Pub Date : 2024-04-01Epub Date: 2024-01-29DOI: 10.1177/07482337241230701
Suli He, Chao Yan, Min Wu, Haiyan Peng, Ren Li, Jian Wan, Xin Ye, Hongmao Zhang, Shumao Ding
Phthalic acid esters (PAEs) and carbon nanotubes (CNTs) are common environmental pollutants and may degrade differently with different resulting biotoxicity, when present together. This study investigated the toxicological effects of singular or combined exposure to dibutyl phthalate (DBP) and multi-walled carbon nanotubes (MWCNTs) in KM mice. Results indicated that combined exposure led to slower weight gain and an increased leukocyte count in the blood, as well as liver tissue lesions and downregulation of organ coefficients. Additionally, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were elevated in the liver, and glucose, pyruvate, triglyceride (TG), and total cholesterol (T-CHO) were significantly reduced, suggesting compromised liver function. Furthermore, mRNA levels of genes related to hepatic glucose and lipid metabolism were significantly altered. These findings suggest that combined exposure to DBP and MWCNTs can have severe impacts on liver function in mice, highlighting the importance of considering interactions between multiple contaminants in environmental risk assessments.
邻苯二甲酸酯(PAEs)和碳纳米管(CNTs)是常见的环境污染物,当它们同时存在时,可能会产生不同的降解作用和生物毒性。本研究调查了 KM 小鼠单独或同时接触邻苯二甲酸二丁酯(DBP)和多壁碳纳米管(MWCNTs)的毒理学效应。结果表明,联合暴露会导致体重增长减慢、血液中白细胞计数增加、肝脏组织病变和器官系数下调。此外,肝脏中的丙氨酸氨基转移酶(ALT)和天冬氨酸氨基转移酶(AST)升高,葡萄糖、丙酮酸、甘油三酯(TG)和总胆固醇(T-CHO)显著降低,表明肝功能受损。此外,与肝脏葡萄糖和脂质代谢有关的基因的 mRNA 水平也发生了显著变化。这些研究结果表明,同时接触 DBP 和 MWCNTs 会对小鼠的肝功能产生严重影响,这突出了在环境风险评估中考虑多种污染物之间相互作用的重要性。
{"title":"Dibutyl phthalate adsorbed on multi-walled carbon nanotubes can aggravate liver injury in mice via the Jak2/STAT3 pathway.","authors":"Suli He, Chao Yan, Min Wu, Haiyan Peng, Ren Li, Jian Wan, Xin Ye, Hongmao Zhang, Shumao Ding","doi":"10.1177/07482337241230701","DOIUrl":"10.1177/07482337241230701","url":null,"abstract":"<p><p>Phthalic acid esters (PAEs) and carbon nanotubes (CNTs) are common environmental pollutants and may degrade differently with different resulting biotoxicity, when present together. This study investigated the toxicological effects of singular or combined exposure to dibutyl phthalate (DBP) and multi-walled carbon nanotubes (MWCNTs) in KM mice. Results indicated that combined exposure led to slower weight gain and an increased leukocyte count in the blood, as well as liver tissue lesions and downregulation of organ coefficients. Additionally, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were elevated in the liver, and glucose, pyruvate, triglyceride (TG), and total cholesterol (T-CHO) were significantly reduced, suggesting compromised liver function. Furthermore, mRNA levels of genes related to hepatic glucose and lipid metabolism were significantly altered. These findings suggest that combined exposure to DBP and MWCNTs can have severe impacts on liver function in mice, highlighting the importance of considering interactions between multiple contaminants in environmental risk assessments.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"167-175"},"PeriodicalIF":1.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139576542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-02-13DOI: 10.1177/07482337241233310
Biswanath Malakar, Subrata K Roy, Monohar Hossain Mondal, Ankit Roy
Dust pollution is common in Indian roads and several industrial settings (including mines) that affects human health. Identification and characterization of the dust particles in the mining area is essential for knowing the properties of the dust that effectively causes ailments to humans, particularly among workers those who are working in unorganized industrial settings. The present study aimed to determine the level of dust pollution and to know the size and characterize the dust particles in the Pachami-Hatgacha stone mine areas of Birbhum district, West Bengal, India. Dust samples were collected and analysed for Dynamic Light Scattering (DLS) to determine the size and shape of the particles, Fourier Transform Infrared Spectroscopy (FT-IR) to determine the free silica content, and X-ray Florence (XRF) analysis for quantitative estimation of components in the sample. All the analyses were done following standard instrumentation and techniques. The size of the dust particles was much less (ranges 101-298 nm) than the size of respirable particles (2500 nm). Those were mostly generated as well as precipitated during peak working hours of the day. Presence of considerable amounts of silica was confirmed by the FT-IR (strong and broad band at 1000 cm-1) and XRF analysis (76.85% SiO2). Exposure to these dust particles may cause severe health impairments. Therefore, interventions like wet drilling and blasting, sprinkling of water during peak working hours, and awareness of use of personal protective devices among workers are required to reduce the risk and hazards associated with dust pollution to the health of miners and inhabitants around the mines.
