Pub Date : 2024-12-01Epub Date: 2024-09-26DOI: 10.1177/07482337241285103
Katarzyna Olszak-Wąsik, Andrzej Tukiendorf, Aleksandra Kasperczyk, Anita Olejek, Mateusz Zamłyński, Stanisław Horák
The purpose of our study was to determine the influence of lead and cadmium in concentrations commonly found in the environment on the redox system of the follicular fluid (FF) and on the results of assisted reproduction. A prospective study of 113 patients with unexplained infertility who qualified for intracytoplasmic sperm injection (ICSI). Patients with moderate or severe endometriosis or poor ovarian reserve were excluded from the study. Biochemical analyses and heavy metal assays of follicular fluid and serum (blood) were followed by statistical analyses of dependencies between lead and cadmium and the components of redox system and results of assisted reproduction. A highly significant linear correlation of lead (Pb) and cadmium (Cd) concentrations in serum and in FF was stated. The number of retrieved oocytes and MII (metaphase II stage) oocytes depended on the malondialdehyde (MDA), catalase (CAT), catalase/g of protein (CAT/g of protein), and glutathione reductase (GR) concentrations. Among biochemical factors, MDA was the only factor that correlated negatively with cadmium concentration in serum and FF and simultaneously influenced the number of retrieved oocytes and MII oocytes. The fertilization rate of MII oocytes was influenced by thiol groups-SH, SH/g of protein, CAT, CAT/g of protein, and glutathione peroxidase/g of protein (GPx/g of protein). The Pb and Cd concentrations in FF did not significantly influence the fertilization rates. Lead as well as cadmium at concentrations commonly found in women of reproductive age despite some adaptive changes in the redox system in follicular fluid do not cause large changes in the ovarian follicular environment as a whole and do not significantly worsen the final results of assisted reproduction.
我们的研究旨在确定环境中常见浓度的铅和镉对卵泡液(FF)氧化还原系统和辅助生殖结果的影响。我们对 113 名符合卵胞浆内单精子显微注射(ICSI)条件的不明原因不孕症患者进行了前瞻性研究。患有中度或重度子宫内膜异位症或卵巢储备功能低下的患者被排除在研究之外。在对卵泡液和血清(血液)进行生化分析和重金属检测后,对铅和镉与氧化还原系统成分和辅助生殖结果之间的相关性进行了统计分析。结果表明,血清和卵泡液中的铅(Pb)和镉(Cd)浓度呈高度明显的线性相关。取回的卵母细胞数和 MII(分裂期 II)卵母细胞数取决于丙二醛(MDA)、过氧化氢酶(CAT)、过氧化氢酶/克蛋白质(CAT/克蛋白质)和谷胱甘肽还原酶(GR)的浓度。在生化因子中,MDA是唯一与血清和FF中的镉浓度呈负相关的因子,并同时影响取卵卵母细胞数和MII卵母细胞数。硫醇基团-SH、SH/克蛋白质、CAT、CAT/克蛋白质和谷胱甘肽过氧化物酶/克蛋白质(GPx/克蛋白质)对 MII 卵母细胞的受精率有影响。FF 中的铅和镉浓度对受精率没有显著影响。尽管卵泡液中的氧化还原系统发生了一些适应性变化,但育龄妇女体内常见浓度的铅和镉不会导致卵泡环境整体发生巨大变化,也不会明显恶化辅助生殖的最终结果。
{"title":"Environmental exposure to lead and cadmium only minimally affects the redox system of the follicular fluid and the outcome of intracytoplasmic sperm injection.","authors":"Katarzyna Olszak-Wąsik, Andrzej Tukiendorf, Aleksandra Kasperczyk, Anita Olejek, Mateusz Zamłyński, Stanisław Horák","doi":"10.1177/07482337241285103","DOIUrl":"10.1177/07482337241285103","url":null,"abstract":"<p><p>The purpose of our study was to determine the influence of lead and cadmium in concentrations commonly found in the environment on the redox system of the follicular fluid (FF) and on the results of assisted reproduction. A prospective study of 113 patients with unexplained infertility who qualified for intracytoplasmic sperm injection (ICSI). Patients with moderate or severe endometriosis or poor ovarian reserve were excluded from the study. Biochemical analyses and heavy metal assays of follicular fluid and serum (blood) were followed by statistical analyses of dependencies between lead and cadmium and the components of redox system and results of assisted reproduction. A highly significant linear correlation of lead (Pb) and cadmium (Cd) concentrations in serum and in FF was stated. The number of retrieved oocytes and MII (metaphase II stage) oocytes depended on the malondialdehyde (MDA), catalase (CAT), catalase/g of protein (CAT/g of protein), and glutathione reductase (GR) concentrations. Among biochemical factors, MDA was the only factor that correlated negatively with cadmium concentration in serum and FF and simultaneously influenced the number of retrieved oocytes and MII oocytes. The fertilization rate of MII oocytes was influenced by thiol groups-SH, SH/g of protein, CAT, CAT/g of protein, and glutathione peroxidase/g of protein (GPx/g of protein). The Pb and Cd concentrations in FF did not significantly influence the fertilization rates. Lead as well as cadmium at concentrations commonly found in women of reproductive age despite some adaptive changes in the redox system in follicular fluid do not cause large changes in the ovarian follicular environment as a whole and do not significantly worsen the final results of assisted reproduction.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"679-691"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-08DOI: 10.1177/07482337241279894
