首页 > 最新文献

Tribology in Industry最新文献

英文 中文
Friction and Wear Characteristics of Bio-Lubricants Containing Clove Oil as Antioxidant 含丁香油抗氧化剂的生物润滑剂的摩擦和磨损特性
Q3 Engineering Pub Date : 2024-03-01 DOI: 10.24874/ti.1563.10.23.01
D. Gasni, Devi Chandra, Haznam Putra, Irsyandito Tagif, Muhammad R. Hadi, Vandy Suarnel
Vegetable oils as bio-lubricants have poor oxidation stability due to the unsaturated fatty acids in their composition. The oxidation in bio-lubricants can occur because they are exposed to heat, light, and oxygen. In this research, clove oil was used to reduce oxidation in vegetable oils. The effects of blending clove oil (0, 5, and 10% wt) with virgin coconut oil (VCO), hydrogenated coconut oil (HCO), and palm oil that have been exposed to oxygen for 30 days have been investigated. Viscometer and pin-on-disk tests were used to determine the physical and tribological properties of the bio-lubricants. The results show that the addition of clove oil to these oils could reduce the oxidation process. It was indicated by the reduced percentage increase in the dynamic viscosity of 10% wt clove oil in VCO of around 5.41% for 30 days. Results of wear rate indicated that the effect of adding clove oil to VCO and HCO was better than that of palm oil, where the wear rate of VCO and HCO decreased with an increasing clove oil composition. Meanwhile, their coefficients of friction were only affected at low speeds (500 rpm).
作为生物润滑油的植物油由于其成分中含有不饱和脂肪酸,因此氧化稳定性较差。生物润滑油之所以会发生氧化,是因为它们暴露在热、光和氧气中。在这项研究中,丁香油被用来减少植物油的氧化。研究了将丁香油(0、5 和 10% 重量百分比)与初榨椰子油 (VCO)、氢化椰子油 (HCO) 和暴露于氧气中 30 天的棕榈油混合的效果。使用粘度计和针盘试验来确定生物润滑剂的物理和摩擦学特性。结果表明,在这些油中添加丁香油可以减少氧化过程。在 30 天的 VCO 中,10% 重量的丁香油的动态粘度增加百分比降低了约 5.41%。磨损率结果表明,在 VCO 和 HCO 中添加丁香油的效果优于棕榈油,VCO 和 HCO 的磨损率随着丁香油成分的增加而降低。同时,它们的摩擦系数仅在低速(500 rpm)时受到影响。
{"title":"Friction and Wear Characteristics of Bio-Lubricants Containing Clove Oil as Antioxidant","authors":"D. Gasni, Devi Chandra, Haznam Putra, Irsyandito Tagif, Muhammad R. Hadi, Vandy Suarnel","doi":"10.24874/ti.1563.10.23.01","DOIUrl":"https://doi.org/10.24874/ti.1563.10.23.01","url":null,"abstract":"Vegetable oils as bio-lubricants have poor oxidation stability due to the unsaturated fatty acids in their composition. The oxidation in bio-lubricants can occur because they are exposed to heat, light, and oxygen. In this research, clove oil was used to reduce oxidation in vegetable oils. The effects of blending clove oil (0, 5, and 10% wt) with virgin coconut oil (VCO), hydrogenated coconut oil (HCO), and palm oil that have been exposed to oxygen for 30 days have been investigated. Viscometer and pin-on-disk tests were used to determine the physical and tribological properties of the bio-lubricants. The results show that the addition of clove oil to these oils could reduce the oxidation process. It was indicated by the reduced percentage increase in the dynamic viscosity of 10% wt clove oil in VCO of around 5.41% for 30 days. Results of wear rate indicated that the effect of adding clove oil to VCO and HCO was better than that of palm oil, where the wear rate of VCO and HCO decreased with an increasing clove oil composition. Meanwhile, their coefficients of friction were only affected at low speeds (500 rpm).","PeriodicalId":23320,"journal":{"name":"Tribology in Industry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140086094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation on Solid Particle Erosion Performance of Aluminum Alloy Materials for Leading-Edge Slat 前缘板条铝合金材料的固体颗粒侵蚀性能研究
Q3 Engineering Pub Date : 2024-03-01 DOI: 10.24874/ti.1528.08.23.11
Ali İhsan Budur, İsmail Özen, Bülent Öztürk, Hasan Gedikli
This study aims to characterize solid particle erosion behaviors of three different aluminum alloys (AA2024-T351, AA6061-T651, and AA7075-T651) and reveal their erosion performances on leading-edge slat of airplane wings. Solid particle erosion tests were conducted using silicon carbide erodent particles under the conditions of six different impingement angles (20°-90°) and four different impact velocities (70-192 m/s). The erosion simulations of a leading-edge slat of the aforementioned aluminum alloys were numerically simulated at four different rotation angles (0°-15°) for three different impact velocities (130-250 m/s). A commercial ANSYS Fluent software using the Euler-Lagrange equation and an experimental data-based erosion model was used for the erosion simulations. The experimental results showed that the erosion rate increases with increasing impact velocity and the maximum erosion rate is obtained at the impingement angle of 30° which reflects the ductile manner. Of the three aluminum alloys, the AA6061-T651 exhibited the worst erosion behavior followed by the AA2024-T351 sample, whereas the AA7075-T651 had the best erosion resistance. The numerical results indicated that the erosion rate values of slat surfaces made up of three different aluminum alloys showed a slight increase after a slat rotation angle of 5°.