{"title":"Stone mining work and dust pollution in Birbhum district, West Bengal, India.","authors":"Biswanath Malakar, Subrata K Roy, Monohar Hossain Mondal, Ankit Roy","doi":"10.1177/07482337241233310","DOIUrl":"10.1177/07482337241233310","url":null,"abstract":"<p><p>Dust pollution is common in Indian roads and several industrial settings (including mines) that affects human health. Identification and characterization of the dust particles in the mining area is essential for knowing the properties of the dust that effectively causes ailments to humans, particularly among workers those who are working in unorganized industrial settings. The present study aimed to determine the level of dust pollution and to know the size and characterize the dust particles in the <i>Pachami-Hatgacha</i> stone mine areas of Birbhum district, West Bengal, India. Dust samples were collected and analysed for Dynamic Light Scattering (DLS) to determine the size and shape of the particles, Fourier Transform Infrared Spectroscopy (FT-IR) to determine the free silica content, and X-ray Florence (XRF) analysis for quantitative estimation of components in the sample. All the analyses were done following standard instrumentation and techniques. The size of the dust particles was much less (ranges 101-298 nm) than the size of respirable particles (2500 nm). Those were mostly generated as well as precipitated during peak working hours of the day. Presence of considerable amounts of silica was confirmed by the FT-IR (strong and broad band at 1000 cm<sup>-1</sup>) and XRF analysis (76.85% SiO<sub>2</sub>). Exposure to these dust particles may cause severe health impairments. Therefore, interventions like wet drilling and blasting, sprinkling of water during peak working hours, and awareness of use of personal protective devices among workers are required to reduce the risk and hazards associated with dust pollution to the health of miners and inhabitants around the mines.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"185-193"},"PeriodicalIF":1.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139724138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-01-03DOI: 10.1177/07482337231224990
Andrey Massarsky, Jillian A Parker, Lauren Gloekler, Melinda T Donnell, Natalie R Binczewski, Jordan S Kozal, Taryn McKnight, Andrew Patterson, Marisa L Kreider
Contaminated water and food are the main sources of documented per- and polyfluoroalkyl substances (PFAS) exposure in humans. However, other sources may contribute to the overall PFAS intake. While several studies documented the presence of PFAS in consumer products, PFAS evaluation in dental products has been limited to floss and tape to date. This study estimated PFAS exposures from a convenience sample of leave-in dental products (night guards and whitening trays), which remain in contact with the mouth for longer durations than previously evaluated dental products. This analysis evaluated whether consumer usage of these dental products meaningfully contributes to oral exposure of PFAS. Leaching of PFAS upon disposal of products was also considered. Out of 24 PFAS measured, perfluorobutanoic acid (PFBA; 3.24-4.17 ng/product or 0.67-0.83 ng/g) and perfluorooctanesulfonic acid (PFOS; 7.25-16.45 ng/product or 1.2-2.3 ng/g) were detected in night guards, and no PFAS were detected in whitening trays. Non-targeted analysis showed additional possible PFAS, which could not be characterized. The findings showed that PFOS and/or PFBA present in night guards were unlikely to pose a health concern. From an ecological perspective, the dental products examined were shown to constitute a negligible contribution to environmental PFAS. In conclusion, the examined dental products do not represent a significant source of exposure to PFAS for humans or the environment. The study demonstrates how risk assessment can be integrated by the industry into product stewardship programs to evaluate the potential health and environmental impacts of chemicals in consumer products.
