Pub Date : 2025-02-01DOI: 10.1016/j.taap.2025.117231
Hadir Farouk , Maha Nasr , Marawan Abd Elbaset , Marwa E. Shabana , Omar A.H. Ahmed-Farid , Rania F. Ahmed
Cisplatin is a widely used chemotherapeutic agent, but its clinical utility is limited by side effects affecting different systems and organs, including hepatotoxicity in some cases. Baicalin, a flavonoid isolated from Scutellaria baicalensis, possesses antioxidant, anti-inflammatory and hepatoprotective properties, but its low bioavailability limits its therapeutic use. This study aimed to investigate whether a nanoemulsion formulation of baicalin could enhance its efficacy against cisplatin-induced hepatic injury in rats. Rats were orally treated daily with baicalin either in nanoformulation (10 or 20 mg/kg body weight per day) or conventional form (100 mg/kg body weight per day) for 12 days. Cisplatin (10 mg/kg body weight) was injected intraperitoneally on day six and day twelve to induce hepatic injury. Samples were collected on day thirteen. Serum markers, oxidative stress parameters, inflammatory markers, cellular energy status, histopathology, and other endpoints were evaluated. Results revealed that cisplatin caused elevated serum enzymes, oxidative stress, inflammation, DNA damage, depleted cellular energy levels, and induced severe hepatic histological changes. The baicalin nanoemulsion especially the higher 20 mg/kg dose, significantly ameliorated cisplatin-induced abnormalities across the various parameters. The conventional baicalin suspension also provided protection, albeit to a lesser degree than the nanoemulsion. In conclusion, administering baicalin as a nanoemulsion potentiated its hepatoprotective effects against cisplatin toxicity. The nanoemulsion formulation strategy was proven promising for enhancing baicalin's therapeutic utility.
{"title":"Baicalin nanoemulsion mitigates cisplatin-induced hepatotoxicity by alleviating oxidative stress, inflammation, and restoring cellular integrity","authors":"Hadir Farouk , Maha Nasr , Marawan Abd Elbaset , Marwa E. Shabana , Omar A.H. Ahmed-Farid , Rania F. Ahmed","doi":"10.1016/j.taap.2025.117231","DOIUrl":"10.1016/j.taap.2025.117231","url":null,"abstract":"<div><div>Cisplatin is a widely used chemotherapeutic agent, but its clinical utility is limited by side effects affecting different systems and organs, including hepatotoxicity in some cases. Baicalin, a flavonoid isolated from Scutellaria baicalensis, possesses antioxidant, anti-inflammatory and hepatoprotective properties, but its low bioavailability limits its therapeutic use. This study aimed to investigate whether a nanoemulsion formulation of baicalin could enhance its efficacy against cisplatin-induced hepatic injury in rats. Rats were orally treated daily with baicalin either in nanoformulation (10 or 20 mg/kg body weight per day) or conventional form (100 mg/kg body weight per day) for 12 days. Cisplatin (10 mg/kg body weight) was injected intraperitoneally on day six and day twelve to induce hepatic injury. Samples were collected on day thirteen. Serum markers, oxidative stress parameters, inflammatory markers, cellular energy status, histopathology, and other endpoints were evaluated. Results revealed that cisplatin caused elevated serum enzymes, oxidative stress, inflammation, DNA damage, depleted cellular energy levels, and induced severe hepatic histological changes. The baicalin nanoemulsion especially the higher 20 mg/kg dose, significantly ameliorated cisplatin-induced abnormalities across the various parameters. The conventional baicalin suspension also provided protection, albeit to a lesser degree than the nanoemulsion. In conclusion, administering baicalin as a nanoemulsion potentiated its hepatoprotective effects against cisplatin toxicity. The nanoemulsion formulation strategy was proven promising for enhancing baicalin's therapeutic utility.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"495 ","pages":"Article 117231"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.taap.2025.117233
Junkyung Gil, Donghyun Kim, Sungbin Choi, Ok-Nam Bae
Cadmium (Cd2+) is a heavy metal that is a major hazardous environmental contaminant, ubiquitously present in the environment. Cd2+ exposure has been closely associated with an increased prevalence and severity of neurological and cardiovascular diseases (CVD). The blood-brain barrier (BBB) plays a crucial role in protecting the brain from external environmental factors. Mitochondria play an important role in maintaining the barrier function of brain endothelial cells by regulating energy metabolism and redox homeostasis. In this study, we aimed to assess the cytotoxic effects of Cd2+ on the integrity and function of brain endothelial cells. After 24 h of exposure, Cd2+ reduced cell survival, tight junction protein expression, and trans-endothelial electrical resistance (TEER) in bEnd.3 cells suggest a potential BBB integrity disruption by Cd2+ exposure. To clarify the underlying mechanism, we further investigated the role of mitochondria in iron overload-mediated cell death following Cd2+ exposure. Cd2+ induced a substantial reduction in mitochondrial basal respiration and ATP production in brain endothelial cells, suggesting mitochondrial dysfunction. In addition, Cd2+ exposure led to impaired autophagy, elevated iron levels, and increased lipid peroxidation, indicating the initiation of ferroptosis, a form of cell death triggered by iron. In summary, our research suggests that Cd2+ exposure can disrupt BBB function by causing mitochondrial dysfunction and disrupting iron homeostasis.
