3 , Paul Romano 5 , Patrick Shriwise 3 , John D. Xia 6 , Paul Wilson 3 , and Julie Zachman 3 Lawrence Livermore National Laboratory, 7000 East Ave L-188, Livermore, CA 94550 The University of California, Berkeley, 2521 Hearst Ave, Berkeley, CA 94709 The University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332 Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 University of Chicago, 5747 S. Ellis Ave., Jones 311, Chicago, IL 60637 bates26@llnl.gov INTRODUCTION PyNE is a suite of free and open source (BSD licensed) tools to aid in computational nuclear science and engineer- ing. PyNE seeks to provide native implementations of com- mon nuclear algorithms, as well as an interface for the script- ing language Python and I/O support for industry standard nuclear codes and data formats. In the past year PyNE has added many features including a Rigorous 2-step Ac- tivation workflow (R2S) [1], Direct Accelerated Geometry Monte Carlo (DAGMC) ray tracing [2], Consistent Adjoint- Weighted Importance Sampling (CADIS) variance reduction [3], and expanded ENSDF parsing support. As a part of our ongoing efforts to implement a verification and validation framework we also added continuous integration using the Build and Test Lab [4] at the University of Wisconsin. The PyNE development team has also improved PyNE’s ease of use by making binaries available for Windows, Mac, and Linux through the conda package manager as well as adding Python 3 support. FEATURE ENHANCEMENTS Mesh As of v0.4, PyNE includes a mesh representation in- terface that is used to build up geometries, store materials, and solve spatial differential equations. This is implemented as a layer on top of MOAB meshes [5]. In addition to the PyTAPS interface [6], a Python interface to interact with MOAB mesh objects, it also adds PyNE Material objects, which allow the user to define a mix of multiple isotopes, to volume elements as well as a generic tagging interface. These features together form a generic, easy-to-use mesh library that is capable of handling a plethora of nuclear engineering problems. The Mesh class lives in the pyne.mesh module. This class houses an iMesh instance called mesh which comes from PyTAPS and contains methods for native mesh op- erations. The mats attribute is an instance of a PyNE MaterialLibrary. This is a mapping of volume element handles to Material objects. Tags—sometimes known as fields—are accessible as attributes on the mesh object itself. Fig. 1. A 2-D slice of a 3-D PyNE flux mesh of ITER plotted in yt. This model is for demonstration purposes only. There
{"title":"PyNE Progress Report","authors":"C. Bates, E. Biondo, K. Huff, K. Kiesling, A. Scopatz, R. Carlsen, Andrew A. Davis, M. Gidden, Timothy Haines, Joshua Howland, Blake Huff, K. Manalo, A. Opotowsky, R. Slaybaugh, E. Relson, P. Romano, P. Shriwise, J. Xia, P. Wilson, J. Zachman","doi":"10.6084/M9.FIGSHARE.1250143.V1","DOIUrl":"https://doi.org/10.6084/M9.FIGSHARE.1250143.V1","url":null,"abstract":"PyNE Progress Report Cameron R. Bates 1,2 , Elliott Biondo 3 , Kathryn Huff 2 , Kalin Kiesling 3 , Anthony Scopatz 3 Robert Carlsen 3 , Andrew Davis 3 , Matthew Gidden 3 , Tim Haines 3 , Joshua Howland 2 , Blake Huff 2 , Kevin Manalo 4 , Arielle Opotowsky 3 , Rachel Slaybaugh 2 , Eric Relson 3 , Paul Romano 5 , Patrick Shriwise 3 , John D. Xia 6 , Paul Wilson 3 , and Julie Zachman 3 Lawrence Livermore National Laboratory, 7000 East Ave L-188, Livermore, CA 94550 The University of California, Berkeley, 2521 Hearst Ave, Berkeley, CA 94709 The University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332 Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 University of Chicago, 5747 S. Ellis Ave., Jones 311, Chicago, IL 60637 bates26@llnl.gov INTRODUCTION PyNE is a suite of free and open source (BSD licensed) tools to aid in computational nuclear science and engineer- ing. PyNE seeks to provide native implementations of com- mon nuclear algorithms, as well as an interface for the script- ing language Python and I/O support for industry standard nuclear codes and data formats. In the past year PyNE has added many features including a Rigorous 2-step Ac- tivation workflow (R2S) [1], Direct Accelerated Geometry Monte Carlo (DAGMC) ray tracing [2], Consistent Adjoint- Weighted Importance Sampling (CADIS) variance reduction [3], and expanded ENSDF parsing support. As a part of our ongoing efforts to implement a verification and validation framework we also added continuous integration using the Build and Test Lab [4] at the University of Wisconsin. The PyNE development team has also improved PyNE’s ease of use by making binaries available for Windows, Mac, and Linux through the conda package manager