The detection of microplastics in the water and sediment samples of the landlocked countries in central and eastern Asia means the relatively less populous countries are not spared from microplastic pollution. It is crucial to understand the severity of microplastic pollution in and near those countries since there are significantly fewer regional studies on microplastic pollution conducted for those countries. This review aims to systematically present the occurrence and characteristics of microplastics in and near the landlocked countries to shed light on the severity of microplastic pollution therein. It analyzed the contents of more than 38 papers to achieve its aim. Of all the landlocked countries, Mongolia has the most studies on microplastic pollution, while there are none for Turkmenistan, Afghanistan, Uzbekistan, Kyrgyzstan, and Tajikistan. For dried sediment samples, the microplastic contents ranged from 862 items/kg in the Tuul River of Mongolia to 15–46 items/kg on the Iranian side of the Caspian Sea near Turkmenistan. Lake Hovsgol in Mongolia recorded a microplastic density of 20,264 items/km2, whereas the Selenga River system had a mean microplastic density of 120.14 items/km2. Microplastics concentrations in the Caspian Sea varied, with areas near the southwest of Turkmenistan having microplastics concentrations ranging from 0.000246 items/l to 0.710 items/l. The microplastics levels in the countries are comparable to those of other regions in the world, indicating the impacts of human activities on microplastic pollution. Some microplastics might also have entered the countries through long-range transport by air and water from areas of higher human activity.
{"title":"Microplastics in and Near Landlocked Countries of Central and East Asia: A Review of Occurrence and Characteristics","authors":"K. Tang","doi":"10.53623/tasp.v3i2.262","DOIUrl":"https://doi.org/10.53623/tasp.v3i2.262","url":null,"abstract":"The detection of microplastics in the water and sediment samples of the landlocked countries in central and eastern Asia means the relatively less populous countries are not spared from microplastic pollution. It is crucial to understand the severity of microplastic pollution in and near those countries since there are significantly fewer regional studies on microplastic pollution conducted for those countries. This review aims to systematically present the occurrence and characteristics of microplastics in and near the landlocked countries to shed light on the severity of microplastic pollution therein. It analyzed the contents of more than 38 papers to achieve its aim. Of all the landlocked countries, Mongolia has the most studies on microplastic pollution, while there are none for Turkmenistan, Afghanistan, Uzbekistan, Kyrgyzstan, and Tajikistan. For dried sediment samples, the microplastic contents ranged from 862 items/kg in the Tuul River of Mongolia to 15–46 items/kg on the Iranian side of the Caspian Sea near Turkmenistan. Lake Hovsgol in Mongolia recorded a microplastic density of 20,264 items/km2, whereas the Selenga River system had a mean microplastic density of 120.14 items/km2. Microplastics concentrations in the Caspian Sea varied, with areas near the southwest of Turkmenistan having microplastics concentrations ranging from 0.000246 items/l to 0.710 items/l. The microplastics levels in the countries are comparable to those of other regions in the world, indicating the impacts of human activities on microplastic pollution. Some microplastics might also have entered the countries through long-range transport by air and water from areas of higher human activity.","PeriodicalId":23323,"journal":{"name":"Tropical Aquatic and Soil Pollution","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74016077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dian Setyoningsih, R. Adriyani, Khuliyah Candraning Diyanah, Muhammad Zamzami Elamin
Marparan village in Sampang, Indonesia uses a communal rainwater harvesting system (RWHS) for collecting water during the dry season. This study aimed to assess the quality of the water in the communal rainwater catchment pond (CRHP) and investigate the occurrence of contact dermatitis among the community members. The research followed an observational approach with a cross-sectional design, involving 50 individuals randomly selected from the user community of the CRHP for sanitation hygiene purposes. Water samples were collected from the CRHP and analyzed for physical characteristics, pH level, and surfactant content. The results revealed that the water in the communal rainwater storage pond did not meet the quality standards established by the Ministry of Health Indonesia. Additionally, a significant association was found between age and the occurrence of contact dermatitis. However, no significant relationships were observed between variables such as activity type, exposure frequency, and the incidence of contact dermatitis. Moreover, no relationships were identified between activity type, exposure frequency, duration of exposure, and the occurrence of contact dermatitis. It was observed that respondents did not rinse with clean water after using the communal rainwater storage pond for bathing or washing clothes. Therefore, it is recommended that individuals rinse with clean water after engaging in activities involving the use of the rainwater storage pond to minimize the risk of contact dermatitis.