Thiago Guedes Pinto, Ana Claudia Muniz Renno, Patricia Ramos Cury, Daniel Araki Ribeiro
Formaldehyde is a chemical compound capable of preserving cells and tissue morphology, being extensively used worldwide in industrial and medical processes. However, due to the many biological effects that take place after an individual is chronically exposed to formaldehyde, this compound poses a greater cancer risk for workers under its occupational exposure, even at lower concentrations. Thus, the present systematic review aimed to understand whether there may be a positive relation between polymorphism (in terms of individual susceptibility) and genotoxicity in individuals occupationally exposed to formaldehyde. For this purpose, a total of eight selected studies were carefully analyzed by two reviewers, who attributed scores to each study according to the used analysis parameters. First, all studies investigated either pathologists under formaldehyde exposure or anatomical laboratory pathology workers. In addition, the majority of studies were categorized as moderate or strong in the quality assessment. The results revealed a positive association between some polymorphism and genotoxicity in individuals exposed to formaldehyde, since more than half of the studies observed positive relations between genotoxicity and polymorphisms in xenobiotics metabolizing genes. We understand such parameters influence individuals' susceptibility to genomic damage induced by formaldehyde in peripheral blood. In conclusion, individuals with certain genotypes may show higher or lower DNA damage and/or lower or higher DNA repair potential.
甲醛是一种能够保存细胞和组织形态的化合物,在全世界的工业和医疗过程中被广泛使用。然而,由于长期接触甲醛会对生物产生多种影响,因此,即使甲醛浓度较低,工人在职业接触甲醛的情况下也会面临较大的癌症风险。因此,本系统综述旨在了解职业暴露于甲醛的个体的多态性(个体易感性)与遗传毒性之间是否存在正相关关系。为此,两名审稿人对所选的八项研究进行了仔细分析,并根据所使用的分析参数为每项研究打分。首先,所有研究都调查了接触甲醛的病理学家或解剖实验室病理工作人员。此外,大多数研究在质量评估中被归类为中等或较高。研究结果表明,暴露于甲醛的个体的某些多态性与基因毒性之间存在正相关,因为半数以上的研究观察到基因毒性与异种生物代谢基因的多态性之间存在正相关。我们了解到,这些参数会影响个体对外周血中甲醛诱导的基因组损伤的易感性。总之,具有特定基因型的个体可能会表现出较高或较低的 DNA 损伤和/或较低或较高的 DNA 修复潜力。
{"title":"The impact of genetic polymorphism for detecting genotoxicity in workers occupationally exposed to formaldehyde: A systematic review.","authors":"Thiago Guedes Pinto, Ana Claudia Muniz Renno, Patricia Ramos Cury, Daniel Araki Ribeiro","doi":"10.1177/07482337241279894","DOIUrl":"10.1177/07482337241279894","url":null,"abstract":"<p><p>Formaldehyde is a chemical compound capable of preserving cells and tissue morphology, being extensively used worldwide in industrial and medical processes. However, due to the many biological effects that take place after an individual is chronically exposed to formaldehyde, this compound poses a greater cancer risk for workers under its occupational exposure, even at lower concentrations. Thus, the present systematic review aimed to understand whether there may be a positive relation between polymorphism (in terms of individual susceptibility) and genotoxicity in individuals occupationally exposed to formaldehyde. For this purpose, a total of eight selected studies were carefully analyzed by two reviewers, who attributed scores to each study according to the used analysis parameters. First, all studies investigated either pathologists under formaldehyde exposure or anatomical laboratory pathology workers. In addition, the majority of studies were categorized as moderate or strong in the quality assessment. The results revealed a positive association between some polymorphism and genotoxicity in individuals exposed to formaldehyde, since more than half of the studies observed positive relations between genotoxicity and polymorphisms in xenobiotics metabolizing genes. We understand such parameters influence individuals' susceptibility to genomic damage induced by formaldehyde in peripheral blood. In conclusion, individuals with certain genotypes may show higher or lower DNA damage and/or lower or higher DNA repair potential.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"643-652"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142155001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-02DOI: 10.1177/07482337241277261
Nadielle Silva Bidu, Diogo Sousa Lemos, Bruno José Dumêt Fernandes