{"title":"Assessing potential human health and ecological implications of PFAS from leave-in dental products.","authors":"Andrey Massarsky, Jillian A Parker, Lauren Gloekler, Melinda T Donnell, Natalie R Binczewski, Jordan S Kozal, Taryn McKnight, Andrew Patterson, Marisa L Kreider","doi":"10.1177/07482337231224990","DOIUrl":"10.1177/07482337231224990","url":null,"abstract":"<p><p>Contaminated water and food are the main sources of documented per- and polyfluoroalkyl substances (PFAS) exposure in humans. However, other sources may contribute to the overall PFAS intake. While several studies documented the presence of PFAS in consumer products, PFAS evaluation in dental products has been limited to floss and tape to date. This study estimated PFAS exposures from a convenience sample of leave-in dental products (night guards and whitening trays), which remain in contact with the mouth for longer durations than previously evaluated dental products. This analysis evaluated whether consumer usage of these dental products meaningfully contributes to oral exposure of PFAS. Leaching of PFAS upon disposal of products was also considered. Out of 24 PFAS measured, perfluorobutanoic acid (PFBA; 3.24-4.17 ng/product or 0.67-0.83 ng/g) and perfluorooctanesulfonic acid (PFOS; 7.25-16.45 ng/product or 1.2-2.3 ng/g) were detected in night guards, and no PFAS were detected in whitening trays. Non-targeted analysis showed additional possible PFAS, which could not be characterized. The findings showed that PFOS and/or PFBA present in night guards were unlikely to pose a health concern. From an ecological perspective, the dental products examined were shown to constitute a negligible contribution to environmental PFAS. In conclusion, the examined dental products do not represent a significant source of exposure to PFAS for humans or the environment. The study demonstrates how risk assessment can be integrated by the industry into product stewardship programs to evaluate the potential health and environmental impacts of chemicals in consumer products.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"91-103"},"PeriodicalIF":1.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139088723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-01-15DOI: 10.1177/07482337241227010
Yo Ishigaki, Shinji Yokogawa, Tatsuo Kato
Electret technology was widely used to prevent the airborne transmission of bioaerosols during the COVID-19 pandemic and improve the filtration efficiency of masks and high-efficiency particulate air (HEPA) filters. As alcohol disinfectants are widely used in medical and welfare institutions, concerns about alcohol exposure inactivating electret exist. However, comprehensive alcohol exposure tests have not been conducted on masks and HEPA filters distributed in Japan. Twenty-five types of masks and five types of HEPA filters were subjected to a discharging process according to ISO 16890 to quantitatively elucidate the resistance to alcohol exposure. Measurements of changes in filtration efficiency and pressure drop before and after discharge show that 17 masks (68%) and four HEPA filters (80%) exhibited a significant decrease in filtration efficiency, confirming their vulnerability to alcohol. In addition, a survey (n = 500 Japanese adults, including 30 healthcare professionals) revealed that ∼90% of the general public were unaware that alcohol exposure could degrade masks and air purifiers. Furthermore, 36% of the surveyed healthcare professionals had sprayed alcohol directly onto their masks. The effectiveness of user warnings through product labels and instructions was investigated from the perspective of ensuring the safety of patients and healthcare professionals. Results revealed that the best approach was to describe the extent and duration of the adverse effects caused by disregarding precautions. Increase in awareness of healthcare professionals and general public by authorities and manufacturers through guidelines and warning labels would reduce the risk of inhaling bioaerosols caused by unintentional electret inactivation.