本研究旨在表征三种不同铝合金(AA2024-T351、AA6061-T651 和 AA7075-T651)的固体颗粒侵蚀行为,并揭示它们在飞机机翼前缘板条上的侵蚀性能。在六种不同的撞击角(20°-90°)和四种不同的撞击速度(70-192 m/s)条件下,使用碳化硅侵蚀颗粒进行了固体颗粒侵蚀试验。在四种不同的旋转角度(0°-15°)和三种不同的冲击速度(130-250 m/s)下,对上述铝合金前缘板条的侵蚀模拟进行了数值模拟。侵蚀模拟使用了商用 ANSYS Fluent 软件,该软件使用欧拉-拉格朗日方程和基于实验数据的侵蚀模型。实验结果表明,侵蚀率随冲击速度的增加而增加,在冲击角为 30°时侵蚀率最大,这反映了韧性方式。在三种铝合金中,AA6061-T651 的侵蚀表现最差,其次是 AA2024-T351 样品,而 AA7075-T651 的抗侵蚀性最好。数值结果表明,在板条旋转角度为 5° 时,三种不同铝合金板条表面的侵蚀率值略有增加。
{"title":"Investigation on Solid Particle Erosion Performance of Aluminum Alloy Materials for Leading-Edge Slat","authors":"Ali İhsan Budur, İsmail Özen, Bülent Öztürk, Hasan Gedikli","doi":"10.24874/ti.1528.08.23.11","DOIUrl":"https://doi.org/10.24874/ti.1528.08.23.11","url":null,"abstract":"This study aims to characterize solid particle erosion behaviors of three different aluminum alloys (AA2024-T351, AA6061-T651, and AA7075-T651) and reveal their erosion performances on leading-edge slat of airplane wings. Solid particle erosion tests were conducted using silicon carbide erodent particles under the conditions of six different impingement angles (20°-90°) and four different impact velocities (70-192 m/s). The erosion simulations of a leading-edge slat of the aforementioned aluminum alloys were numerically simulated at four different rotation angles (0°-15°) for three different impact velocities (130-250 m/s). A commercial ANSYS Fluent software using the Euler-Lagrange equation and an experimental data-based erosion model was used for the erosion simulations. The experimental results showed that the erosion rate increases with increasing impact velocity and the maximum erosion rate is obtained at the impingement angle of 30° which reflects the ductile manner. Of the three aluminum alloys, the AA6061-T651 exhibited the worst erosion behavior followed by the AA2024-T351 sample, whereas the AA7075-T651 had the best erosion resistance. The numerical results indicated that the erosion rate values of slat surfaces made up of three different aluminum alloys showed a slight increase after a slat rotation angle of 5°.","PeriodicalId":23320,"journal":{"name":"Tribology in Industry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140084523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of the Influence of Coating Roughness on the Properties and Wear Resistance of Electrospark Deposited Ti6Al4V Titanium Alloy 涂层粗糙度对电火花沉积 Ti6Al4V 钛合金性能和耐磨性的影响研究
Q3 Engineering Pub Date : 2024-03-01 DOI: 10.24874/ti.1508.06.23.08
T. Penyashki, Georgi Kostadinov, M. Kandeva, A. Nikolov, Rayna Dimitrova, V. Kamburov, Pancho Danailov, S. Bozhkov
The present work is concerned with studying surface parameters of coatings deposited to titanium alloy Ti6Al4V by electrospark deposition (ESD) with hard alloy depositing electrodes based on WC, TiC and TiCN. The variation of roughness parameters, composition, structure and tribological characteristics of coatings as a function of ESD mode parameters was investigated. The influence of the mode parameters on the main coating roughness parameters (Ra, Rz, Rmax, Rpk, Rk, Rs, Rsk, Rku (ISO 21920-2:2021) was analysed, the values of which can be used to determine the load bearing capacity and wear resistance. The results of the tribological tests showed that within the test range, the roughness of the coatings has a controversial influence on their frictional wear performance. As the roughness parameters increase to Ra=3÷3.5 µm, the relative wear resistance of the coated surfaces also increases, reaching values up to 4÷5 µm for the electrodes used and no significant changes in the wear mechanism were observed. However, increasing coating roughness above Ra=3.5 to 5 µm results in a monotonic decrease in relative wear resistance to 2.5÷3 times. Possible ways to reduce the surface roughness and increase the wear resistance of coatings were presented.