as well as adding Python 3 support. FEATURE ENHANCEMENTS Mesh As of v0.4, PyNE includes a mesh representation in- terface that is used to build up geometries, store materials, and solve spatial differential equations. This is implemented as a layer on top of MOAB meshes [5]. In addition to the PyTAPS interface [6], a Python interface to interact with MOAB mesh objects, it also adds PyNE Material objects, which allow the user to define a mix of multiple isotopes, to volume elements as well as a generic tagging interface. These features together form a generic, easy-to-use mesh library that is capable of handling a plethora of nuclear engineering problems. The Mesh class lives in the pyne.mesh module. This class houses an iMesh instance called mesh which comes from PyTAPS and contains methods for native mesh op- erations. The mats attribute is an instance of a PyNE MaterialLibrary. This is a mapping of volume element handles to Material objects. Tags—sometimes known as fields—are accessible as attributes on the mesh object itself. Fig. 1. A 2-D slice of a 3-D PyNE flux mesh of ITER plotted in yt. This model is for demonstration purposes only. There ","PeriodicalId":23138,"journal":{"name":"Transactions of the American Nuclear Society","volume":"14 1","pages":"1165-1168"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78437176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monte Carlo Doppler Temperature Coefficients with Perturbation Theory","authors":"M. Gonzales, B. Kiedrowski, F. Brown, A. Prinja","doi":"10.2172/1089478","DOIUrl":"https://doi.org/10.2172/1089478","url":null,"abstract":"","PeriodicalId":23138,"journal":{"name":"Transactions of the American Nuclear Society","volume":"9 1","pages":"1333-1335"},"PeriodicalIF":0.0,"publicationDate":"2013-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91305579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To verify that both MCNP5-1.60 and MCNP6-Beta-2 are performing correctly for criticality safety applications, several suites of verification/validation benchmark problems were run in early 2012. Results from these benchmark suites were compared with results from previously verified versions of MCNP5. The goals of this verification testing were: (1) Verify that MCNP5-1.60 works correctly for nuclear criticality safety applications, producing the same results as for the previous verification performed in 2010; (2) Determine the sensitivity to computer roundoff using different Fortran-90 compilers for building MCNP5 and MCNP6, to support moving to current versions of the compilers; and (3) Verify that MCNP6-Beta-2 works correctly for nuclear criticality safety applications, producing the same results as for MCNP5-1.60. This provides support for eventual migration of users and applications to MCNP6. The current production version of MCNP5 included in the RSICC release package is MCNP5-1.60. This version was first distributed by RSICC in October 2010. While there were subsequent RSICC distributions of the MCNP package in July 2011 and February 2012, no changes were made to MCNP5-1.60. The RSICC release package in February 2012 included both MCNP5-1.60 and the current beta version of MCNP6, MCNP6-Beta-2. MCNP6 is the merger of MCNP5 and MCNPX capabilities. Themore » current release of MCNP6 available from RSICC as of February 2012 is MCNP6-Beta-2. This version includes all of the features for criticality safety calculations that are available in MCNP5-1.60, and many new features largely unrelated to nuclear criticality safety calculations. This release is a 'beta' release to allow intermediate and advanced users to begin testing the merged code in their field of expertise. It should not be used for production calculations.« less
{"title":"Verification of MCNP5-1.60 and MCNP6.1 for criticality safety applications","authors":"F. Brown, B. Kiedrowski, J. Bull","doi":"10.2172/1072258","DOIUrl":"https://doi.org/10.2172/1072258","url":null,"abstract":"To verify that both MCNP5-1.60 and MCNP6-Beta-2 are performing correctly for criticality safety applications, several suites of verification/validation benchmark problems were run in early 2012. Results from these benchmark suites were compared with results from previously verified versions of MCNP5. The goals of this verification testing were: (1) Verify that MCNP5-1.60 works correctly for nuclear criticality safety applications, producing the same results as for the previous verification performed in 2010; (2) Determine the sensitivity to computer roundoff using different Fortran-90 compilers for building MCNP5 and MCNP6, to support moving to current versions of the compilers; and (3) Verify that MCNP6-Beta-2 works correctly for nuclear