{"title":"Evaluation and risk communication of the effects of alcohol exposure on disposable procedure masks and portable air purifiers in hospital environments.","authors":"Yo Ishigaki, Shinji Yokogawa, Tatsuo Kato","doi":"10.1177/07482337241227010","DOIUrl":"10.1177/07482337241227010","url":null,"abstract":"<p><p>Electret technology was widely used to prevent the airborne transmission of bioaerosols during the COVID-19 pandemic and improve the filtration efficiency of masks and high-efficiency particulate air (HEPA) filters. As alcohol disinfectants are widely used in medical and welfare institutions, concerns about alcohol exposure inactivating electret exist. However, comprehensive alcohol exposure tests have not been conducted on masks and HEPA filters distributed in Japan. Twenty-five types of masks and five types of HEPA filters were subjected to a discharging process according to ISO 16890 to quantitatively elucidate the resistance to alcohol exposure. Measurements of changes in filtration efficiency and pressure drop before and after discharge show that 17 masks (68%) and four HEPA filters (80%) exhibited a significant decrease in filtration efficiency, confirming their vulnerability to alcohol. In addition, a survey (<i>n</i> = 500 Japanese adults, including 30 healthcare professionals) revealed that ∼90% of the general public were unaware that alcohol exposure could degrade masks and air purifiers. Furthermore, 36% of the surveyed healthcare professionals had sprayed alcohol directly onto their masks. The effectiveness of user warnings through product labels and instructions was investigated from the perspective of ensuring the safety of patients and healthcare professionals. Results revealed that the best approach was to describe the extent and duration of the adverse effects caused by disregarding precautions. Increase in awareness of healthcare professionals and general public by authorities and manufacturers through guidelines and warning labels would reduce the risk of inhaling bioaerosols caused by unintentional electret inactivation.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"117-124"},"PeriodicalIF":1.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-01-19DOI: 10.1177/07482337241227244
Deepika Soni, Deepa Gandhi
Increasing applications of silver nanoparticles (AgNPs) in multiple products like cosmetics, medicines, drugs, paints, and other new materials have raised concern for their toxic effects on living beings and the surrounding environment. In the present study, cytotoxicity and genotoxicity of AgNPs synthesized using plant flavonoid (Naringin) as a reducing agent were investigated on human promyelocytic leukemic (HL-60) cells and human blood as an in vitro model. The LC50 of AgNPs was found to be 4.85 µM. Dose-dependent increase in cell death and caspase activity was observed in the presence of AgNPs. The comet assay showed a 60%-70% (p < .05) increase in tail DNA at 0.48 and 0.96 µM AgNPs. CBMN in PBMCs also confirmed the genotoxic potential of AgNPs-induced DNA damage. AgNPs resulted in 1.5-1.54 fold (p < .05) increase in the level of ROS in HL-60 cells after 12 h of exposure. AgNP showed toxicity in human cells through ROS generation and cellular damage through membrane dysfunction, caspase activation, apoptosis, and DNA damage.
{"title":"Toxicity evaluation of silver nanoparticles synthesized from naringin flavonoid on human promyelocytic leukemic cells and human blood cells.","authors":"Deepika Soni, Deepa Gandhi","doi":"10.1177/07482337241227244","DOIUrl":"10.1177/07482337241227244","url":null,"abstract":"<p><p>Increasing applications of silver nanoparticles (AgNPs) in multiple products like cosmetics, medicines, drugs, paints, and other new materials have raised concern for their toxic effects on living beings and the surrounding environment. In the present study, cytotoxicity and genotoxicity of AgNPs synthesized using plant flavonoid (Naringin) as a reducing agent were investigated on human promyelocytic leukemic (HL-60) cells and human blood as an in vitro model. The LC<sub>50</sub> of AgNPs was found to be 4.85 µM. Dose-dependent increase in cell death and caspase activity was observed in the presence of AgNPs. The comet assay showed a 60%-70% (<i>p</i> < .05) increase in tail DNA at 0.48 and 0.96 µM AgNPs. CBMN in PBMCs also confirmed the genotoxic potential of AgNPs-induced DNA damage. AgNPs resulted in 1.5-1.54 fold (<i>p</i> < .05) increase in the level of ROS in HL-60 cells after 12 h of exposure. AgNP showed toxicity in human cells through ROS generation and cellular damage through membrane dysfunction, caspase activation, apoptosis, and DNA damage.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"125-133"},"PeriodicalIF":1.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139502775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-01-02DOI: 10.1177/07482337231224514