{"title":"High Incidence of Contact Dermatitis in Communal Rainwater Harvesting Users in a Rural Area of Sampang, Madura, East Java, Indonesia","authors":"Dian Setyoningsih, R. Adriyani, Khuliyah Candraning Diyanah, Muhammad Zamzami Elamin","doi":"10.53623/tasp.v3i1.230","DOIUrl":"https://doi.org/10.53623/tasp.v3i1.230","url":null,"abstract":"Marparan village in Sampang, Indonesia uses a communal rainwater harvesting system (RWHS) for collecting water during the dry season. This study aimed to assess the quality of the water in the communal rainwater catchment pond (CRHP) and investigate the occurrence of contact dermatitis among the community members. The research followed an observational approach with a cross-sectional design, involving 50 individuals randomly selected from the user community of the CRHP for sanitation hygiene purposes. Water samples were collected from the CRHP and analyzed for physical characteristics, pH level, and surfactant content. The results revealed that the water in the communal rainwater storage pond did not meet the quality standards established by the Ministry of Health Indonesia. Additionally, a significant association was found between age and the occurrence of contact dermatitis. However, no significant relationships were observed between variables such as activity type, exposure frequency, and the incidence of contact dermatitis. Moreover, no relationships were identified between activity type, exposure frequency, duration of exposure, and the occurrence of contact dermatitis. It was observed that respondents did not rinse with clean water after using the communal rainwater storage pond for bathing or washing clothes. Therefore, it is recommended that individuals rinse with clean water after engaging in activities involving the use of the rainwater storage pond to minimize the risk of contact dermatitis.","PeriodicalId":23323,"journal":{"name":"Tropical Aquatic and Soil Pollution","volume":"234 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80313271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. A. Kristanti, R. Tirtalistyani, Yien Yu Tang, N. Thảo, J. Kasongo, Y. Wijayanti
As a result of urbanization and industrialization, emerging pollutants have become a global concern due to contamination and their potential adverse effects on the ecosystem and human health. However, the characteristics and environmental fate of emerging pollutants remain unclear due to the limitations of current technologies. Emerging pollutants are predominantly released into the environment through anthropogenic activities and accumulate in water, soil, air, and dust. Despite their typically low concentrations in the environment, exposure to these pollutants can result in endocrine disruption and other health impacts on the human body, as well as oxidative stress in organisms. Phytoremediation is a green biotechnology that utilizes plants in association with microorganisms to mitigate pollutants in contaminated areas through various mechanisms. It represents a cost-effective and environmentally friendly approach, although its efficacy can be hindered by both the biological condition of plants and ecological factors. Moreover, phytoremediation generally requires a longer remediation timeframe compared to alternative technologies. The remediation of emerging pollutants aligns with the "green liver model" theory, which encompasses translocation, internal transformation and conjugation, and sequestration as classification categories. Presently, several challenges are being encountered in this field, including a lack of information regarding emerging pollutants and their metabolism in plants, the absence of a modeling framework and standardized monitoring practices, limitations in sampling and analysis technologies, as well as phytoremediation technologies. Therefore, further research is warranted to delve into the behavior of emerging pollutants and their interactions with plants, aiming to develop or enhance existing technologies. Additionally, the concept of phytomanagement should be considered, as it offers a sustainable approach to environmental remediation.