{"title":"Cadmium-induced iron dysregulation contributes to functional impairment in brain endothelial cells via the ferroptosis pathway","authors":"Junkyung Gil, Donghyun Kim, Sungbin Choi, Ok-Nam Bae","doi":"10.1016/j.taap.2025.117233","DOIUrl":"10.1016/j.taap.2025.117233","url":null,"abstract":"<div><div>Cadmium (Cd<sup>2+</sup>) is a heavy metal that is a major hazardous environmental contaminant, ubiquitously present in the environment. Cd<sup>2+</sup> exposure has been closely associated with an increased prevalence and severity of neurological and cardiovascular diseases (CVD). The blood-brain barrier (BBB) plays a crucial role in protecting the brain from external environmental factors. Mitochondria play an important role in maintaining the barrier function of brain endothelial cells by regulating energy metabolism and redox homeostasis. In this study, we aimed to assess the cytotoxic effects of Cd<sup>2+</sup> on the integrity and function of brain endothelial cells. After 24 h of exposure, Cd<sup>2+</sup> reduced cell survival, tight junction protein expression, and trans-endothelial electrical resistance (TEER) in bEnd.3 cells suggest a potential BBB integrity disruption by Cd<sup>2+</sup> exposure. To clarify the underlying mechanism, we further investigated the role of mitochondria in iron overload-mediated cell death following Cd<sup>2+</sup> exposure. Cd<sup>2+</sup> induced a substantial reduction in mitochondrial basal respiration and ATP production in brain endothelial cells, suggesting mitochondrial dysfunction. In addition, Cd<sup>2+</sup> exposure led to impaired autophagy, elevated iron levels, and increased lipid peroxidation, indicating the initiation of ferroptosis, a form of cell death triggered by iron. In summary, our research suggests that Cd<sup>2+</sup> exposure can disrupt BBB function by causing mitochondrial dysfunction and disrupting iron homeostasis.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"495 ","pages":"Article 117233"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.taap.2024.117213
Jingjing Ma , Simei Yue , Yinghui Liu , Lingjiao Gong , Pengzhan He , Yingjie Yang , Zhengxin Fu , Danxiang Han , Qiang Hu , Fei Liao , Lin Xu
Background
The clinical efficacies of Ulcerative colitis (UC) are far from satisfactory. Fucoxanthin (FUC) is a marine carotenoid that is abundant in seaweed and microalgae. It has been reported that FUC can possess anti-inflammatory and antioxidant. However, its mechanism and role in UC is yet to be clarified. This study aimed to investigate the protective effect and potential mechanism of FUC extracted from the diatom Phaeodactylum tricornutm on dextran sodium sulfate (DSS) -induced colitis.
Methods
Animal UC model was induced by DSS and cellular model was established by TNF-α. Immunohistochemical staining, Western blot, RT-qPCR, and immunofluorescence were used to assess the inflammatory responses and epithelial barrier in vivo and in vitro models.
Results
The results showed that FUC attenuates DSS-induced colitis by ameliorating the epithelial mucosal barrier. Moreover, FUC possessed antioxidant and anti-inflammatory effects on NCM460 cells. JAK/STAT activator RO8191 could reverse these changes.
Conclusion
FUC exerted anti-inflammatory and antioxidant effects via the JAK2/STAT3 signaling pathway, and served as a potential therapeutic agent for the treatment of UC.
{"title":"Fucoxanthin ameliorates ulcerative colitis by maintaining the epithelial barrier via blocking JAK2/STAT3 signaling pathway","authors":"Jingjing Ma , Simei Yue , Yinghui Liu , Lingjiao Gong , Pengzhan He , Yingjie Yang , Zhengxin Fu , Danxiang Han , Qiang Hu , Fei Liao , Lin Xu","doi":"10.1016/j.taap.2024.117213","DOIUrl":"10.1016/j.taap.2024.117213","url":null,"abstract":"<div><h3>Background</h3><div>The clinical efficacies of Ulcerative colitis (UC) are far from satisfactory. Fucoxanthin (FUC) is a marine carotenoid that is abundant in seaweed and microalgae. It has been reported that FUC can possess anti-inflammatory and antioxidant. However, its mechanism and role in UC is yet to be clarified. This study aimed to investigate the protective effect and potential mechanism of FUC extracted from the diatom <em>Phaeodactylum tricornutm</em> on dextran sodium sulfate (DSS) -induced colitis.</div></div><div><h3>Methods</h3><div>Animal UC model was induced by DSS and cellular model was established by TNF-α. Immunohistochemical staining, Western blot, RT-qPCR, and immunofluorescence were used to assess the inflammatory responses and epithelial barrier <em>in vivo</em> and <em>in vitro</em> models.</div></div><div><h3>Results</h3><div>The results showed that FUC attenuates DSS-induced colitis by ameliorating the epithelial mucosal barrier. Moreover, FUC possessed antioxidant and anti-inflammatory effects on NCM460 cells. JAK/STAT activator RO8191 could reverse these changes.</div></div><div><h3>Conclusion</h3><div>FUC exerted anti-inflammatory and antioxidant effects via the JAK2/STAT3 signaling pathway, and served as a potential therapeutic agent for the treatment of UC.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"495 ","pages":"Article 117213"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142885468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.taap.2024.117177
Guangxian Mao , Jixian Liu