Patrick de Kort, Elke Jensen, Mark W Spence, Patrick M Plehiers
Flexible polyurethane foams (PUF) are used in many consumer products. PUF may contain trace levels of aromatic diamine impurities that could represent a potential health risk. The risk associated with sleeping on a PUF mattress was evaluated. Toxicity benchmarks for sensitization and non-cancer endpoints were derived from the respective points-of-departure using standard assessment factors. For the cancer endpoints, toxicity benchmarks were derived from the 25th-percentile values of animal studies. Recently published emission and migration data allowed to link exposure with the CertiPURTM voluntary quality limits of ≤5 mg.kg-1 for 2,4-toluene diamine and 4,4'-methylene dianiline in PUF. Using conservative exposure scenarios, lifetime-average daily internal doses from the combined inhalation and dermal exposures were calculated. Margins of safety for non-cancer and sensitization endpoints were >104. The theoretical excess cancer risk was ≤1.5 × 10-7. It is concluded that sleeping on a mattress that satisfies the CertiPUR limit value does not pose undue risk to consumers.
{"title":"Risk assessment-based verification of the CertiPUR<sup>TM</sup> limit values for toluene diamine and methylene dianiline in flexible polyurethane foam.","authors":"Patrick de Kort, Elke Jensen, Mark W Spence, Patrick M Plehiers","doi":"10.1177/07482337231224514","DOIUrl":"10.1177/07482337231224514","url":null,"abstract":"<p><p>Flexible polyurethane foams (PUF) are used in many consumer products. PUF may contain trace levels of aromatic diamine impurities that could represent a potential health risk. The risk associated with sleeping on a PUF mattress was evaluated. Toxicity benchmarks for sensitization and non-cancer endpoints were derived from the respective points-of-departure using standard assessment factors. For the cancer endpoints, toxicity benchmarks were derived from the 25th-percentile values of animal studies. Recently published emission and migration data allowed to link exposure with the CertiPUR<sup>TM</sup> voluntary quality limits of ≤5 mg.kg<sup>-1</sup> for 2,4-toluene diamine and 4,4'-methylene dianiline in PUF. Using conservative exposure scenarios, lifetime-average daily internal doses from the combined inhalation and dermal exposures were calculated. Margins of safety for non-cancer and sensitization endpoints were >10<sup>4</sup>. The theoretical excess cancer risk was ≤1.5 × 10<sup>-7</sup>. It is concluded that sleeping on a mattress that satisfies the CertiPUR limit value does not pose undue risk to consumers.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"104-116"},"PeriodicalIF":1.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851636/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139080929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2023-12-28DOI: 10.1177/07482337231224512
Yahia Makableh, Bashir Jarrar, Areej Al-Shdaifat
Perovskite solar cells display potential as a renewable energy source because of their high-power conversion efficiency. However, there is limited understanding regarding the potential impact of perovskite on human health and the ecosystem. In this study, two sets of male Wistar albino rats received 35 injections of perovskite composite at a dosage of 0.372 mg/kg body weight. The animals underwent thorough examinations, encompassing morphometric, hematological, biochemical, histological, and behavioral analyses. Liver, kidney, and testis biopsies were processed and examined histologically. Additionally, two groups of mice (perovskite-treated and control mice, each with n = 10) underwent three behavioral tests: the Elevated Zero Maze test, Marble Burying test, and Light-Dark Box test. Perovskite-treated rats displayed a significant increase in levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, triglycerides, cholesterol, creatinine, blood urea nitrogen, white blood cells, and platelets. However, total bilirubin levels decreased, with no significant alteration in albumin values. Furthermore, exposure to perovskite composite resulted in a slight decrease in lactate dehydrogenase and red blood cell count. Histopathological examination revealed hepatic hydropic degeneration, Kupffer cells hypertrophy and hyperplasia, and renal hydropic degeneration, while testicular tissues remained unaffected. Moreover, behavioral changes were observed in perovskite-treated mice, including depression, anxiety, and compulsive burying activity. These findings suggest that exposure to perovskite can lead to significant hematological and biochemical changes, as well as hepatorenal histopathological alterations and behavioral changes. Additionally, chronic exposure to perovskite materials may induce structural and functional alterations in vital organs.