{"title":"Phytoremediation Mechanism for Emerging Pollutants : A Review","authors":"R. A. Kristanti, R. Tirtalistyani, Yien Yu Tang, N. Thảo, J. Kasongo, Y. Wijayanti","doi":"10.53623/tasp.v3i1.222","DOIUrl":"https://doi.org/10.53623/tasp.v3i1.222","url":null,"abstract":"As a result of urbanization and industrialization, emerging pollutants have become a global concern due to contamination and their potential adverse effects on the ecosystem and human health. However, the characteristics and environmental fate of emerging pollutants remain unclear due to the limitations of current technologies. Emerging pollutants are predominantly released into the environment through anthropogenic activities and accumulate in water, soil, air, and dust. Despite their typically low concentrations in the environment, exposure to these pollutants can result in endocrine disruption and other health impacts on the human body, as well as oxidative stress in organisms. Phytoremediation is a green biotechnology that utilizes plants in association with microorganisms to mitigate pollutants in contaminated areas through various mechanisms. It represents a cost-effective and environmentally friendly approach, although its efficacy can be hindered by both the biological condition of plants and ecological factors. Moreover, phytoremediation generally requires a longer remediation timeframe compared to alternative technologies. The remediation of emerging pollutants aligns with the \"green liver model\" theory, which encompasses translocation, internal transformation and conjugation, and sequestration as classification categories. Presently, several challenges are being encountered in this field, including a lack of information regarding emerging pollutants and their metabolism in plants, the absence of a modeling framework and standardized monitoring practices, limitations in sampling and analysis technologies, as well as phytoremediation technologies. Therefore, further research is warranted to delve into the behavior of emerging pollutants and their interactions with plants, aiming to develop or enhance existing technologies. Additionally, the concept of phytomanagement should be considered, as it offers a sustainable approach to environmental remediation.","PeriodicalId":23323,"journal":{"name":"Tropical Aquatic and Soil Pollution","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88930113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to determine the efficiency of media pollutant removal from municipal wastewater with high concentrations of ammonia and phosphorus in constructed wetlands (CWs). The study utilized secondary data from previous studies that were published in credible sources. The removal efficiencies of the five media used in the constructed wetland, namely, peat-cattails, cattails, peat, Viteveria zizanioides, and Phragmite karka, were compared. The results showed that CWs with Viteveria zizaniode exhibited the best performance on average, removing 84% nitrogen and 86% phosphorus. Peat was also effective in attenuating pH. Humic and fulvic acids in peat moss can be released quickly in an aqueous environment under alkaline conditions, effectively lowering the pH value. The combination of Viteveria zizaniode and peat significantly improved pollutant removal efficiency in municipal wastewater with high concentrations of ammonia and phosphorus.
{"title":"Nitrogen and Phosphorus Removal of Wastewater via Constructed Wetlands Approach","authors":"Jun Tang, Muhammad Noor Hazwan Jusoh, H. Jusoh","doi":"10.53623/tasp.v3i1.214","DOIUrl":"https://doi.org/10.53623/tasp.v3i1.214","url":null,"abstract":"This study aimed to determine the efficiency of media pollutant removal from municipal wastewater with high concentrations of ammonia and phosphorus in constructed wetlands (CWs). The study utilized secondary data from previous studies that were published in credible sources. The removal efficiencies of the five media used in the constructed wetland, namely, peat-cattails, cattails, peat, Viteveria zizanioides, and Phragmite karka, were compared. The results showed that CWs with Viteveria zizaniode exhibited the best performance on average, removing 84% nitrogen and 86% phosphorus. Peat was also effective in attenuating pH. Humic and fulvic acids in peat moss can be released quickly in an aqueous environment under alkaline conditions, effectively lowering the pH value. The combination of Viteveria zizaniode and peat significantly improved pollutant removal efficiency in municipal wastewater with high concentrations of ammonia and phosphorus.","PeriodicalId":23323,"journal":{"name":"Tropical Aquatic and Soil Pollution","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87639553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A study was conducted at the Wadafiea landfill in Al Khartoum Bahri (North), Sudan, to determine the level of microbial contamination in water samples collected from nearby areas around the landfill. The purpose of this study was to evaluate the impact of solid waste disposal in open dumps and assess the associated risks to water. The study tested for coliform bacteria (E.coli) and compared the seasonal differences between the samples collected during the dry and rainy seasons. The results indicated higher levels of E.coli contamination in each season, with the rainy season samples showing particularly high levels (66.03 × 10⁴ cfu/ml) compared to the dry season (31.93 × 10⁴ cfu/ml). It was concluded that the groundwater was highly polluted due to the current landfill location. The local authorities and the department of solid waste management were advised to close this landfill and relocate it to the outskirts of Al Khartoum Bahri (North) city. Additionally, it was recommended that international regulations for standard landfills should be maintained and implemented.