Arsenic and its inorganic compounds affect numerous organs and systemic functions, such as the nervous and hematopoietic systems, liver, kidneys, and skin. Despite a large number of studies on arsenic toxicity, rare reports have investigated the leukopenia incidence in workers exposed to arsenic. In workplaces, the main source of workers' exposure is the contaminated air by the inorganic arsenic in mines, arsenic or copper smelter industries, and chemical factories. Erythropoiesis inhibition is one of the arsenic effects and it is related to regulatory factor GATA-1. This factor is necessary for the normal differentiation of early erythroid progenitors. JAK-STAT is an important intracellular signal transduction pathway responsible for the mediating normal functions of several cytokines related to cell proliferation and hematopoietic systems development and regulation. Arsenic inactivates JAK-STAT by inhibiting JAK tyrosine kinase and using the IFNγ pathway. The intravascular hemolysis starts after the absorption phase when arsenic binds to the globin of hemoglobin in erythrocytes and is transported into the body, which increases the oxidation of sulfhydryl groups in hemoglobin. So, this article intends to highlight the potential leukopenia risk via inhalation for workers exposed to arsenic and suggests a possible mechanism for this leukopenia through the JAK-signal transducer and activator of transcription (STAT) pathway inhibition.
砷及其无机化合物会影响许多器官和全身功能,如神经和造血系统、肝脏、肾脏和皮肤。尽管有大量关于砷毒性的研究,但很少有报告调查接触砷的工人出现白细胞减少症的情况。在工作场所,工人接触砷的主要来源是矿场、砷或铜冶炼厂及化工厂受无机砷污染的空气。红细胞生成抑制是砷的影响之一,它与调节因子 GATA-1 有关。该因子是早期红细胞祖细胞正常分化所必需的。JAK-STAT 是一种重要的细胞内信号转导途径,负责介导与细胞增殖和造血系统发育和调节有关的几种细胞因子的正常功能。砷通过抑制 JAK 酪氨酸激酶和利用 IFNγ 途径使 JAK-STAT 失活。当砷与红细胞中的血红蛋白球蛋白结合并被转运到体内,使血红蛋白中的巯基氧化增加时,血管内溶血就开始了。因此,本文旨在强调接触砷的工人通过吸入砷可能导致白细胞减少症的风险,并提出了通过抑制 JAK 信号转导和激活转录(STAT)途径导致白细胞减少症的可能机制。
{"title":"Occupational exposure to arsenic and leukopenia risk: Toxicological alert.","authors":"Nadielle Silva Bidu, Diogo Sousa Lemos, Bruno José Dumêt Fernandes","doi":"10.1177/07482337241277261","DOIUrl":"10.1177/07482337241277261","url":null,"abstract":"<p><p>Arsenic and its inorganic compounds affect numerous organs and systemic functions, such as the nervous and hematopoietic systems, liver, kidneys, and skin. Despite a large number of studies on arsenic toxicity, rare reports have investigated the leukopenia incidence in workers exposed to arsenic. In workplaces, the main source of workers' exposure is the contaminated air by the inorganic arsenic in mines, arsenic or copper smelter industries, and chemical factories. Erythropoiesis inhibition is one of the arsenic effects and it is related to regulatory factor GATA-1. This factor is necessary for the normal differentiation of early erythroid progenitors. JAK-STAT is an important intracellular signal transduction pathway responsible for the mediating normal functions of several cytokines related to cell proliferation and hematopoietic systems development and regulation. Arsenic inactivates JAK-STAT by inhibiting JAK tyrosine kinase and using the IFNγ pathway. The intravascular hemolysis starts after the absorption phase when arsenic binds to the globin of hemoglobin in erythrocytes and is transported into the body, which increases the oxidation of sulfhydryl groups in hemoglobin. So, this article intends to highlight the potential leukopenia risk via inhalation for workers exposed to arsenic and suggests a possible mechanism for this leukopenia through the JAK-signal transducer and activator of transcription (STAT) pathway inhibition.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"637-642"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-31DOI: 10.1177/07482337241277259
Cui Jiajing, Yan Shuqi, Ma Haoyan, Wang Pingwei, Liu Dongge, Liu Yanping, Chen Qianqian, Fajrin Saleh, Ren Shuping
Perfluorooctane sulfonate (PFOS) is one of the most widely used perfluorinated compounds, and as an environmental endocrine disruptor and environmental persistent pollutant, the threat of PFOS to human health is of increasing concern. Exposure to PFOS has been shown to be closely associated with liver disease, but the intrinsic molecular targets and mechanisms of PFOS-induced liver damage are not well understood. This study was conducted to explore whether the Wnt/β-Catenin signaling pathway and the endoplasmic reticulum stress signaling pathway are involved in damage of PFOS to the liver. In this study, we used the CCK-8 method to detect cell viability, a microscope and DAPI staining to observe cell morphology, flow cytometry to detect cell ROS and apoptosis levels; and Western blot to detect the expressions of proteins in the WNT/β-Catenin, endoplasmic reticulum stress and apoptosis-related pathways. We found that PFOS activated WNT/β-Catenin and endoplasmic reticulum stress-related pathways in L-02 cells and could lead to the development of oxidative stress and apoptosis. Our findings showed that PFOS could cause damage to L-02 cells, and the WNT/β-Catenin signaling and endoplasmic reticulum stress pathways were involved in the changes caused by PFOS to L-02 cells, which provided a new theoretical basis for studying the hepatotoxicity and mechanism of PFOS. PFOS can lead to increased intracellular ROS levels, causing oxidative stress, endoplasmic reticulum stress and activation of the WNT/β-catenin signaling pathway. Our experimental results showed that PFOS can cause damage to L-02 cells, and the WNT/β-Catenin signaling pathway and endoplasmic reticulum stress pathway are involved in the process of damage caused by PFOS to L-02 cells.