{"title":"Toxicity assessment of perovskite nanocomposites: In vivo study.","authors":"Yahia Makableh, Bashir Jarrar, Areej Al-Shdaifat","doi":"10.1177/07482337231224512","DOIUrl":"10.1177/07482337231224512","url":null,"abstract":"<p><p>Perovskite solar cells display potential as a renewable energy source because of their high-power conversion efficiency. However, there is limited understanding regarding the potential impact of perovskite on human health and the ecosystem. In this study, two sets of male Wistar albino rats received 35 injections of perovskite composite at a dosage of 0.372 mg/kg body weight. The animals underwent thorough examinations, encompassing morphometric, hematological, biochemical, histological, and behavioral analyses. Liver, kidney, and testis biopsies were processed and examined histologically. Additionally, two groups of mice (perovskite-treated and control mice, each with <i>n</i> = 10) underwent three behavioral tests: the Elevated Zero Maze test, Marble Burying test, and Light-Dark Box test. Perovskite-treated rats displayed a significant increase in levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, triglycerides, cholesterol, creatinine, blood urea nitrogen, white blood cells, and platelets. However, total bilirubin levels decreased, with no significant alteration in albumin values. Furthermore, exposure to perovskite composite resulted in a slight decrease in lactate dehydrogenase and red blood cell count. Histopathological examination revealed hepatic hydropic degeneration, Kupffer cells hypertrophy and hyperplasia, and renal hydropic degeneration, while testicular tissues remained unaffected. Moreover, behavioral changes were observed in perovskite-treated mice, including depression, anxiety, and compulsive burying activity. These findings suggest that exposure to perovskite can lead to significant hematological and biochemical changes, as well as hepatorenal histopathological alterations and behavioral changes. Additionally, chronic exposure to perovskite materials may induce structural and functional alterations in vital organs.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"75-90"},"PeriodicalIF":1.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139049363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-01-30DOI: 10.1177/07482337241229471
Kelvin Saldaña-Villanueva, Ana K González-Palomo, Karen B Méndez-Rodríguez, Arturo Gavilán-García, Gamaliel Benítez-Arvizu, Fernando Diaz-Barriga, Luz Alcantara-Quintana, Francisco J Pérez-Vázquez
Mercury is a ubiquitous environmental xenobiotic; the primary sources of exposure to this metal are artisanal gold mining and the direct production of mercury. In Mexico, artisanal mercury mining continues to be an important activity in different regions of the country. Exposure to mercury vapors releases can have severe health impacts, including immunotoxic effects such as alterations in cytokine profiling. Therefore, in the present work, we evaluated the inflammatory cytokines profile in the blood serum of miners exposed to mercury. A cross-sectional observational study was performed on 27 mining workers (exposed group) and 20 control subjects (nonexposed group) from central Mexico. The mercury urine concentration (U-Hg) was determined by atomic absorption spectrometry, and IL-2, IL-6, IL-8, IL-10, and TNF-α were measured using a Multiplex Assay. The results showed that the U-Hg in the miners had a median value of 552.70 μg/g creatinine. All cytokines showed a significant increase in the miner group compared with the control group, except for TNF-α. In addition, we observed a positive correlation between U-Hg concentration and cytokine levels. In conclusion, mercury exposure correlated with cytokine levels (considered acute inflammatory marker) in miners; therefore, workers exposed to this metal show an acute systemic inflammation that could lead to alterations in other organs and systems.