The lncRNA CALML3 antisense RNA 1 (CALML3-AS1) is a biomarker for various cancers, including non-small cell lung cancer (NSCLC). However, the role of CALM3-AS1 in small cell lung cancer (SCLC) is still unclear. Here, we found that the CALML3-AS1 was upregulated in SCLC tissues and cells. SCLC cells (NCI-H69 and NCI-H466 cells) were transfected with small interfering RNA of CALML-AS1 (si-CALML3-AS1) and Death domain-associated protein (DAXX) (si-DAXX) or an overexpression vector of CALML-AS1 (dCas9-CALML3-AS1) and DAXX (dCas9-DAXX). The results showed that silencing CALML3-AS1 inhibited SCLC cell proliferation, colony formation, migration, invasion, and spheroid formation, and reduced the expression of stemness marker proteins (Nanog. Oct4, and Lin28). Moreover, silencing CALML3-AS1 reduced glycolysis rate, glucose utilization, and lactate production, and decreased the levels of key glycolytic regulatory proteins (GLUT1, GLUT4, HK2, and PKM2) in SCLC cells, while overexpression of CALML3-AS1 promoted malignant growth and stemness and enhanced glucose transporters type 4 (GLUT4)-mediated aerobic glycolysis by interacting with DAXX in NCI-H69 and NCI-H466 cells. Silencing DAXX or GLUT4, or treatment with 2-Deoxy-d-glucose (2-DG, a glycolysis inhibitor) reversed the effects of CALML3-AS1 overexpression on aerobic glycolysis, malignant growth, and stemness of SCLC cells. Finally, NCI-H69 cells transfected with CALML3-AS1, sh-CALML3-AS1, and sh-DAXX lentiviral vectors were subcutaneously injected into nude mice to construct xenograft models. Knockdown of CALML3-AS1 or DAXX inhibited tumor growth in SCLC in vivo. In conclusion, CALML3-AS1, an oncogene, promotes the malignancy and stemness of SCLC cells by interacting with DAXX to enhance GLUT4-mediated aerobic glycolysis, thereby promoting SCLC progression.
{"title":"CALML3-AS1 enhances malignancies and stemness of small cell lung cancer cells through interacting with DAXX protein and promoting GLUT4-mediated aerobic glycolysis","authors":"Guangxian Mao , Jixian Liu","doi":"10.1016/j.taap.2024.117177","DOIUrl":"10.1016/j.taap.2024.117177","url":null,"abstract":"<div><div>The lncRNA CALML3 antisense RNA 1 (CALML3-AS1) is a biomarker for various cancers, including non-small cell lung cancer (NSCLC). However, the role of CALM3-AS1 in small cell lung cancer (SCLC) is still unclear. Here, we found that the CALML3-AS1 was upregulated in SCLC tissues and cells. SCLC cells (NCI-H69 and NCI-H466 cells) were transfected with small interfering RNA of CALML-AS1 (si-CALML3-AS1) and Death domain-associated protein (DAXX) (si-DAXX) or an overexpression vector of CALML-AS1 (dCas9-CALML3-AS1) and DAXX (dCas9-DAXX). The results showed that silencing CALML3-AS1 inhibited SCLC cell proliferation, colony formation, migration, invasion, and spheroid formation, and reduced the expression of stemness marker proteins (Nanog. Oct4, and Lin28). Moreover, silencing CALML3-AS1 reduced glycolysis rate, glucose utilization, and lactate production, and decreased the levels of key glycolytic regulatory proteins (GLUT1, GLUT4, HK2, and PKM2) in SCLC cells, while overexpression of CALML3-AS1 promoted malignant growth and stemness and enhanced glucose transporters type 4 (GLUT4)-mediated aerobic glycolysis by interacting with DAXX in NCI-H69 and NCI-H466 cells. Silencing DAXX or GLUT4, or treatment with 2-Deoxy-<span>d</span>-glucose (2-DG, a glycolysis inhibitor) reversed the effects of CALML3-AS1 overexpression on aerobic glycolysis, malignant growth, and stemness of SCLC cells. Finally, NCI-H69 cells transfected with CALML3-AS1, sh-CALML3-AS1, and sh-DAXX lentiviral vectors were subcutaneously injected into nude mice to construct xenograft models. Knockdown of CALML3-AS1 or DAXX inhibited tumor growth in SCLC <em>in vivo</em>. In conclusion, CALML3-AS1, an oncogene, promotes the malignancy and stemness of SCLC cells by interacting with DAXX to enhance GLUT4-mediated aerobic glycolysis, thereby promoting SCLC progression.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"495 ","pages":"Article 117177"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142772636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.taap.2024.117200
Kampan Bisai , Vikash Kumar , Basanta Kumar Das , Bijay Kumar Behera , Manoj Kumar Pati
A frequently utilized plasticizer is di-(2-ethylhexyl) phthalate (DEHP), considered a ubiquitous contaminant in the environment and reported to have severe impacts on animals. Although it disrupts the female reproductive system in mammals, little is known about how it effects on fish reproduction. The reproductive parameters of female adult koi carp (Cyprinus carpio) were investigated in this study subjected to environmentally relevant exposure of DEHP (1, 10 and 100 μg/L). After 60 days experiment, significantly lower GSI was recorded in females of 10 and 100 μg/L DEHP-exposed groups. The examination of ovarian histology showed defective histoarchitecture, which included the existence of atretic oocytes, the emergence of intra-oocyte vacuoles as well as necrosis. The groups exposed to DEHP (10 and 100 μg/L) showed significant decreases in fecundity and ova-diameter values. Significant changes in the biochemical (total protein, glucose and cholesterol) and ionic (sodium, potassium, calcium and magnesium) composition were noticed in the ovarian fluid of exposed groups. The groups treated with DEHP showed higher levels of 11-ketotestosterone along with reduced levels of 17β-estradiol. Using real-time PCR, the mRNA expression of several genes linked to reproduction, such as Fshr, Lhr, Ar, Erα and Erβ were assessed and observed that there was a concentration-dependent alternation. The pairing of exposed females with untreated males significantly lowered the rates of fertilization, hatching and larval survival. In summary, the results of this investigation validated that exposure to DEHP in a nominal concentration could potentially reduce the reproductive health of female fish.