{"title":"Perfluorooctane sulfonate causes damage to L-02 cells via Wnt/β-catenin signal path and endoplasmic reticulum stress pathway.","authors":"Cui Jiajing, Yan Shuqi, Ma Haoyan, Wang Pingwei, Liu Dongge, Liu Yanping, Chen Qianqian, Fajrin Saleh, Ren Shuping","doi":"10.1177/07482337241277259","DOIUrl":"10.1177/07482337241277259","url":null,"abstract":"<p><p>Perfluorooctane sulfonate (PFOS) is one of the most widely used perfluorinated compounds, and as an environmental endocrine disruptor and environmental persistent pollutant, the threat of PFOS to human health is of increasing concern. Exposure to PFOS has been shown to be closely associated with liver disease, but the intrinsic molecular targets and mechanisms of PFOS-induced liver damage are not well understood. This study was conducted to explore whether the Wnt/β-Catenin signaling pathway and the endoplasmic reticulum stress signaling pathway are involved in damage of PFOS to the liver. In this study, we used the CCK-8 method to detect cell viability, a microscope and DAPI staining to observe cell morphology, flow cytometry to detect cell ROS and apoptosis levels; and Western blot to detect the expressions of proteins in the WNT/β-Catenin, endoplasmic reticulum stress and apoptosis-related pathways. We found that PFOS activated WNT/β-Catenin and endoplasmic reticulum stress-related pathways in L-02 cells and could lead to the development of oxidative stress and apoptosis. Our findings showed that PFOS could cause damage to L-02 cells, and the WNT/β-Catenin signaling and endoplasmic reticulum stress pathways were involved in the changes caused by PFOS to L-02 cells, which provided a new theoretical basis for studying the hepatotoxicity and mechanism of PFOS. PFOS can lead to increased intracellular ROS levels, causing oxidative stress, endoplasmic reticulum stress and activation of the WNT/β-catenin signaling pathway. Our experimental results showed that PFOS can cause damage to L-02 cells, and the WNT/β-Catenin signaling pathway and endoplasmic reticulum stress pathway are involved in the process of damage caused by PFOS to L-02 cells.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"653-666"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-13DOI: 10.1177/07482337241269784
Farha Shahabuddin, Samina Naseem, Tauseef Alam, Aijaz Ahmed Khan, Farah Khan
Aluminium, a ubiquitous environmental toxicant, is distinguished for eliciting a broad range of physiological, biochemical, and behavioural alterations in laboratory animals and humans. The present work was conducted to study the functional and structural changes induced by aluminium in rat liver. Twenty five adult male Wistar rats (150-200 g) were randomly divided into five groups; control group and four Al-treated groups viz: Al 1 (25 mg AlCl3/kg b.wt), Al 2 (35 mg AlCl3/kg b.wt), Al 3 (45 mg AlCl3/kg b.wt), and Al 4 (55 mg AlCl3/kg b.wt). Rats in the aluminium-treated groups were administered AlCl3 for 30 days through oral gavage. Aluminium significantly increased the serum levels of liver function markers (ALT, AST, and ALP), phospholipids, and cholesterol. The activities of hepatocyte membrane (ALP, GGT, and LAP) and carbohydrate metabolic (G6P, F16BP, HK, LDH, MDH, ME, and G6PDH) enzymes were significantly altered by AlCl3 administration. Prolonged Al exposure induced oxidative stress in the liver, as evident by significant hepatocellular DNA damage, increased lipid peroxidation, and decreased non-enzymatic and enzymatic antioxidants. The toxic effects observed in this study were AlCl3 dose-dependent. Histopathological examination of liver sections revealed enlargement of sinusoidal spaces, derangement of the hepatic chord, loss of discrete hepatic cell boundaries, congestion of hepatic sinusoids, and degeneration of hepatocytes in Al-intoxicated rats. In conclusion, aluminium causes severe hepatotoxicity by inhibiting the hepatocyte membrane enzymes and disrupting the liver's energy metabolism and antioxidant defence.