目前的研究工作是通过电火花沉积(ESD)技术,使用基于 WC、TiC 和 TiCN 的硬质合金沉积电极,对钛合金 Ti6Al4V 沉积涂层的表面参数进行研究。研究了涂层的粗糙度参数、成分、结构和摩擦学特性随 ESD 模式参数的变化。分析了模式参数对主要涂层粗糙度参数(Ra、Rz、Rmax、Rpk、Rk、Rs、Rsk、Rku(ISO 21920-2:2021))的影响,其值可用于确定承载能力和耐磨性。摩擦学测试结果表明,在测试范围内,涂层的粗糙度对其摩擦磨损性能的影响具有争议性。当粗糙度参数增加到 Ra=3÷3.5 µm 时,涂层表面的相对耐磨性也随之增加,所用电极的数值最高可达 4÷5 µm,并且没有观察到磨损机理发生显著变化。然而,将 Ra=3.5 以上的涂层粗糙度增加到 5 µm 时,相对耐磨性会单调地降低到 2.5 至 3 倍。介绍了降低表面粗糙度和提高涂层耐磨性的可行方法。
{"title":"Study of the Influence of Coating Roughness on the Properties and Wear Resistance of Electrospark Deposited Ti6Al4V Titanium Alloy","authors":"T. Penyashki, Georgi Kostadinov, M. Kandeva, A. Nikolov, Rayna Dimitrova, V. Kamburov, Pancho Danailov, S. Bozhkov","doi":"10.24874/ti.1508.06.23.08","DOIUrl":"https://doi.org/10.24874/ti.1508.06.23.08","url":null,"abstract":"The present work is concerned with studying surface parameters of coatings deposited to titanium alloy Ti6Al4V by electrospark deposition (ESD) with hard alloy depositing electrodes based on WC, TiC and TiCN. The variation of roughness parameters, composition, structure and tribological characteristics of coatings as a function of ESD mode parameters was investigated. The influence of the mode parameters on the main coating roughness parameters (Ra, Rz, Rmax, Rpk, Rk, Rs, Rsk, Rku (ISO 21920-2:2021) was analysed, the values of which can be used to determine the load bearing capacity and wear resistance. The results of the tribological tests showed that within the test range, the roughness of the coatings has a controversial influence on their frictional wear performance. As the roughness parameters increase to Ra=3÷3.5 µm, the relative wear resistance of the coated surfaces also increases, reaching values up to 4÷5 µm for the electrodes used and no significant changes in the wear mechanism were observed. However, increasing coating roughness above Ra=3.5 to 5 µm results in a monotonic decrease in relative wear resistance to 2.5÷3 times. Possible ways to reduce the surface roughness and increase the wear resistance of coatings were presented.","PeriodicalId":23320,"journal":{"name":"Tribology in Industry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140089469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of the Springs Tightening for a Double Cartridge Mechanical Seal 双密封筒机械密封的弹簧拧紧设计
Q3 Engineering Pub Date : 2023-12-15 DOI: 10.24874/ti.1545.08.23.09
Andrei Stanciu, C. Ilincă, Razvan George Ripeanu
Mechanical seals are used in a wide range of industrial applications, including pumps, compressors etc., in order to avoid leakage of the working fluid. The design construction, and the operation of the mechanical seals continue to evolve to meet the demands of new technologies and industries. These developments are the increase of operating parameters, in the condition of strictly respecting the environment protection. A mechanical seal consists of two rings, one being static and the other one dynamic, which are actioned by one or two fluid pressure, and an elastic force (or magnetic) which keeps the two faces of the rings in permanent contact. A direct contact between the frontal face of the rings will increase the surface temperature and the rings wear, so a small fluid film, as a lubricant and coolant, it is kept between the two face sealings. At modern mechanical seal are used also a secondary fluid. The tightening force in the seal, which it is very important, depends on seal construction, materials used, working fluid type, pressure and temperature, rotational speed, secondary fluid type, pressure, and temperature. Paper aims to present the studies made by the authors on a mechanical seal of the AESSEAL, cartridge seal type CDSA of a 1” in order to obtain the correct sealing pressure between seal rings. Calculation was made analytical, with the respect of regulations of the standards, and by FEA method. Was obtained a CFD model, to simulate the pressure inside the chamber of secondary fluid at different inlet/outlet pressures to determine the real value of it. The obtained results by CFD analyses were integrated in FEM analyses by ANSYS Static Structural to calculate the contact pressure on the rings faces and to calculate the minimum spring force for internal and external sealing cartridges for different working and secondary fluid pressure, also considering the seal construction design, materials, and rotational speed of 3000rpm. The results are very important in operation of the mechanical seal because the graphs presented in the paper give the operators the correct value of the spring tightening in the seal depending on the different ranges of fluids pressures.
机械密封广泛应用于工业领域,包括泵、压缩机等,以避免工作流体泄漏。为了满足新技术和新工业的需求,机械密封的设计结构和运行方式也在不断发展。这些发展是在严格遵守环境保护的条件下提高运行参数。机械密封由两个环组成,一个是静环,另一个是动环,由一个或两个流体压力和一个弹性力(或磁力)作用,使环的两个面保持永久接触。密封环正面之间的直接接触会增加表面温度和密封环的磨损,因此在两个密封面之间保留了一层小的流体膜,作为润滑剂和冷却剂。在现代机械密封中还使用了辅助流体。密封件的紧固力非常重要,它取决于密封件的结构、所用材料、工作流体类型、压力和温度、转速、辅助流体类型、压力和温度。本文旨在介绍作者对 AESSEAL 的机械密封、1 英寸 CDSA 型集装式密封进行的研究,以获得密封环之间正确的密封压力。在遵守标准规定的前提下,采用分析法和有限元分析法进行了计算。获得了一个 CFD 模型,用于模拟不同入口/出口压力下二次流体腔内的压力,以确定其实际值。将 CFD 分析获得的结果与 ANSYS Static Structural 的有限元分析相结合,计算环面的接触压力,并计算不同工作压力和二次流体压力下内部和外部密封筒的最小弹簧力,同时考虑密封结构设计、材料和 3000rpm 的转速。这些结果对机械密封的操作非常重要,因为文中提供的图表可根据不同的流体压力范围,为操作人员提供密封中弹簧紧固的正确值。
{"title":"Design of the Springs Tightening for a Double Cartridge Mechanical Seal","authors":"Andrei Stanciu, C. Ilincă, Razvan George Ripeanu","doi":"10.24874/ti.1545.08.23.09","DOIUrl":"https://doi.org/10.24874/ti.1545.08.23.09","url":null,"abstract":"Mechanical seals are used in a wide range of industrial applications, including pumps, compressors etc., in order to avoid leakage of the working fluid. The design construction, and the operation of the mechanical seals continue to evolve to meet the demands of new technologies and industries. These developments are the increase of operating parameters, in the condition of strictly respecting the environment protection. A mechanical seal consists of two rings, one being static and the other one dynamic, which are actioned by one or two fluid pressure, and an elastic force (or magnetic) which keeps the two faces of the rings in permanent contact. A direct contact between the frontal face of the rings will increase the surface temperature and the rings wear, so a small fluid film, as a lubricant and coolant, it