{"title":"Exposure to environmentally relevant concentrations of di-(2-ethylhexyl) phthalate (DEHP) induced reproductive toxicity in female koi carp (Cyprinus carpio)","authors":"Kampan Bisai , Vikash Kumar , Basanta Kumar Das , Bijay Kumar Behera , Manoj Kumar Pati","doi":"10.1016/j.taap.2024.117200","DOIUrl":"10.1016/j.taap.2024.117200","url":null,"abstract":"<div><div>A frequently utilized plasticizer is di-(2-ethylhexyl) phthalate (DEHP), considered a ubiquitous contaminant in the environment and reported to have severe impacts on animals. Although it disrupts the female reproductive system in mammals, little is known about how it effects on fish reproduction. The reproductive parameters of female adult koi carp (<em>Cyprinus carpio</em>) were investigated in this study subjected to environmentally relevant exposure of DEHP (1, 10 and 100 μg/L). After 60 days experiment, significantly lower GSI was recorded in females of 10 and 100 μg/L DEHP-exposed groups. The examination of ovarian histology showed defective histoarchitecture, which included the existence of atretic oocytes, the emergence of intra-oocyte vacuoles as well as necrosis. The groups exposed to DEHP (10 and 100 μg/L) showed significant decreases in fecundity and ova-diameter values. Significant changes in the biochemical (total protein, glucose and cholesterol) and ionic (sodium, potassium, calcium and magnesium) composition were noticed in the ovarian fluid of exposed groups. The groups treated with DEHP showed higher levels of 11-ketotestosterone along with reduced levels of 17β-estradiol. Using real-time PCR, the mRNA expression of several genes linked to reproduction, such as <em>Fshr</em>, <em>Lhr</em>, <em>Ar</em>, <em>Erα</em> and <em>Erβ</em> were assessed and observed that there was a concentration-dependent alternation. The pairing of exposed females with untreated males significantly lowered the rates of fertilization, hatching and larval survival. In summary, the results of this investigation validated that exposure to DEHP in a nominal concentration could potentially reduce the reproductive health of female fish.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"495 ","pages":"Article 117200"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142814236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Breast cancer (BC) is a leading cause of cancer-related mortality among women worldwide, with incidence rates rising globally. Urolithin B (UB), a bioactive metabolite of ellagic acid, has demonstrated promising anticancer effects in various cancer models. This study aimed to evaluate the effects of UB on the growth, angiogenesis, and metastasis of BC cells using both in vivo and in vitro approaches. Cytotoxic effects of UB were assessed on MDA-MB-231 cells and normal HFF cells using the MTT assay. Scratch assays and gelatin zymography demonstrated UB's suppression of cell migration and reduced enzymatic activities of MMP-2 and MMP-9. In a xenograft mouse model, UB significantly reduced tumor growth, enhanced necrosis, and decreased vascularity in tumor tissues. It downregulated mRNA expression levels of VEGF, VEGFR, MMP-2, and MMP-9, indicating potent anti-angiogenic and anti-metastatic properties. Additionally, UB exhibited antioxidant effects by increasing total thiol content and the activities of superoxide dismutase (SOD) and catalase (CAT) while reducing malondialdehyde (MDA) levels in tumor tissues. In conclusion, our results highlight the anticancer potential of UB, through its ability to suppress the proliferation, angiogenesis, and metastatic properties of BC both in vitro and in vivo. Coupled with its antioxidant properties, UB emerges as a promising and safe candidate for further pre-clinical and clinical research and therapeutic applications in BC management.