{"title":"Chronic aluminium chloride exposure induces redox imbalance, metabolic distress, DNA damage, and histopathologic alterations in Wistar rat liver.","authors":"Farha Shahabuddin, Samina Naseem, Tauseef Alam, Aijaz Ahmed Khan, Farah Khan","doi":"10.1177/07482337241269784","DOIUrl":"10.1177/07482337241269784","url":null,"abstract":"<p><p>Aluminium, a ubiquitous environmental toxicant, is distinguished for eliciting a broad range of physiological, biochemical, and behavioural alterations in laboratory animals and humans. The present work was conducted to study the functional and structural changes induced by aluminium in rat liver. Twenty five adult male Wistar rats (150-200 g) were randomly divided into five groups; control group and four Al-treated groups viz: Al 1 (25 mg AlCl<sub>3</sub>/kg b.wt), Al 2 (35 mg AlCl<sub>3</sub>/kg b.wt), Al 3 (45 mg AlCl<sub>3</sub>/kg b.wt), and Al 4 (55 mg AlCl<sub>3</sub>/kg b.wt). Rats in the aluminium-treated groups were administered AlCl<sub>3</sub> for 30 days through oral gavage. Aluminium significantly increased the serum levels of liver function markers (ALT, AST, and ALP), phospholipids, and cholesterol. The activities of hepatocyte membrane (ALP, GGT, and LAP) and carbohydrate metabolic (G6P, F16BP, HK, LDH, MDH, ME, and G6PDH) enzymes were significantly altered by AlCl<sub>3</sub> administration. Prolonged Al exposure induced oxidative stress in the liver, as evident by significant hepatocellular DNA damage, increased lipid peroxidation, and decreased non-enzymatic and enzymatic antioxidants. The toxic effects observed in this study were AlCl<sub>3</sub> dose-dependent. Histopathological examination of liver sections revealed enlargement of sinusoidal spaces, derangement of the hepatic chord, loss of discrete hepatic cell boundaries, congestion of hepatic sinusoids, and degeneration of hepatocytes in Al-intoxicated rats. In conclusion, aluminium causes severe hepatotoxicity by inhibiting the hepatocyte membrane enzymes and disrupting the liver's energy metabolism and antioxidant defence.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"581-595"},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-20DOI: 10.1177/07482337241273755
Muhammad Zubir Yusof, Maryam Zahaba, Mohd Shukri Mohd Aris, Saiful 'Arifin Shafiee, Hazrin Abdul Hadi, Mohd Norhafsam Maghpor, Nor Mohd Razif Noraini
This study aimed to estimate workers' occupational lifetime exposure to chrysotile and examine the respiratory symptoms and lung cancer risk. A total of 112 workers were interviewed about their occupational histories. Exposure modeling using information on the determinants of exposure was used to estimate chrysotile emissions. The cumulative lifetime exposure was then assessed for each worker. Respiratory symptoms were obtained using a validated questionnaire. Lung cancer mortality rate was also predicted using a model. Almost all the workers were male and young (mean age = 30 years, SD = 7). The estimated lifetime occupational chrysotile inhalation exposure ranged from 0.0001 to 0.0486 f/mL.years (median = 0.0018 f/mL.years, IQR = 0.486). A high prevalence of cough symptom (11.7%), and low estimated cancer risk (<1%) were reported. In conclusion, the lung cancer risk among our cohort of workers was at a low level because of lower cumulative lifetime occupational chrysotile exposure.