criticality safety applications, producing the same results as for MCNP5-1.60. This provides support for eventual migration of users and applications to MCNP6. The current production version of MCNP5 included in the RSICC release package is MCNP5-1.60. This version was first distributed by RSICC in October 2010. While there were subsequent RSICC distributions of the MCNP package in July 2011 and February 2012, no changes were made to MCNP5-1.60. The RSICC release package in February 2012 included both MCNP5-1.60 and the current beta version of MCNP6, MCNP6-Beta-2. MCNP6 is the merger of MCNP5 and MCNPX capabilities. Themore » current release of MCNP6 available from RSICC as of February 2012 is MCNP6-Beta-2. This version includes all of the features for criticality safety calculations that are available in MCNP5-1.60, and many new features largely unrelated to nuclear criticality safety calculations. This release is a 'beta' release to allow intermediate and advanced users to begin testing the merged code in their field of expertise. It should not be used for production calculations.« less","PeriodicalId":23138,"journal":{"name":"Transactions of the American Nuclear Society","volume":"5 1","pages":"870-873"},"PeriodicalIF":0.0,"publicationDate":"2013-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87169466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R W Schulte, V Bashkirov, R Johnson, H F-W Sadrozinski, K E Schubert
{"title":"Overview of the LLUMC/UCSC/CSUSB Phase 2 Proton CT Project.","authors":"R W Schulte, V Bashkirov, R Johnson, H F-W Sadrozinski, K E Schubert","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":23138,"journal":{"name":"Transactions of the American Nuclear Society","volume":"106 ","pages":"59-62"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3999917/pdf/nihms-451980.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32297266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R F Hurley, R W Schulte, V A Bashkirov, G Coutrakon, H F-W Sadrozinski, B Patyal
{"title":"The Phase I Proton CT Scanner and Test Beam Results at LLUMC, invited.","authors":"R F Hurley, R W Schulte, V A Bashkirov, G Coutrakon, H F-W Sadrozinski, B Patyal","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":23138,"journal":{"name":"Transactions of the American Nuclear Society","volume":"106 ","pages":"63-66"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4004076/pdf/nihms-451977.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32310332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proton CT for Improved Stopping Power Determination in Proton Therapy, invited.","authors":"Reinhard W Schulte, Scott N Penfold","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":23138,"journal":{"name":"Transactions of the American Nuclear Society","volume":"106 ","pages":"55-58"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3999915/pdf/nihms451972.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32297265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-08-01DOI: 10.1299/JSMEICONE.2011.19._ICONE1943_17
K. Verfondern, Y. Mao
{"title":"The CRP-6 benchmark on HTGR fuel behavior under accident conditions","authors":"K. Verfondern, Y. Mao","doi":"10.1299/JSMEICONE.2011.19._ICONE1943_17","DOIUrl":"https://doi.org/10.1299/JSMEICONE.2011.19._ICONE1943_17","url":null,"abstract":"","PeriodicalId":23138,"journal":{"name":"Transactions of the American Nuclear Society","volume":"30 1","pages":"649-650"},"PeriodicalIF":0.0,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91321272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-01DOI: 10.31399/asm.hb.v13a.a0003609
C. Cabet, Stéphanie Fabre, S. Delpech
{"title":"Molten Salt Corrosion","authors":"C. Cabet, Stéphanie Fabre, S. Delpech","doi":"10.31399/asm.hb.v13a.a0003609","DOIUrl":"https://doi.org/10.31399/asm.hb.v13a.a0003609","url":null,"abstract":"","PeriodicalId":23138,"journal":{"name":"Transactions of the American Nuclear Society","volume":"4291 1","pages":"779-780"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72627255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-01DOI: 10.1007/978-4-431-99779-5_9
Jae-Yong Lim, C. Pyeon, T. Misawa, S. Shiroya
{"title":"Current Status of Accelerator-Driven System with High-Energy Protons in Kyoto University Critical Assembly","authors":"Jae-Yong Lim, C. Pyeon, T. Misawa, S. Shiroya","doi":"10.1007/978-4-431-99779-5_9","DOIUrl":"https://doi.org/10.1007/978-4-431-99779-5_9","url":null,"abstract":"","PeriodicalId":23138,"journal":{"name":"Transactions of the American Nuclear Society","volume":"101 1","pages":"65-70"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85817252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}