{"title":"Investigating the anticancer properties of urolithin B in triple negative breast cancer: In vivo and in vitro insights","authors":"Saeide Mansoori , Seyed Isaac Hashemy , Moein Eskandari , Azar Khorrami , Masoud Homayouni , Atefeh Ghahremanloo","doi":"10.1016/j.taap.2024.117224","DOIUrl":"10.1016/j.taap.2024.117224","url":null,"abstract":"<div><div>Breast cancer (BC) is a leading cause of cancer-related mortality among women worldwide, with incidence rates rising globally. Urolithin B (UB), a bioactive metabolite of ellagic acid, has demonstrated promising anticancer effects in various cancer models. This study aimed to evaluate the effects of UB on the growth, angiogenesis, and metastasis of BC cells using both in vivo and in vitro approaches. Cytotoxic effects of UB were assessed on MDA-MB-231 cells and normal HFF cells using the MTT assay. Scratch assays and gelatin zymography demonstrated UB's suppression of cell migration and reduced enzymatic activities of MMP-2 and MMP-9. In a xenograft mouse model, UB significantly reduced tumor growth, enhanced necrosis, and decreased vascularity in tumor tissues. It downregulated mRNA expression levels of VEGF, VEGFR, MMP-2, and MMP-9, indicating potent anti-angiogenic and anti-metastatic properties. Additionally, UB exhibited antioxidant effects by increasing total thiol content and the activities of superoxide dismutase (SOD) and catalase (CAT) while reducing malondialdehyde (MDA) levels in tumor tissues. In conclusion, our results highlight the anticancer potential of UB, through its ability to suppress the proliferation, angiogenesis, and metastatic properties of BC both in vitro and in vivo. Coupled with its antioxidant properties, UB emerges as a promising and safe candidate for further pre-clinical and clinical research and therapeutic applications in BC management.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"495 ","pages":"Article 117224"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.taap.2025.117227
Muhamad Fikri Shazlan Saad , Muhammad Nazrul Hakim Abdullah , Vuanghao Lim , Hasnah Bahari , Boon Yin Khoo , Jun Jie Tan , Yoke Keong Yong
Bisphenol A (BPA), an endocrine disruptor, is linked to cancer progression in estrogen-responsive tissues, but its role in promoting colorectal cancer (CRC) progression in the context of obesity remains underexplored. This study examines BPA's influence on CRC in obese Sprague-Dawley rats using network toxicology and experimental models. Computational analysis using the Database for Annotation, Visualization, and Integrated Discovery identified pathways such as “CRC” and “chemical carcinogenesis-receptor activation”, implicating the PI3K-AKT pathway in IL-1 beta upregulation and BPA's role in CRC during obesity. Thirty male rats were grouped (n = 6) as follows: N (normal diet), NC (normal diet + CRC), HC (high-fat diet + CRC), NCB (normal diet + CRC + BPA), and HCB (high-fat diet + CRC + BPA). CRC was induced with 1,2-dimethylhydrazine (40 mg/kg), and BPA (25 mg/kg) was administered for 19 weeks. Although BPA exposure did not affect body weight or biochemical parameters, the HCB group exhibited significant histopathological changes in the colon, including lymphoid hyperplasia, liver damage, and increased IL-1β levels. Furthermore, diet influenced adipocyte size, exacerbating BPA's effects on CRC progression. Findings suggest BPA may worsen CRC progression in obese rats through identified pathways, promoting multi-organ pathology and underscoring the need for stricter regulations, especially for vulnerable populations.
Environmental implication
Bisphenol A (BPA), a widespread environmental contaminant, is increasingly linked to serious health issues, including cancer, in susceptible populations. Our study highlights BPA's role in promoting obesity-driven colorectal cancer (CRC) progression, demonstrating its carcinogenic potential in high-risk contexts. These findings emphasize the urgent need for regulatory scrutiny of BPA exposure, particularly in obese individuals, and support the development of safer alternatives. Addressing BPA's impact can contribute to preventive health strategies and inform policies aimed at reducing environmental and public health risks associated with endocrine-disrupting chemicals.