{"title":"Assessing lifetime occupational chrysotile inhalation exposure, respiratory symptoms, and lung cancer risk among brake maintenance workers in Malaysia.","authors":"Muhammad Zubir Yusof, Maryam Zahaba, Mohd Shukri Mohd Aris, Saiful 'Arifin Shafiee, Hazrin Abdul Hadi, Mohd Norhafsam Maghpor, Nor Mohd Razif Noraini","doi":"10.1177/07482337241273755","DOIUrl":"10.1177/07482337241273755","url":null,"abstract":"<p><p>This study aimed to estimate workers' occupational lifetime exposure to chrysotile and examine the respiratory symptoms and lung cancer risk. A total of 112 workers were interviewed about their occupational histories. Exposure modeling using information on the determinants of exposure was used to estimate chrysotile emissions. The cumulative lifetime exposure was then assessed for each worker. Respiratory symptoms were obtained using a validated questionnaire. Lung cancer mortality rate was also predicted using a model. Almost all the workers were male and young (mean age = 30 years, SD = 7). The estimated lifetime occupational chrysotile inhalation exposure ranged from 0.0001 to 0.0486 f/mL.years (median = 0.0018 f/mL.years, IQR = 0.486). A high prevalence of cough symptom (11.7%), and low estimated cancer risk (<1%) were reported. In conclusion, the lung cancer risk among our cohort of workers was at a low level because of lower cumulative lifetime occupational chrysotile exposure.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"596-604"},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-27DOI: 10.1177/07482337241273833
L G Roberts, A M Hoberman, S Verpaele, S H Inayat-Hussain, J M DeSesso, M Fukumura
Women comprise approximately 40% of the global workforce, and many women continue to work during pregnancy. Although occupational exposure limit values (OELVs) are intended to protect all workers, many OELVs may have been established without consideration of the unique changes in pregnant workers, and many chemicals lack OELVs altogether. A short educational course was developed to address the informational needs of health professionals who have responsibility to ensure a safe workplace for pregnant employees. The course was designed to raise awareness of the key elements in risk management and their application to the pregnant worker, such as physiological changes of pregnancy that influence susceptibility to exposures; guidance for nonclinical data interpretation; exposure assessment and control strategies; and risk management in practice in a diverse regulatory environment. This paper summarizes the course content and is intended to support informed risk management decision making to protect the health of pregnant workers and their offspring.
{"title":"Considerations for occupational risk management during pregnancy: A summary of a continuing education course.","authors":"L G Roberts, A M Hoberman, S Verpaele, S H Inayat-Hussain, J M DeSesso, M Fukumura","doi":"10.1177/07482337241273833","DOIUrl":"10.1177/07482337241273833","url":null,"abstract":"<p><p>Women comprise approximately 40% of the global workforce, and many women continue to work during pregnancy. Although occupational exposure limit values (OELVs) are intended to protect all workers, many OELVs may have been established without consideration of the unique changes in pregnant workers, and many chemicals lack OELVs altogether. A short educational course was developed to address the informational needs of health professionals who have responsibility to ensure a safe workplace for pregnant employees. The course was designed to raise awareness of the key elements in risk management and their application to the pregnant worker, such as physiological changes of pregnancy that influence susceptibility to exposures; guidance for nonclinical data interpretation; exposure assessment and control strategies; and risk management in practice in a diverse regulatory environment. This paper summarizes the course content and is intended to support informed risk management decision making to protect the health of pregnant workers and their offspring.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"605-621"},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-23DOI: 10.1177/07482337241273808
Anita Tewari
Pyrethrin and pyrethroid are a relatively new class of pesticides with potent insecticidal properties. Pyrethrins are naturally occurring pesticides obtained from the Chrysanthemum cinerariaefolium flower, while pyrethroids are their synthetic derivatives. They are widely used as the insecticides of choice in agriculture, veterinary medicine, public health programs, and household activities. Pyrethrin, being a broad-spectrum insecticide kills a wide range of pests, while pyrethroids last longer in the environment owing to low susceptibility to sunlight, and greater stability and efficacy than parent molecules. Humans can be exposed through inhalation, ingestion, and dermal routes. Indoor usage of an insecticide poses a serious risk to human health, especially to women, children, and stay-at-home people. Although pyrethrin and pyrethroid are generally considered safe, sustained skin or inhalation exposure or direct contact with open wounds results in higher toxicity to mammals. There is a paucity of data on the impact of pyrethrin and pyrethroid on overall pulmonary health. The respiratory system, from the nose, nasal passages, airways, and bronchi to the pulmonary alveoli, is vulnerable to environmental contaminants such as pesticides because of its anatomical location as well as being a highly blood profused organ. Under and over-functioning of the respiratory system triggers diverse pathologies such as serious infections, allergies, asthma, metastatic malignancies, and auto-immune conditions. While the association between workplace-related pesticide exposures and respiratory diseases and symptoms is well documented, it is important to understand the adverse health impact of pyrethrin and pyrethroid on the general population for awareness and also for better regulation and implementation of the law.