{"title":"Serum levels of inflammatory cytokines in mercury mining workers in a precarious situation: A preliminary study.","authors":"Kelvin Saldaña-Villanueva, Ana K González-Palomo, Karen B Méndez-Rodríguez, Arturo Gavilán-García, Gamaliel Benítez-Arvizu, Fernando Diaz-Barriga, Luz Alcantara-Quintana, Francisco J Pérez-Vázquez","doi":"10.1177/07482337241229471","DOIUrl":"10.1177/07482337241229471","url":null,"abstract":"<p><p>Mercury is a ubiquitous environmental xenobiotic; the primary sources of exposure to this metal are artisanal gold mining and the direct production of mercury. In Mexico, artisanal mercury mining continues to be an important activity in different regions of the country. Exposure to mercury vapors releases can have severe health impacts, including immunotoxic effects such as alterations in cytokine profiling. Therefore, in the present work, we evaluated the inflammatory cytokines profile in the blood serum of miners exposed to mercury. A cross-sectional observational study was performed on 27 mining workers (exposed group) and 20 control subjects (nonexposed group) from central Mexico. The mercury urine concentration (U-Hg) was determined by atomic absorption spectrometry, and IL-2, IL-6, IL-8, IL-10, and TNF-α were measured using a Multiplex Assay. The results showed that the U-Hg in the miners had a median value of 552.70 μg/g creatinine. All cytokines showed a significant increase in the miner group compared with the control group, except for TNF-α. In addition, we observed a positive correlation between U-Hg concentration and cytokine levels. In conclusion, mercury exposure correlated with cytokine levels (considered acute inflammatory marker) in miners; therefore, workers exposed to this metal show an acute systemic inflammation that could lead to alterations in other organs and systems.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"134-143"},"PeriodicalIF":1.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139576545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lead is one of the heavy metals that is toxic and widely distributed in the environment, and children are more sensitive to the toxic effects of lead because the blood-brain barrier and immune system are not yet well developed. The objective of the study was to investigate the clinical characteristics of lead poisoning in children aged 0∼6 years in a hospital in Guangxi, and to provide scientific basis for the prevention and treatment of lead poisoning. We collected and analyzed the clinical data of 32 children with lead poisoning admitted to a hospital in Guangxi from 2010 to 2018. The results showed that most of the 32 cases presented with hyperactivity, irritability, poor appetite, abdominal pain, diarrhea, or constipation. The hemoglobin (HGB), mean corpusular volume (MCV), mean corpuscular hemoglobin (MCH), and hematocrit (HCT) of the lead-poisoned children were all decreased to different degrees and were below normal acceptable levels. Urinary β2-microglobulin was increased. Blood lead levels (BLL) decreased significantly after intravenous injection of the lead chelator, calcium disodium edetate (CaNa2-EDTA). In addition, HGB returned to normal levels, while MCV, MCH, and HCT increased but remained below normal levels. Urinary β2-microglobulin was reduced to normal levels. Therefore, in this cohort of children, the high-risk factors for lead poisoning are mainly Chinese medicines, such as baby powder. In conclusion, lead poisoning caused neurological damage and behavioral changes in children and decreased erythrocyte parameters, leading to digestive symptoms and renal impairment, which can be attenuated by CaNa2-EDTA treatment.