{"title":"Detection of Microbiological Activity in Some Collected Water Samples near Dumping Site of Solid Waste, Khartoum North, Sudan","authors":"","doi":"10.53623/tasp.v3i1.193","DOIUrl":"https://doi.org/10.53623/tasp.v3i1.193","url":null,"abstract":"A study was conducted at the Wadafiea landfill in Al Khartoum Bahri (North), Sudan, to determine the level of microbial contamination in water samples collected from nearby areas around the landfill. The purpose of this study was to evaluate the impact of solid waste disposal in open dumps and assess the associated risks to water. The study tested for coliform bacteria (E.coli) and compared the seasonal differences between the samples collected during the dry and rainy seasons. The results indicated higher levels of E.coli contamination in each season, with the rainy season samples showing particularly high levels (66.03 × 10⁴ cfu/ml) compared to the dry season (31.93 × 10⁴ cfu/ml). It was concluded that the groundwater was highly polluted due to the current landfill location. The local authorities and the department of solid waste management were advised to close this landfill and relocate it to the outskirts of Al Khartoum Bahri (North) city. Additionally, it was recommended that international regulations for standard landfills should be maintained and implemented.","PeriodicalId":23323,"journal":{"name":"Tropical Aquatic and Soil Pollution","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86737905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Yahaya, Khadijat Balogun, M. Danlami, U. Shemishere, Y. Abdulganiyu, Olatunji Ola-Buraimo
Ikorodu Lighter Terminal is an important lagoon port in Lagos, Nigeria. However, the intense anthropogenic activities that take place around the port could potentially pollute the water. This study assessed the safety of human exposure to the water around the port. Samples of the water were assayed for physicochemical parameters, namely: electrical conductivity, biochemical oxygen demand (BOD), total suspended solids (TSS), total dissolved solids (TDS), pH, turbidity, hardness, calcium, chloride, sulphate, nitrite, and phosphate. Moreover, heavy metals, including lead, manganese, copper, cadmium, nickel, and chromium, were analyzed, and their values were used to estimate potential health risks. Also assayed was the presence of microorganisms. The water samples had non-permissible levels of nitrite, oil and grease, and BOD. The concentrations of the heavy metals as well as their average daily ingestion and average daily dermal exposure were within the tolerable limits, except Ni. However, their hazard quotient and carcinogenic risk via ingestion and dermal contact exceeded the tolerable limits. Safe levels of bacteria, coliforms, and fungi were detected in the water. Based on these results, the water may expose users to health hazards. There is a need for policies geared towards the safety of human exposure to the water.
{"title":"Human Safety Evaluation of Heavy Metals, Physicochemical Parameters, and Microorganisms in Lagoon Water at Ikorodu Lighter Terminal in Lagos, Nigeria","authors":"T. Yahaya, Khadijat Balogun, M. Danlami, U. Shemishere, Y. Abdulganiyu, Olatunji Ola-Buraimo","doi":"10.53623/tasp.v3i1.200","DOIUrl":"https://doi.org/10.53623/tasp.v3i1.200","url":null,"abstract":"Ikorodu Lighter Terminal is an important lagoon port in Lagos, Nigeria. However, the intense anthropogenic activities that take place around the port could potentially pollute the water. This study assessed the safety of human exposure to the water around the port. Samples of the water were assayed for physicochemical parameters, namely: electrical conductivity, biochemical oxygen demand (BOD), total suspended solids (TSS), total dissolved solids (TDS), pH, turbidity, hardness, calcium, chloride, sulphate, nitrite, and phosphate. Moreover, heavy metals, including lead, manganese, copper, cadmium, nickel, and chromium, were analyzed, and their values were used to estimate potential health risks. Also assayed was the presence of microorganisms. The water samples had non-permissible levels of nitrite, oil and grease, and BOD. The concentrations of the heavy metals as well as their average daily ingestion and average daily dermal exposure were within the tolerable limits, except Ni. However, their hazard quotient and carcinogenic risk via ingestion and dermal contact exceeded the tolerable limits. Safe levels of bacteria, coliforms, and fungi were detected in the water. Based on these results, the water may expose users to health hazards. There is a need for policies geared towards the safety of human exposure to the water.","PeriodicalId":23323,"journal":{"name":"Tropical Aquatic and Soil Pollution","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74407988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Waste generation and disposal, particularly of plastics, have grown significantly over time due to the rapid expansion of urban development. Aquatic species are especially threatened by plastic pollution because the aquatic ecosystem serves as a sink for all contaminants. The capacity for regular development and reproduction is crucial for both human and wildlife health. The endocrine system, which comprises numerous glands that emit hormones to control blood sugar, growth, reproduction, metabolism, and the development of the brain, normally controls these functions. The majority of the synthetic organic chemicals used in plastics come from petroleum. It is well known that their effects cause the endocrine system's regular operation to be disrupted. Plastics are produced at a low cost, and their light weight and adaptability make them candidates for a wide range of uses in all facets of daily life. Plastic waste can enter the ecosystem through waste discharges from oil and gas platforms, aquaculture, and landfills, as well as through litter such as bags and plastic bits used as abrasives. Because they include indigestible particles that fill the stomach and lessen appetite, plastics have been implicated in harming the health of a variety of creatures. They were also discovered in the gastrointestinal tract of individual fish after one week, which disrupted the food's flow to the intestinal mucosa and had an impact on the fish's growth and physical condition. Additionally, fish exposed to plastics have been shown to exhibit changed behavior, decreased sperm motility, and increased thyroid hormone production. Therefore, exposure to varied amounts of polyethylene impairs an organism's normal physiological functioning and has the potential to impact negatively on both the health of the organism and its offspring. This review was aimed at highlighting the risks of plastic exposure to fish and people through the food chain.