双酚A (BPA)是一种内分泌干扰物,与雌激素应答组织的癌症进展有关,但其在肥胖背景下促进结直肠癌(CRC)进展的作用仍未得到充分研究。本研究采用网络毒理学和实验模型研究了BPA对肥胖大鼠结直肠癌的影响。使用Database for Annotation, Visualization, and Integrated Discovery进行计算分析,确定了“CRC”和“化学致癌-受体激活”等通路,暗示PI3K-AKT通路参与IL-1 β上调和BPA在肥胖期间CRC中的作用。30只雄性大鼠(n = 6)分为:n(正常饮食)、NC(正常饮食+结直肠癌)、HC(高脂饮食+结直肠癌)、NCB(正常饮食+结直肠癌 + BPA)和HCB(高脂饮食+结直肠癌 + BPA)。1,2-二甲基肼(40 mg/kg)和BPA(25 mg/kg)诱导结直肠癌19 周。尽管BPA暴露不影响体重或生化参数,但HCB组在结肠中表现出显著的组织病理学变化,包括淋巴样增生、肝损伤和IL-1β水平升高。此外,饮食影响脂肪细胞大小,加剧了BPA对结直肠癌进展的影响。研究结果表明,BPA可能通过确定的途径恶化肥胖大鼠的结直肠癌进展,促进多器官病理,并强调需要更严格的法规,特别是对弱势群体。环境影响:双酚A (BPA)是一种广泛存在的环境污染物,在易感人群中与包括癌症在内的严重健康问题联系越来越紧密。我们的研究强调了BPA在促进肥胖驱动的结直肠癌(CRC)进展中的作用,证明了其在高风险环境中的致癌潜力。这些发现强调了对BPA暴露进行监管审查的迫切需要,特别是在肥胖人群中,并支持开发更安全的替代品。解决双酚a的影响有助于制定预防保健战略,并为旨在减少与内分泌干扰化学品有关的环境和公众健康风险的政策提供信息。
{"title":"Exploring the role of Bisphenol A in obesity-driven colorectal cancer progression: network toxicology and multi-organ pathology in animal models","authors":"Muhamad Fikri Shazlan Saad , Muhammad Nazrul Hakim Abdullah , Vuanghao Lim , Hasnah Bahari , Boon Yin Khoo , Jun Jie Tan , Yoke Keong Yong","doi":"10.1016/j.taap.2025.117227","DOIUrl":"10.1016/j.taap.2025.117227","url":null,"abstract":"<div><div>Bisphenol A (BPA), an endocrine disruptor, is linked to cancer progression in estrogen-responsive tissues, but its role in promoting colorectal cancer (CRC) progression in the context of obesity remains underexplored. This study examines BPA's influence on CRC in obese Sprague-Dawley rats using network toxicology and experimental models. Computational analysis using the Database for Annotation, Visualization, and Integrated Discovery identified pathways such as “CRC” and “chemical carcinogenesis-receptor activation”, implicating the PI3K-AKT pathway in IL-1 beta upregulation and BPA's role in CRC during obesity. Thirty male rats were grouped (<em>n</em> = 6) as follows: N (normal diet), NC (normal diet + CRC), HC (high-fat diet + CRC), NCB (normal diet + CRC + BPA), and HCB (high-fat diet + CRC + BPA). CRC was induced with 1,2-dimethylhydrazine (40 mg/kg), and BPA (25 mg/kg) was administered for 19 weeks. Although BPA exposure did not affect body weight or biochemical parameters, the HCB group exhibited significant histopathological changes in the colon, including lymphoid hyperplasia, liver damage, and increased IL-1β levels. Furthermore, diet influenced adipocyte size, exacerbating BPA's effects on CRC progression. Findings suggest BPA may worsen CRC progression in obese rats through identified pathways, promoting multi-organ pathology and underscoring the need for stricter regulations, especially for vulnerable populations.</div></div><div><h3>Environmental implication</h3><div>Bisphenol A (BPA), a widespread environmental contaminant, is increasingly linked to serious health issues, including cancer, in susceptible populations. Our study highlights BPA's role in promoting obesity-driven colorectal cancer (CRC) progression, demonstrating its carcinogenic potential in high-risk contexts. These findings emphasize the urgent need for regulatory scrutiny of BPA exposure, particularly in obese individuals, and support the development of safer alternatives. Addressing BPA's impact can contribute to preventive health strategies and inform policies aimed at reducing environmental and public health risks associated with endocrine-disrupting chemicals.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"495 ","pages":"Article 117227"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142955579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.taap.2025.117241
Wei He , Xinhuo Li , Qiannan Ding , Tan Zhang , Jiewen Zheng , Xuanyuan Lu , Jianlei Li , Cong Jin , Yangjun Xu
Osteoarthritis is a progressive, chronic joint disease characterized by pain, stiffness, and limited mobility, which can lead to physical disability in severe cases. Owing to its complex pathological features, effective treatments for osteoarthritis are lacking. Fangchinoline is a natural alkaloid found in the tuberous roots of plants belonging to the Menispermaceae family. Fangchinoline reportedly possesses anti-inflammatory, antioxidant, and anticancer properties; however, its role in osteoarthritis progression remains unclear. In this study, we investigated the protective effects and potential mechanisms of fangchinoline against osteoarthritis. In vitro, we confirmed that fangchinoline alleviates interleukin-1β-induced cartilage inflammation, reduces the levels of metabolic factors, such as inducible nitric oxide synthase and matrix metalloproteinase-3, and modulates the expression of aggrecan, which enhances extracellular matrix synthesis. In vivo, we demonstrated that fangchinoline can ameliorate articular cartilage degeneration and reduce inflammatory destruction in a destabilization of the medial meniscus mouse model. The nuclear factor kappa B (NF-κB) signaling pathway in osteoarthritis has been a primary target for drug development, and our results suggest that fangchinoline exerts anti-inflammatory effects by inhibiting the activity of IKKα/β. Using an in vitro human cartilage culture model, we further validated that fangchinoline significantly mitigates cartilage degeneration and inflammation by modulating the NF-κB signaling pathway. This evidence highlights its dual action in preserving cartilage integrity and suppressing inflammatory responses. These findings collectively underscore fangchinoline as a potent inhibitor of NF-κB, capable of attenuating key pathological processes associated with osteoarthritis. Therefore, fangchinoline emerges as a promising therapeutic candidate for slowing the progression of osteoarthritis.