is kept between the two face sealings. At modern mechanical seal are used also a secondary fluid. The tightening force in the seal, which it is very important, depends on seal construction, materials used, working fluid type, pressure and temperature, rotational speed, secondary fluid type, pressure, and temperature. Paper aims to present the studies made by the authors on a mechanical seal of the AESSEAL, cartridge seal type CDSA of a 1” in order to obtain the correct sealing pressure between seal rings. Calculation was made analytical, with the respect of regulations of the standards, and by FEA method. Was obtained a CFD model, to simulate the pressure inside the chamber of secondary fluid at different inlet/outlet pressures to determine the real value of it. The obtained results by CFD analyses were integrated in FEM analyses by ANSYS Static Structural to calculate the contact pressure on the rings faces and to calculate the minimum spring force for internal and external sealing cartridges for different working and secondary fluid pressure, also considering the seal construction design, materials, and rotational speed of 3000rpm. The results are very important in operation of the mechanical seal because the graphs presented in the paper give the operators the correct value of the spring tightening in the seal depending on the different ranges of fluids pressures.","PeriodicalId":23320,"journal":{"name":"Tribology in Industry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138998898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Process Parameters on the Solid Particle Erosion Resistance of Transparent Materials 工艺参数对透明材料固体颗粒抗侵蚀性的影响
Q3 Engineering Pub Date : 2023-12-15 DOI: 10.24874/ti.1495.06.23.08
Doğan Acar, Mohammad Hussain Danesh, Ömer Necati Cora
The solid particle erosion (SPE) performance of three different transparent materials, polycarbonate solid sheet, plexiglass (Polymethylmethacrylate (PMMA), and laminated glass was investigated. Erosion tests were performed under different impact angles (20°, 30°, 45°, 60°, and 90°) and impinging velocities (75, 150, and 200 m/s). As erodent particles, alumina (Al2O3) with 52 µm average diameter and silicon carbide (SiC), particles with two different dimensions (71, and 348 µm in diameters) were used. The results showed that polycarbonate specimens outperformed the other tested samples regardless of impact velocity and impinging angle conditions. When the erosion resistance of samples at 90° and 75 m/s is taken into consideration, the polycarbonate sheet was found to be at least 14 times more erosion resistant compared to plexiglass, and 23 times more resistant than the laminated glass materials. In addition, polycarbonate exhibited an incubation behavior at lower impact velocity, and with SiC erodent.
研究了聚碳酸酯实心板、有机玻璃(聚甲基丙烯酸甲酯(PMMA))和夹层玻璃这三种不同透明材料的固体颗粒侵蚀(SPE)性能。在不同的冲击角度(20°、30°、45°、60°和 90°)和冲击速度(75、150 和 200 米/秒)下进行了侵蚀试验。使用了平均直径为 52 微米的氧化铝(Al2O3)和碳化硅(SiC)颗粒作为侵蚀剂,这两种颗粒的直径不同(分别为 71 微米和 348 微米)。结果表明,无论冲击速度和冲击角度如何,聚碳酸酯试样的性能都优于其他测试样品。如果考虑到样品在 90° 和 75 m/s 下的抗侵蚀性,聚碳酸酯板材的抗侵蚀性至少是有机玻璃的 14 倍,是夹层玻璃材料的 23 倍。此外,聚碳酸酯在较低的冲击速度和使用碳化硅侵蚀剂的情况下也表现出了抗侵蚀性。
{"title":"Effect of Process Parameters on the Solid Particle Erosion Resistance of Transparent Materials","authors":"Doğan Acar, Mohammad Hussain Danesh, Ömer Necati Cora","doi":"10.24874/ti.1495.06.23.08","DOIUrl":"https://doi.org/10.24874/ti.1495.06.23.08","url":null,"abstract":"The solid particle erosion (SPE) performance of three different transparent materials, polycarbonate solid sheet, plexiglass (Polymethylmethacrylate (PMMA), and laminated glass was investigated. Erosion tests were performed under different impact angles (20°, 30°, 45°, 60°, and 90°) and impinging velocities (75, 150, and 200 m/s). As erodent particles, alumina (Al2O3) with 52 µm average diameter and silicon carbide (SiC), particles with two different dimensions (71, and 348 µm in diameters) were used. The results showed that polycarbonate specimens outperformed the other tested samples regardless of impact velocity and impinging angle conditions. When the erosion resistance of samples at 90° and 75 m/s is taken into consideration, the polycarbonate sheet was found to be at least 14 times more erosion resistant compared to plexiglass, and 23 times more resistant than the laminated glass materials. In addition, polycarbonate exhibited an incubation behavior at lower impact velocity, and with SiC erodent.","PeriodicalId":23320,"journal":{"name":"Tribology in Industry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139000249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis and Optimization of Nanolubricated Journal Bearing under Thermoelasto-Hydrodynamic Lubrication Considering Cavitation Effect 考虑空化效应的热液-流体动力润滑条件下纳米润滑关节轴承的分析与优化
Q3 Engineering Pub Date : 2023-12-15 DOI: 10.24874/ti.1441.01.23.04
Basim A. Abass, Saba Y. Ahmed, Zainab H. Kadhim
This work deals with the effect of the cavitation and the elastic deformation on the steady-state thermal performance of plain journal bearing using CFD-FSI technique. As a case study, a bearing lubricated with SAE40W oil dispersed with TiO2 nanoparticles was extensively analyzed. The hydrodynamic pressure, oil film temperature, and the other bearing parameters have been calculated. The nanoparticles volume fractions, journal speeds, and eccentricity ratios have been considered. Krieger Dougherty model was implemented with the Vogel- Barus exponential viscosity to include the effects of the oil temperature and TiO2 nanoparticles volume fraction on the lubricant viscosity. The cavitation effect was implemented using Zwart-Gerber-Belamari model. The optimum journal position, the attitude angle, and the load have been obtained using Multi-Objective Genetic Algorithm. The mathematical model was successfully verified with the pressure and the total deformation published by Dhande with 4% and 2% deviation between the results respectively. The film temperature of the present work was compared to that obtained numerically by Li et al and experimentally by Ferron and Boncompain with 2% maximum deviation between the results. An enhancement in the load-carrying capacity of the bearing with a little growth in oil film temperature were obtained when using TiO2 nano lubricant.