{"title":"Respiratory system: Highly exposed yet under-reported organ in pyrethrin and pyrethroid toxicity.","authors":"Anita Tewari","doi":"10.1177/07482337241273808","DOIUrl":"10.1177/07482337241273808","url":null,"abstract":"<p><p>Pyrethrin and pyrethroid are a relatively new class of pesticides with potent insecticidal properties. Pyrethrins are naturally occurring pesticides obtained from the <i>Chrysanthemum cinerariaefolium</i> flower, while pyrethroids are their synthetic derivatives. They are widely used as the insecticides of choice in agriculture, veterinary medicine, public health programs, and household activities. Pyrethrin, being a broad-spectrum insecticide kills a wide range of pests, while pyrethroids last longer in the environment owing to low susceptibility to sunlight, and greater stability and efficacy than parent molecules. Humans can be exposed through inhalation, ingestion, and dermal routes. Indoor usage of an insecticide poses a serious risk to human health, especially to women, children, and stay-at-home people. Although pyrethrin and pyrethroid are generally considered safe, sustained skin or inhalation exposure or direct contact with open wounds results in higher toxicity to mammals. There is a paucity of data on the impact of pyrethrin and pyrethroid on overall pulmonary health. The respiratory system, from the nose, nasal passages, airways, and bronchi to the pulmonary alveoli, is vulnerable to environmental contaminants such as pesticides because of its anatomical location as well as being a highly blood profused organ. Under and over-functioning of the respiratory system triggers diverse pathologies such as serious infections, allergies, asthma, metastatic malignancies, and auto-immune conditions. While the association between workplace-related pesticide exposures and respiratory diseases and symptoms is well documented, it is important to understand the adverse health impact of pyrethrin and pyrethroid on the general population for awareness and also for better regulation and implementation of the law.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"622-635"},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-13DOI: 10.1177/07482337241267247
Müşerref Bostancı, Burak Kaptaner, Abdulahad Doğan
In this presented study, the aim was to investigate the toxic effects of bisphenol S (BPS), one of the bisphenol A analogues, on the thyroid glands of male Wistar albino rats. Toward this aim, the rats (n = 28) were given a vehicle (control) or BPS at 3 different doses, comprising 20, 100, and 500 mg/kg of body weight (bw) via oral gavage for 28 days. According to the results, BPS led to numerous histopathological changes in the thyroid tissue. The average proliferation index values among the thyroid follicular cells (TFCs) displayed increases in all of the BPS groups, and significant differences were observed in the BPS-20 and BPS-100 groups. The average apoptotic index values in the TFCs were increased significantly in the BPS-500 group. The serum thyroid-stimulating hormone and serum free thyroxine levels did not show significant changes after exposure to BPS; however, the serum free triiodothyronine levels displayed significant decreases in all 3 of the BPS groups. BPS was determined to cause significant increases in the antioxidant enzyme activities of catalase, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase, as well as a significantly decreased content of reduced glutathione. The malondialdehyde level in the thyroid tissue was elevated significantly in the BPS-500 group. The data obtained herein revealed that BPS has thyroid-disrupting potential based on structural changes, follicle cell responses, and biochemical alterations including a decreased serum free triiodothyronine level and increased oxidative stress.