{"title":"Clinical case analysis of 32 children aged 0-6 years with lead poisoning in Nanning, China.","authors":"Yi-Fei Wei, Cui-Liu Gan, Fang Xu, Yuan-Yuan Fang, Bao-Dan Zhang, Wu-Shu Li, Kang Nong, Aschner Michael, Yue-Ming Jiang","doi":"10.1177/07482337231215411","DOIUrl":"10.1177/07482337231215411","url":null,"abstract":"<p><p>Lead is one of the heavy metals that is toxic and widely distributed in the environment, and children are more sensitive to the toxic effects of lead because the blood-brain barrier and immune system are not yet well developed. The objective of the study was to investigate the clinical characteristics of lead poisoning in children aged 0∼6 years in a hospital in Guangxi, and to provide scientific basis for the prevention and treatment of lead poisoning. We collected and analyzed the clinical data of 32 children with lead poisoning admitted to a hospital in Guangxi from 2010 to 2018. The results showed that most of the 32 cases presented with hyperactivity, irritability, poor appetite, abdominal pain, diarrhea, or constipation. The hemoglobin (HGB), mean corpusular volume (MCV), mean corpuscular hemoglobin (MCH), and hematocrit (HCT) of the lead-poisoned children were all decreased to different degrees and were below normal acceptable levels. Urinary β<sub>2</sub>-microglobulin was increased. Blood lead levels (BLL) decreased significantly after intravenous injection of the lead chelator, calcium disodium edetate (CaNa<sub>2</sub>-EDTA). In addition, HGB returned to normal levels, while MCV, MCH, and HCT increased but remained below normal levels. Urinary β<sub>2</sub>-microglobulin was reduced to normal levels. Therefore, in this cohort of children, the high-risk factors for lead poisoning are mainly Chinese medicines, such as baby powder. In conclusion, lead poisoning caused neurological damage and behavioral changes in children and decreased erythrocyte parameters, leading to digestive symptoms and renal impairment, which can be attenuated by CaNa<sub>2</sub>-EDTA treatment.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"41-51"},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306939/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138177363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This toxicology study was conducted to assess the impact of formaldehyde, a common air pollutant found in Chinese gymnasiums, on the brain function of athletes. In this research, a total of 24 Balb/c male mice of SPF-grade were divided into four groups, each consisting of six mice. The mice were exposed to formaldehyde at different concentrations, including 0 mg/m3, 0.5 mg/m3, 3.0 mg/m3, and 3.0 mg/m3 in combination with an injection of L-NMMA (NG-monomethyl-L-arginine), which is a nitric oxide synthase antagonist. Following a one-week test period (8 h per day, over 7 days), measurements of biomarkers related to the nitric oxide (NO)/cGMP-cAMP signaling pathway were carried out on the experimental animals post-treatment. The study found that: (1) Exposure to formaldehyde can lead to brain cell apoptosis and neurotoxicity; (2) Additionally, formaldehyde exposure was found to alter the biomarkers of the NO/cGMP-cAMP signaling pathway, with some changes being statistically significant (p < 0.05 or p < 0.01); (3) The use of L-NMMA, an antagonist of the NO/cGMP-cAMP signaling pathway, was found to prevent these biomarker changes and had a protective effect on brain cells. The study suggests that the negative impact of formaldehyde on the brain function of mice is linked to the regulation of the NO/cGMP-cAMP signaling pathway.
{"title":"Influence of formaldehyde exposure on the molecules of the NO/cGMP-cAMP signaling pathway in different brain regions of Balb/c mice.","authors":"Xiaoxiao Huang, Fenghua Cao, Wei Zhao, Ping Ma, Xu Yang, Shumao Ding","doi":"10.1177/07482337231210942","DOIUrl":"10.1177/07482337231210942","url":null,"abstract":"<p><p>This toxicology study was conducted to assess the impact of formaldehyde, a common air pollutant found in Chinese gymnasiums, on the brain function of athletes. In this research, a total of 24 Balb/c male mice of SPF-grade were divided into four groups, each consisting of six mice. The mice were exposed to formaldehyde at different concentrations, including 0 mg/m<sup>3</sup>, 0.5 mg/m<sup>3</sup>, 3.0 mg/m<sup>3</sup>, and 3.0 mg/m<sup>3</sup> in combination with an injection of L-NMMA (N<sup>G</sup>-monomethyl-L-arginine), which is a nitric oxide synthase antagonist. Following a one-week test period (8 h per day, over 7 days), measurements of biomarkers related to the nitric oxide (NO)/cGMP-cAMP signaling pathway were carried out on the experimental animals post-treatment. The study found that: (1) Exposure to formaldehyde can lead to brain cell apoptosis and neurotoxicity; (2) Additionally, formaldehyde exposure was found to alter the biomarkers of the NO/cGMP-cAMP signaling pathway, with some changes being statistically significant (<i>p</i> < 0.05 or <i>p</i> < 0.01); (3) The use of L-NMMA, an antagonist of the NO/cGMP-cAMP signaling pathway, was found to prevent these biomarker changes and had a protective effect on brain cells. The study suggests that the negative impact of formaldehyde on the brain function of mice is linked to the regulation of the NO/cGMP-cAMP signaling pathway.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":" ","pages":"23-32"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71427107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}