本研究利用 CFD-FSI 技术探讨了空化和弹性变形对滑动轴承稳态热性能的影响。作为案例研究,对使用分散有 TiO2 纳米颗粒的 SAE40W 润滑油的轴承进行了广泛分析。计算了流体动力压力、油膜温度和其他轴承参数。还考虑了纳米颗粒的体积分数、轴颈速度和偏心率。利用 Vogel- Barus 指数粘度建立了 Krieger Dougherty 模型,以包括油温和 TiO2 纳米颗粒体积分数对润滑油粘度的影响。利用 Zwart-Gerber-Belamari 模型实现了空化效应。使用多目标遗传算法获得了最佳轴颈位置、姿态角和载荷。数学模型成功地与 Dhande 公布的压力和总变形进行了验证,结果之间的偏差分别为 4% 和 2%。本研究的薄膜温度与 Li 等人的数值结果以及 Ferron 和 Boncompain 的实验结果进行了比较,两者之间的最大偏差为 2%。使用二氧化钛纳米润滑剂提高了轴承的承载能力,但油膜温度略有上升。
{"title":"Analysis and Optimization of Nanolubricated Journal Bearing under Thermoelasto-Hydrodynamic Lubrication Considering Cavitation Effect","authors":"Basim A. Abass, Saba Y. Ahmed, Zainab H. Kadhim","doi":"10.24874/ti.1441.01.23.04","DOIUrl":"https://doi.org/10.24874/ti.1441.01.23.04","url":null,"abstract":"This work deals with the effect of the cavitation and the elastic deformation on the steady-state thermal performance of plain journal bearing using CFD-FSI technique. As a case study, a bearing lubricated with SAE40W oil dispersed with TiO2 nanoparticles was extensively analyzed. The hydrodynamic pressure, oil film temperature, and the other bearing parameters have been calculated. The nanoparticles volume fractions, journal speeds, and eccentricity ratios have been considered. Krieger Dougherty model was implemented with the Vogel- Barus exponential viscosity to include the effects of the oil temperature and TiO2 nanoparticles volume fraction on the lubricant viscosity. The cavitation effect was implemented using Zwart-Gerber-Belamari model. The optimum journal position, the attitude angle, and the load have been obtained using Multi-Objective Genetic Algorithm. The mathematical model was successfully verified with the pressure and the total deformation published by Dhande with 4% and 2% deviation between the results respectively. The film temperature of the present work was compared to that obtained numerically by Li et al and experimentally by Ferron and Boncompain with 2% maximum deviation between the results. An enhancement in the load-carrying capacity of the bearing with a little growth in oil film temperature were obtained when using TiO2 nano lubricant.","PeriodicalId":23320,"journal":{"name":"Tribology in Industry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139000238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Investigations on Thermophysical, Tribological and Rheological Properties of MoS2 and WS2 Based Nanolubricants with Castor Oil as Base Lubricant 以蓖麻油为基础润滑剂的 MoS2 和 WS2 纳米润滑剂的热物理特性、摩擦学特性和流变学特性的实验研究
Q3 Engineering Pub Date : 2023-12-15 DOI: 10.24874/ti.1472.04.23.07
Jyoti Srivastava, Tandra Nandi, Rakesh Kumar Trivedi
Molybdenum disulfide (MoS2) and Tungsten disulfide (WS2) nanoparticles addition to castor oil produce nano lubricants of novel properties. These nanomaterial additives are dispersed thoroughly in the liquid phase and are intended to boost the base fluid's thermo-physical, rheological, and tribological properties. All these properties have been studied by varying concentrations of nanoparticles from 0.05 to 2.5%. The size of both nanoparticles are in the range of <20nm. The density of nano lubricants was found to change with respect to nanoparticle concentration and temperature. The density increases from 0.06 to 0.6% with respect to the increase in concentration and decreases by 4%, for increasing temperature from 25 to 100 o C. A significant (15 %) increase in thermal conductivity with MoS2 nanoparticles in lubricants could be observed while with WS2 nanoparticles only 8 % enhancement was observed. The rheological study suggests that nano lubricants have better dynamic viscosity and shear stress than neat castor oil. A tribology study showed improved lubrication properties of the nanolubricants as compared with base castor oil. The addition of MoS2 and WS2 nanoparticles in castor oil decreased the friction coefficient by 53 % and 42 %, respectively, and reduced the wear scar diameter by 24% and 20 %, respectively, as compared to base castor oil. This study was done to develop nonedible vegetable oil based nanolubricants exploring their potential as emerging lubricants.