{"title":"Thyroid-disrupting effects of bisphenol S in male Wistar albino rats: Histopathological lesions, follicle cell proliferation and apoptosis, and biochemical changes.","authors":"Müşerref Bostancı, Burak Kaptaner, Abdulahad Doğan","doi":"10.1177/07482337241267247","DOIUrl":"10.1177/07482337241267247","url":null,"abstract":"<p><p>In this presented study, the aim was to investigate the toxic effects of bisphenol S (BPS), one of the bisphenol A analogues, on the thyroid glands of male <i>Wistar albino</i> rats. Toward this aim, the rats (<i>n</i> = 28) were given a vehicle (control) or BPS at 3 different doses, comprising 20, 100, and 500 mg/kg of body weight (bw) via oral gavage for 28 days. According to the results, BPS led to numerous histopathological changes in the thyroid tissue. The average proliferation index values among the thyroid follicular cells (TFCs) displayed increases in all of the BPS groups, and significant differences were observed in the BPS-20 and BPS-100 groups. The average apoptotic index values in the TFCs were increased significantly in the BPS-500 group. The serum thyroid-stimulating hormone and serum free thyroxine levels did not show significant changes after exposure to BPS; however, the serum free triiodothyronine levels displayed significant decreases in all 3 of the BPS groups. BPS was determined to cause significant increases in the antioxidant enzyme activities of catalase, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase, as well as a significantly decreased content of reduced glutathione. The malondialdehyde level in the thyroid tissue was elevated significantly in the BPS-500 group. The data obtained herein revealed that BPS has thyroid-disrupting potential based on structural changes, follicle cell responses, and biochemical alterations including a decreased serum free triiodothyronine level and increased oxidative stress.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"559-580"},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-06-05DOI: 10.1177/07482337241245745
Bis-(2-Chloroisopropyl) ether (BCIPE) was used as a solvent for fats, greases, paint, varnish removers, and in spotting and cleaning solutions. However, BCIPE has not been commercially manufactured or used for numerous years. In experimental animal studies, BCIPE is moderately toxic following acute oral, dermal, and inhalation routes of exposure. BCIPE is a severe eye irritant but not a dermal irritant or dermal sensitizer. BCIPE was not genotoxic or mutagenic in in vitro and in vivo assays; it was not toxic in a 3-generation reproductive dietary study in rats. Short-term, repeated inhalation and oral exposure in rats produced increased liver and kidney weights and congestion; dermal exposure in rabbits did not produce any observable adverse effects. BCIPE did not produce a statistically significant increase in tumors in two different 2-year dietary studies in mice and rats. In mice, technical grade BCIPE produced increased incidences of alveolar/bronchiolar adenomas in females, hepatocellular carcinomas in males, and a low incidence of forestomach hyperplasia (in both sexes at the high-dose). Further investigation with technical grade BCIPE concluded that these effects were species- and dose-specific with limited, if any, relevance to humans. The NOAEL of 400 ppm (15 mg/kg/day) from the 2-year dietary study in female rats was considered the point of departure for the health-based WEEL derivation. After adjustment for duration of exposure, interindividual variability, and intraindividual variability, an 8-h time-weighted average (TWA) WEEL value of 3 ppm (21 mg/m3) was derived. This exposure limit is expected to provide a significant margin of safety against any potential adverse health effects in workers.
{"title":"Bis-(2-Chloroisopropyl) ether.","authors":"","doi":"10.1177/07482337241245745","DOIUrl":"10.1177/07482337241245745","url":null,"abstract":"<p><p>Bis-(2-Chloroisopropyl) ether (BCIPE) was used as a solvent for fats, greases, paint, varnish removers, and in spotting and cleaning solutions. However, BCIPE has not been commercially manufactured or used for numerous years. In experimental animal studies, BCIPE is moderately toxic following acute oral, dermal, and inhalation routes of exposure. BCIPE is a severe eye irritant but not a dermal irritant or dermal sensitizer. BCIPE was not genotoxic or mutagenic in in vitro and in vivo assays; it was not toxic in a 3-generation reproductive dietary study in rats. Short-term, repeated inhalation and oral exposure in rats produced increased liver and kidney weights and congestion; dermal exposure in rabbits did not produce any observable adverse effects. BCIPE did not produce a statistically significant increase in tumors in two different 2-year dietary studies in mice and rats. In mice, technical grade BCIPE produced increased incidences of alveolar/bronchiolar adenomas in females, hepatocellular carcinomas in males, and a low incidence of forestomach hyperplasia (in both sexes at the high-dose). Further investigation with technical grade BCIPE concluded that these effects were species- and dose-specific with limited, if any, relevance to humans. The NOAEL of 400 ppm (15 mg/kg/day) from the 2-year dietary study in female rats was considered the point of departure for the health-based WEEL derivation. After adjustment for duration of exposure, interindividual variability, and intraindividual variability, an 8-h time-weighted average (TWA) WEEL value of 3 ppm (21 mg/m<sup>3</sup>) was derived. This exposure limit is expected to provide a significant margin of safety against any potential adverse health effects in workers.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"497-503"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}