{"title":"Some Behavioural and Physiological Effects of Plastics (Polyethylene) on Fish","authors":"Ekinadose Orose, O. K. Wokeh, C. G. Okey-Wokeh","doi":"10.53623/tasp.v3i1.208","DOIUrl":"https://doi.org/10.53623/tasp.v3i1.208","url":null,"abstract":"Waste generation and disposal, particularly of plastics, have grown significantly over time due to the rapid expansion of urban development. Aquatic species are especially threatened by plastic pollution because the aquatic ecosystem serves as a sink for all contaminants. The capacity for regular development and reproduction is crucial for both human and wildlife health. The endocrine system, which comprises numerous glands that emit hormones to control blood sugar, growth, reproduction, metabolism, and the development of the brain, normally controls these functions. The majority of the synthetic organic chemicals used in plastics come from petroleum. It is well known that their effects cause the endocrine system's regular operation to be disrupted. Plastics are produced at a low cost, and their light weight and adaptability make them candidates for a wide range of uses in all facets of daily life. Plastic waste can enter the ecosystem through waste discharges from oil and gas platforms, aquaculture, and landfills, as well as through litter such as bags and plastic bits used as abrasives. Because they include indigestible particles that fill the stomach and lessen appetite, plastics have been implicated in harming the health of a variety of creatures. They were also discovered in the gastrointestinal tract of individual fish after one week, which disrupted the food's flow to the intestinal mucosa and had an impact on the fish's growth and physical condition. Additionally, fish exposed to plastics have been shown to exhibit changed behavior, decreased sperm motility, and increased thyroid hormone production. Therefore, exposure to varied amounts of polyethylene impairs an organism's normal physiological functioning and has the potential to impact negatively on both the health of the organism and its offspring. This review was aimed at highlighting the risks of plastic exposure to fish and people through the food chain.","PeriodicalId":23323,"journal":{"name":"Tropical Aquatic and Soil Pollution","volume":"161 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76630081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Omer A. Elamin, A. M. Elhassan, A. E. Abdelgadir, M. Ahmed
The rapid increase in population, urbanization, industrialization, and changes in consumption patterns have given rise to many environmental problems, which mainly include air, land, and water pollution. In Khartoum North, Khartoum State, Sudan, there was a lack of a compatible solid waste management system. These resulted in a decline in environmental health, and the majority of the yards were turned into dumps (kusha). The current study focused on the effects of uncontrolled dumping of municipal solid waste on groundwater, as well as assessing the risk of physiochemical concentrations in the water around the dumpsite and comparing the differences between the dry and rainy seasons in water samples at Wadafiea Dumpsite, Khartoum North, Sudan. Water parameters such as TSS, Cl⁻, TDS, Ca, Mg, SAR, and Na exceeded the controlled 1 (1.333) and 2 (1.332) levels of water and were within the Sudanese Maximum Values, the bounds of Canadian Guideline Values, and WHO Values.