{"title":"Fangchinoline alleviates the progression of osteoarthritis through the nuclear factor kappa B signaling pathway","authors":"Wei He , Xinhuo Li , Qiannan Ding , Tan Zhang , Jiewen Zheng , Xuanyuan Lu , Jianlei Li , Cong Jin , Yangjun Xu","doi":"10.1016/j.taap.2025.117241","DOIUrl":"10.1016/j.taap.2025.117241","url":null,"abstract":"<div><div>Osteoarthritis is a progressive, chronic joint disease characterized by pain, stiffness, and limited mobility, which can lead to physical disability in severe cases. Owing to its complex pathological features, effective treatments for osteoarthritis are lacking. Fangchinoline is a natural alkaloid found in the tuberous roots of plants belonging to the Menispermaceae family. Fangchinoline reportedly possesses anti-inflammatory, antioxidant, and anticancer properties; however, its role in osteoarthritis progression remains unclear. In this study, we investigated the protective effects and potential mechanisms of fangchinoline against osteoarthritis. In vitro, we confirmed that fangchinoline alleviates interleukin-1β-induced cartilage inflammation, reduces the levels of metabolic factors, such as inducible nitric oxide synthase and matrix metalloproteinase-3, and modulates the expression of aggrecan, which enhances extracellular matrix synthesis. In vivo, we demonstrated that fangchinoline can ameliorate articular cartilage degeneration and reduce inflammatory destruction in a destabilization of the medial meniscus mouse model. The nuclear factor kappa B (NF-κB) signaling pathway in osteoarthritis has been a primary target for drug development, and our results suggest that fangchinoline exerts anti-inflammatory effects by inhibiting the activity of IKKα/β. Using an in vitro human cartilage culture model, we further validated that fangchinoline significantly mitigates cartilage degeneration and inflammation by modulating the NF-κB signaling pathway. This evidence highlights its dual action in preserving cartilage integrity and suppressing inflammatory responses. These findings collectively underscore fangchinoline as a potent inhibitor of NF-κB, capable of attenuating key pathological processes associated with osteoarthritis. Therefore, fangchinoline emerges as a promising therapeutic candidate for slowing the progression of osteoarthritis.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"496 ","pages":"Article 117241"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143081140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.taap.2024.117212
Shishun Xie , Jianjun Zhao , Fan Zhang , Xiangjun Li , Xiaoyan Yu , Zhiyun Shu , Hongyuan Cheng , Siyao Liu , Shaomin Shi
Abnormal proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) leading to pulmonary vascular remodeling are critical factors in the development of pulmonary hypertension (pH). Dehydrodiisoeugenol (DEH), a natural phenolic compound, is renowned for its antioxidant and anti-inflammatory properties. However, the precise role and mechanisms of DEH in PH remain unclear. In this study, human PASMCs were exposed to PDGF-BB for 48 h to establish an in vitro model. Subsequently, cells were treated with DEH, and assessments of cell proliferation, migration, and apoptosis were performed using CCK-8/EdU assays, scratch/transwell assays, and flow cytometry. The results showed that PDGF-BB induced phenotypic modulation, proliferation, and migration of PASMCs while reducing apoptosis. Treatment with DEH effectively reversed these effects. Bioinformatics analysis identified mTOR as a target of DEH action. Western blot experiments were conducted to evaluate the expression of proteins involved in the mTOR/HIF1-α/HK2 signaling pathway, suggesting that DEH modulates this pathway by targeting and inhibiting mTOR. After treating cells with mTOR inhibitors, cellular glycolysis was assessed using the extracellular acidification rate (ECAR) assay. The results indicated that inhibition of mTOR phosphorylation decreased aerobic glycolysis in PASMCs and suppressed cell proliferation, migration, and apoptosis resistance, regardless of PDGF-BB treatment. Activation of mTOR reversed the inhibition of PDGF-BB-induced PASMC-related protein expression by DEH. These findings suggest that DEH inhibits aerobic glycolysis in PDGF-BB-induced PASMCs through the mTOR/HIF1-α/HK2 signaling pathway, thereby suppressing cell proliferation, migration, and resistance to apoptosis. Consequently, DEH holds promise as a novel therapeutic agent for treating pulmonary arterial hypertension.