在蓖麻油中添加二硫化钼(MoS2)和二硫化钨(WS2)纳米粒子可生产出具有新特性的纳米润滑油。这些纳米材料添加剂完全分散在液相中,旨在提高基础油的热物理、流变和摩擦学特性。通过改变 0.05% 至 2.5% 的纳米粒子浓度,对所有这些特性进行了研究。两种纳米粒子的尺寸范围都小于 20 纳米。纳米润滑剂的密度随纳米粒子浓度和温度的变化而变化。随着浓度的增加,密度从 0.06% 增加到 0.6%,而随着温度从 25°C 增加到 100°C,密度则降低了 4%。在润滑剂中添加 MoS2 纳米粒子后,可以观察到热导率显著增加(15%),而添加 WS2 纳米粒子后仅增加了 8%。流变学研究表明,与纯蓖麻油相比,纳米润滑剂具有更好的动态粘度和剪切应力。摩擦学研究表明,与基础蓖麻油相比,纳米润滑剂的润滑性能有所改善。与基础蓖麻油相比,在蓖麻油中添加 MoS2 和 WS2 纳米粒子后,摩擦系数分别降低了 53% 和 42%,磨损疤痕直径分别减少了 24% 和 20%。这项研究旨在开发基于非食用植物油的纳米润滑剂,探索其作为新兴润滑剂的潜力。
{"title":"Experimental Investigations on Thermophysical, Tribological and Rheological Properties of MoS2 and WS2 Based Nanolubricants with Castor Oil as Base Lubricant","authors":"Jyoti Srivastava, Tandra Nandi, Rakesh Kumar Trivedi","doi":"10.24874/ti.1472.04.23.07","DOIUrl":"https://doi.org/10.24874/ti.1472.04.23.07","url":null,"abstract":"Molybdenum disulfide (MoS2) and Tungsten disulfide (WS2) nanoparticles addition to castor oil produce nano lubricants of novel properties. These nanomaterial additives are dispersed thoroughly in the liquid phase and are intended to boost the base fluid's thermo-physical, rheological, and tribological properties. All these properties have been studied by varying concentrations of nanoparticles from 0.05 to 2.5%. The size of both nanoparticles are in the range of <20nm. The density of nano lubricants was found to change with respect to nanoparticle concentration and temperature. The density increases from 0.06 to 0.6% with respect to the increase in concentration and decreases by 4%, for increasing temperature from 25 to 100 o C. A significant (15 %) increase in thermal conductivity with MoS2 nanoparticles in lubricants could be observed while with WS2 nanoparticles only 8 % enhancement was observed. The rheological study suggests that nano lubricants have better dynamic viscosity and shear stress than neat castor oil. A tribology study showed improved lubrication properties of the nanolubricants as compared with base castor oil. The addition of MoS2 and WS2 nanoparticles in castor oil decreased the friction coefficient by 53 % and 42 %, respectively, and reduced the wear scar diameter by 24% and 20 %, respectively, as compared to base castor oil. This study was done to develop nonedible vegetable oil based nanolubricants exploring their potential as emerging lubricants.","PeriodicalId":23320,"journal":{"name":"Tribology in Industry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138998089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, Fabrication, and Application Study of Droplet Tube Based Triboelectric Nanogenerators 基于液滴管的三电纳米发电机的设计、制造和应用研究
Q3 Engineering Pub Date : 2023-12-15 DOI: 10.24874/ti.1493.06.23.08
Yana Xiao
The invention of triboelectric nanogenerators (TENGs) provides an effective approach to the sustainable power of energy. Liquid-solid interface-based TENGs have been researched in virtue of less friction for harvesting energy from raindrops, rivers, and oceans in the form of water flows. However, TENGs based on droplet tubes have been rarely investigated. In this study, we proposed a new droplet tube-based TENG (DT-TENG) with free-standing and reformative grating electrodes. Both straight and curved DT-TENGs have been designed and fabricated including straight and curved TENG at different inclination angles. The electric properties of DT-TENGs have been evaluated and different materials and hydrophobicity treatments for the tubes have been studied. Initial studies on different liquids demonstrated significant electricity output differences to recognize polar and nonpolar solvents. This DT-TENG was also made into a smart fishing float that can recognize different movement speeds brought about by different weights and generate corresponding electric signals to remind the angler. Furthermore, flexible PVC helix TENG demonstrated similar performance under both straight and helix situations. This study provides a foundation and academic insight into the design and fabrication of droplets based TENGs for energy harvesting in smart cities.
三电纳米发电机(TENGs)的发明为可持续能源提供了一种有效的方法。基于液固界面的 TENG 凭借较小的摩擦力,以水流的形式从雨滴、河流和海洋中获取能量,已得到研究。然而,基于液滴管的 TENG 却鲜有研究。在这项研究中,我们提出了一种基于液滴管的新型 TENG(DT-TENG),它具有独立式和重整式光栅电极。我们设计并制造了直型和弯曲型 DT-TENG ,包括不同倾角的直型和弯曲型 TENG。对 DT-TENG 的电特性进行了评估,并研究了管子的不同材料和疏水性处理方法。对不同液体的初步研究表明,在识别极性和非极性溶剂时,电输出存在显著差异。这种 DT-TENG 还被制成了智能钓鱼浮漂,可以识别不同重量带来的不同运动速度,并产生相应的电信号来提醒钓鱼者。此外,柔性聚氯乙烯螺旋 TENG 在直线和螺旋两种情况下均表现出相似的性能。这项研究为设计和制造基于液滴的智能城市能量收集 TENG 提供了基础和学术见解。
{"title":"Design, Fabrication, and Application Study of Droplet Tube Based Triboelectric Nanogenerators","authors":"Yana Xiao","doi":"10.24874/ti.1493.06.23.08","DOIUrl":"https://doi.org/10.24874/ti.1493.06.23.08","url":null,"abstract":"The invention of triboelectric nanogenerators (TENGs) provides an effective approach to the sustainable power of energy. Liquid-solid interface-based TENGs have been researched in virtue of less friction for harvesting energy from raindrops, rivers, and oceans in the form of water flows. However, TENGs based on droplet tubes have been rarely investigated. In this study, we proposed a new droplet tube-based TENG (DT-TENG) with free-standing and reformative grating electrodes. Both straight and curved DT-TENGs have been designed and fabricated including straight and curved TENG at different inclination angles. The electric properties of DT-TENGs have been evaluated and different materials and hydrophobicity treatments for the tubes have been studied. Initial studies on different liquids demonstrated significant electricity output differences to recognize polar and nonpolar solvents. This DT-TENG was also made into a smart fishing float that can recognize different movement speeds brought about by different weights and generate corresponding electric signals to remind the angler. Furthermore, flexible PVC helix TENG demonstrated similar performance under both straight and helix situations. This study provides a foundation and academic insight into the design and fabrication of droplets based TENGs for energy harvesting in smart cities.","PeriodicalId":23320,"journal":{"name":"Tribology in Industry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139000093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calculation of Wear of Metallic Surfaces Using Material’s Fatigue Model and 3D Texture Parameters 利用材料的疲劳模型和三维纹理参数计算金属表面的磨损情况
Q3 Engineering Pub Date : 2023-12-15 DOI: 10.24874/ti.1581.11.23.12
G. Spriņģis, Irina Boiko, O. Liniņš
Today, when it comes to manufacturing parts and components for various mechanisms, the tendency is to use both approaches – the latest technologies and new material combinations- to achieve a longer product's lifetime. That is why the issue of machine parts' working capacity criteria, one of the most important of which is wear and its prediction, remains vitally important. Having studied the prediction theories of the wear process that have been developed over time, one can state that each has shortcomings that might strongly impair the results, thus making unnecessary theoretical calculations. Also, predicting wear based on lengthy, time-consuming, costly experiments is still prevalent. The article discusses a new wear calculation model, which is based on the application of theories from several branches of science. This model considers the surface texture (3D) parameters' values in modelling the surface's micro-topography with the random field theory while the friction surfaces' destruction – with the fatigue theory. The new wear calculation model is synthesised based on a developed friction surface contact model, providing a more complete surface description, which is essential for wear calculation and gives more accurate results. The proposed new wear calculation formula includes parameters that can be easily determined using modern measurement methods, thus speeding up the product design process and significantly contributing to sustainable development. Experimental studies on the steel-bronze sliding friction pair validated the analytical wear calculations' results.
如今,在制造各种机械零件和部件时,人们倾向于采用最新技术和新材料组合这两种方法,以延长产品的使用寿命。因此,机械零件的工作能力标准问题,其中最重要的是磨损及其预测,仍然至关重要。在对长期以来形成的磨损过程预测理论进行研究后,我们可以发现,每种理论都存在缺陷,可能会严重影响结果,从而导致不必要的理论计算。此外,基于冗长、耗时、昂贵的实验来预测磨损的做法仍很普遍。本文讨论了一种新的磨损计算模型,该模型基于多个科学分支理论的应用。该模型考虑了表面纹理(三维)参数值,用随机场理论对表面微观形貌进行建模,而摩擦表面的破坏则用疲劳理论进行建模。新的磨损计算模型是在已开发的摩擦表面接触模型的基础上合成的,提供了更完整的表面描述,这对磨损计算至关重要,并能给出更精确的结果。所提出的新磨损计算公式包含的参数可通过现代测量方法轻松确定,从而加快了产品设计过程,极大地促进了可持续发展。对钢-青铜滑动摩擦副的实验研究验证了分析磨损计算的结果。
{"title":"Calculation of Wear of Metallic Surfaces Using Material’s Fatigue Model and 3D Texture Parameters","authors":"G. Spriņģis, Irina Boiko, O. Liniņš","doi":"10.24874/ti.1581.11.23.12","DOIUrl":"https://doi.org/10.24874/ti.1581.11.23.12","url":null,"abstract":"Today, when it comes to manufacturing parts and components for various mechanisms, the tendency is to use both approaches – the latest technologies and new material combinations- to achieve a longer product's lifetime. That is why the issue of machine parts' working capacity criteria, one of the most important of which is wear and its prediction, remains vitally important. Having studied the prediction theories of the wear process that have been developed over time, one can state that each has shortcomings that might strongly impair the results, thus making unnecessary theoretical