{"title":"Dehydrodiisoeugenol inhibits PDGF-BB-induced proliferation and migration of human pulmonary artery smooth muscle cells via the mTOR/HIF1-α/HK2 signaling pathway","authors":"Shishun Xie , Jianjun Zhao , Fan Zhang , Xiangjun Li , Xiaoyan Yu , Zhiyun Shu , Hongyuan Cheng , Siyao Liu , Shaomin Shi","doi":"10.1016/j.taap.2024.117212","DOIUrl":"10.1016/j.taap.2024.117212","url":null,"abstract":"<div><div>Abnormal proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) leading to pulmonary vascular remodeling are critical factors in the development of pulmonary hypertension (pH). Dehydrodiisoeugenol (DEH), a natural phenolic compound, is renowned for its antioxidant and anti-inflammatory properties. However, the precise role and mechanisms of DEH in PH remain unclear. In this study, human PASMCs were exposed to PDGF-BB for 48 h to establish an in vitro model. Subsequently, cells were treated with DEH, and assessments of cell proliferation, migration, and apoptosis were performed using CCK-8/EdU assays, scratch/transwell assays, and flow cytometry. The results showed that PDGF-BB induced phenotypic modulation, proliferation, and migration of PASMCs while reducing apoptosis. Treatment with DEH effectively reversed these effects. Bioinformatics analysis identified mTOR as a target of DEH action. Western blot experiments were conducted to evaluate the expression of proteins involved in the mTOR/HIF1-α/HK2 signaling pathway, suggesting that DEH modulates this pathway by targeting and inhibiting mTOR. After treating cells with mTOR inhibitors, cellular glycolysis was assessed using the extracellular acidification rate (ECAR) assay. The results indicated that inhibition of mTOR phosphorylation decreased aerobic glycolysis in PASMCs and suppressed cell proliferation, migration, and apoptosis resistance, regardless of PDGF-BB treatment. Activation of mTOR reversed the inhibition of PDGF-BB-induced PASMC-related protein expression by DEH. These findings suggest that DEH inhibits aerobic glycolysis in PDGF-BB-induced PASMCs through the mTOR/HIF1-α/HK2 signaling pathway, thereby suppressing cell proliferation, migration, and resistance to apoptosis. Consequently, DEH holds promise as a novel therapeutic agent for treating pulmonary arterial hypertension.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"495 ","pages":"Article 117212"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142884846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.taap.2024.117203
Victor Enrique Sarmiento-Ortega , Daniel Issac Alcántara-Jara , Diana Moroni-González , Alfonso Diaz , Rubén Antonio Vázquez-Roque , Eduardo Brambila , Samuel Treviño
Cadmium (Cd) is among the top seven most hazardous environmental contaminants. Minimal risk levels for daily exposure have been established, such as no observable adverse effect level (NOAEL) and lowest observable adverse effect level (LOAEL). Chronic exposure to Cd, at both NOAEL and LOAEL doses, causes toxicity in diverse tissues. However, Cd toxicity in adipose tissue, an endocrine and metabolic organ, remains relatively understudied. We aimed to investigate the potentially toxic effects of chronic Cd exposure (at NOAEL and LOAEL doses) on epidydimal adipose tissue of adult male Wistar rats. Ninety male Wistar rats were divided into three groups (n = 30): Control Cd-free, NOAEL, and LOAEL that received CdCl2 in drinking water for 15 days to 5 months. We evaluated over time zoometry, serum and adipose Cd concentration, redox balance, GLUT4 and Nrf2 expression, histology, leptin, adiponectin, adipose insulin resistance index, free fatty acids, and glucose tolerance. The higher dose group showed a more pronounced and sustained increase in serum and adipose tissue of Cd concentration. Zoometry was similarly affected in both Cd-exposed groups with adipocyte hypertrophy. The redox balance was maintained due to the augmenting of Nrf2 expression. Leptin concentration augmented, while adiponectin diminished. Adipose insulin resistance increased simultaneously to lipolysis and glucose intolerance despite high GLUT4 expression. In conclusion, this study provides strong evidence that chronic Cd exposure, even at minimal risk levels (LOAEL and NOAEL doses), has toxic effects, disrupting the function of epididymal adipose tissue and contributing to metabolic disorders.
{"title":"Chronic cadmium exposure to minimal-risk doses causes dysfunction of epididymal adipose tissue and metabolic disorders","authors":"Victor Enrique Sarmiento-Ortega , Daniel Issac Alcántara-Jara , Diana Moroni-González , Alfonso Diaz , Rubén Antonio Vázquez-Roque , Eduardo Brambila , Samuel Treviño","doi":"10.1016/j.taap.2024.117203","DOIUrl":"10.1016/j.taap.2024.117203","url":null,"abstract":"<div><div>Cadmium (Cd) is among the top seven most hazardous environmental contaminants. Minimal risk levels for daily exposure have been established, such as no observable adverse effect level (NOAEL) and lowest observable adverse effect level (LOAEL). Chronic exposure to Cd, at both NOAEL and LOAEL doses, causes toxicity in diverse tissues. However, Cd toxicity in adipose tissue, an endocrine and metabolic organ, remains relatively understudied. We aimed to investigate the potentially toxic effects of chronic Cd exposure (at NOAEL and LOAEL doses) on epidydimal adipose tissue of adult male Wistar rats. Ninety male Wistar rats were divided into three groups (<em>n</em> = 30): Control Cd-free, NOAEL, and LOAEL that received CdCl<sub>2</sub> in drinking water for 15 days to 5 months. We evaluated over time zoometry, serum and adipose Cd concentration, redox balance, GLUT4 and Nrf2 expression, histology, leptin, adiponectin, adipose insulin resistance index, free fatty acids, and glucose tolerance. The higher dose group showed a more pronounced and sustained increase in serum and adipose tissue of Cd concentration. Zoometry was similarly affected in both Cd-exposed groups with adipocyte hypertrophy. The redox balance was maintained due to the augmenting of Nrf2 expression. Leptin concentration augmented, while adiponectin diminished. Adipose insulin resistance increased simultaneously to lipolysis and glucose intolerance despite high GLUT4 expression. In conclusion, this study provides strong evidence that chronic Cd exposure, even at minimal risk levels (LOAEL and NOAEL doses), has toxic effects, disrupting the function of epididymal adipose tissue and contributing to metabolic disorders.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"495 ","pages":"Article 117203"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142865549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}