calculations. Also, predicting wear based on lengthy, time-consuming, costly experiments is still prevalent. The article discusses a new wear calculation model, which is based on the application of theories from several branches of science. This model considers the surface texture (3D) parameters' values in modelling the surface's micro-topography with the random field theory while the friction surfaces' destruction – with the fatigue theory. The new wear calculation model is synthesised based on a developed friction surface contact model, providing a more complete surface description, which is essential for wear calculation and gives more accurate results. The proposed new wear calculation formula includes parameters that can be easily determined using modern measurement methods, thus speeding up the product design process and significantly contributing to sustainable development. Experimental studies on the steel-bronze sliding friction pair validated the analytical wear calculations' results.","PeriodicalId":23320,"journal":{"name":"Tribology in Industry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138999403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface Characteristics, Properties and Wear Resistance OF TIB2 BASED Hard-Alloy Coatings Obtained by Electrospark Deposition at Negative Polarity on Ti6Al4V Alloy 通过负极性电火花沉积在 Ti6Al4V 合金上获得的基于 TIB2 的硬质合金涂层的表面特性、性能和耐磨性
Q3 Engineering Pub Date : 2023-12-15 DOI: 10.24874/ti.1507.06.23.08
T. Penyashki, Georgi Kostadinov, M. Kandeva, A. Nikolov, Rayna Dimitrova, V. Kamburov
In the present work, the possibilities of improving the surface properties of titanium alloy Ti6Al4V by electrospark deposition (ESD) at negative polarity were investigated. The coatings were deposited with a TiB2-TiAl-based hard-alloy electrode with nano-sized additives of NbC and ZrO2. The effect of polarity in ESD at low pulse energy (0.01-0.07 J) on the surface roughness, thickness, composition and structure of coatings was studied by profilometric, metallographic, XRD, SEM and EDS methods. In both polarities, dense and uniform coatings were obtained with roughness and thickness, which could be varied by changing the ESD modes within the range Ra=1.5÷4.5 µm, d= 6÷20 µm and microhardness from 9 to 12 GPa, respectively. It was found that the negative polarity coatings obtained are denser and uniform with higher thickness, lower roughness, finer structure, and lower coefficient of friction, and can be successfully used to reduce the surface roughness and defects of 3D printed titanium alloy. Abrasion and erosion wear tests showed that the wear resistance of coated titanium surfaces at both polarities was 2.2 to 3.5 times higher than that of the substrate. Coatings deposited in positive polarity demonstrated higher resistance to abrasive wear, while those in negative polarity are more resistant to erosive wear.
本研究探讨了在负极性条件下通过电火花沉积(ESD)改善钛合金 Ti6Al4V 表面性能的可能性。涂层是用 TiB2-TiAl 基硬合金电极与纳米级添加剂 NbC 和 ZrO2 沉积而成的。在低脉冲能量(0.01-0.07 J)的静电放电过程中,通过剖面测量法、金相分析法、XRD、SEM 和 EDS 方法研究了极性对涂层表面粗糙度、厚度、成分和结构的影响。在两种极性下,都获得了致密均匀的涂层,其粗糙度和厚度可通过改变静电放电模式在 Ra=1.5÷4.5 µm、d=6÷20 µm 和显微硬度 9 至 12 GPa 的范围内变化。研究发现,获得的负极性涂层更致密均匀,厚度更高,粗糙度更低,结构更精细,摩擦系数更低,可成功用于降低三维打印钛合金的表面粗糙度和缺陷。磨损和侵蚀磨损测试表明,两种极性下涂层钛合金表面的耐磨性都是基材的 2.2 至 3.5 倍。正极性沉积的涂层具有更高的耐磨损性,而负极性沉积的涂层则更耐侵蚀磨损。
{"title":"Surface Characteristics, Properties and Wear Resistance OF TIB2 BASED Hard-Alloy Coatings Obtained by Electrospark Deposition at Negative Polarity on Ti6Al4V Alloy","authors":"T. Penyashki, Georgi Kostadinov, M. Kandeva, A. Nikolov, Rayna Dimitrova, V. Kamburov","doi":"10.24874/ti.1507.06.23.08","DOIUrl":"https://doi.org/10.24874/ti.1507.06.23.08","url":null,"abstract":"In the present work, the possibilities of improving the surface properties of titanium alloy Ti6Al4V by electrospark deposition (ESD) at negative polarity were investigated. The coatings were deposited with a TiB2-TiAl-based hard-alloy electrode with nano-sized additives of NbC and ZrO2. The effect of polarity in ESD at low pulse energy (0.01-0.07 J) on the surface roughness, thickness, composition and structure of coatings was studied by profilometric, metallographic, XRD, SEM and EDS methods. In both polarities, dense and uniform coatings were obtained with roughness and thickness, which could be varied by changing the ESD modes within the range Ra=1.5÷4.5 µm, d= 6÷20 µm and microhardness from 9 to 12 GPa, respectively. It was found that the negative polarity coatings obtained are denser and uniform with higher thickness, lower roughness, finer structure, and lower coefficient of friction, and can be successfully used to reduce the surface roughness and defects of 3D printed titanium alloy. Abrasion and erosion wear tests showed that the wear resistance of coated titanium surfaces at both polarities was 2.2 to 3.5 times higher than that of the substrate. Coatings deposited in positive polarity demonstrated higher resistance to abrasive wear, while those in negative polarity are more resistant to erosive wear.","PeriodicalId":23320,"journal":{"name":"Tribology in Industry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138999813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Tribology in Industry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1