人口的快速增长、城市化、工业化和消费方式的变化导致了许多环境问题,主要包括空气污染、土地污染和水污染。在苏丹喀土穆州的北喀土穆,缺乏一个兼容的固体废物管理系统。这导致了环境卫生的下降,大多数院子变成了垃圾场(kusha)。目前的研究侧重于不受控制的城市固体废物倾倒对地下水的影响,以及评估倾倒场周围水体的物理化学浓度风险,并比较苏丹北部喀土穆Wadafiea倾倒场水样在旱季和雨季之间的差异。水的参数,如TSS, Cl -毒血症,TDS, Ca, Mg, SAR和Na超过了控制的1(1.333)和2(1.332)水平,并且在苏丹最大值,加拿大指导值和世界卫生组织值的范围内。
{"title":"Assessment of the Physiochemical Characteristics of Water Samples from Vicinity Area of Wadafiae Landfill, Khartoum North, Sudan","authors":"Omer A. Elamin, A. M. Elhassan, A. E. Abdelgadir, M. Ahmed","doi":"10.53623/tasp.v3i1.177","DOIUrl":"https://doi.org/10.53623/tasp.v3i1.177","url":null,"abstract":"The rapid increase in population, urbanization, industrialization, and changes in consumption patterns have given rise to many environmental problems, which mainly include air, land, and water pollution. In Khartoum North, Khartoum State, Sudan, there was a lack of a compatible solid waste management system. These resulted in a decline in environmental health, and the majority of the yards were turned into dumps (kusha). The current study focused on the effects of uncontrolled dumping of municipal solid waste on groundwater, as well as assessing the risk of physiochemical concentrations in the water around the dumpsite and comparing the differences between the dry and rainy seasons in water samples at Wadafiea Dumpsite, Khartoum North, Sudan. Water parameters such as TSS, Cl⁻, TDS, Ca, Mg, SAR, and Na exceeded the controlled 1 (1.333) and 2 (1.332) levels of water and were within the Sudanese Maximum Values, the bounds of Canadian Guideline Values, and WHO Values.","PeriodicalId":23323,"journal":{"name":"Tropical Aquatic and Soil Pollution","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88032938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effects of crude oil pollution on soil physicochemical properties, microflora, and ecotoxicity were evaluated. Soil samples were contaminated with crude oil, and the effects of contamination on the physicochemical parameters, microflora, and growth index of bean (Phaseolus vulgaris) seeds were studied over a 6-month period. The heterotrophic bacteria isolated from the uncontaminated soil were Micrococcus, Klebsiella, Flavobacterium, Bacillus, Pseudomonas, and Serratia species, and the moulds included microbes such as Aspergillus niger, Fusarium, and Mucor sp. Petroleum contamination increased the pH of the soils to alkaline values while increasing the total nitrogen, organic carbon, and phosphorus contents. Electrical conductivity, nitrogen content, and phosphorus content were significantly reduced after petroleum contamination (p ˂ 0.05). The heavy metal contents of the contaminated soils decreased with increasing remediation time. Zinc, total nitrogen, total organic carbon, and electrical conductivity contents were statistically significantly different among samples throughout the bioremediation period (p ˂ 0.05). The ability of isolates to utilise hydrocarbons was highest for Pseudomonas and Bacillus species and lowest for Klebsiella and Serratia species. After a germination period of 12 days, a germination test showed that the bioattenuated polluted soil improved germination of bean seeds. Bioattenuation methods should be used and improved as a means of remediating petroleum-polluted sites because they are cost-effective and environmentally friendly.
{"title":"Evaluation of the Impact of Crude Oil Contamination on Soil's Physicochemical Characteristics, Micro-flora and Crop Yield","authors":"U. Okafor","doi":"10.53623/tasp.v3i1.132","DOIUrl":"https://doi.org/10.53623/tasp.v3i1.132","url":null,"abstract":"The effects of crude oil pollution on soil physicochemical properties, microflora, and ecotoxicity were evaluated. Soil samples were contaminated with crude oil, and the effects of contamination on the physicochemical parameters, microflora, and growth index of bean (Phaseolus vulgaris) seeds were studied over a 6-month period. The heterotrophic bacteria isolated from the uncontaminated soil were Micrococcus, Klebsiella, Flavobacterium, Bacillus, Pseudomonas, and Serratia species, and the moulds included microbes such as Aspergillus niger, Fusarium, and Mucor sp. Petroleum contamination increased the pH of the soils to alkaline values while increasing the total nitrogen, organic carbon, and phosphorus contents. Electrical conductivity, nitrogen content, and phosphorus content were significantly reduced after petroleum contamination (p ˂ 0.05). The heavy metal contents of the contaminated soils decreased with increasing remediation time. Zinc, total nitrogen, total organic carbon, and electrical conductivity contents were statistically significantly different among samples throughout the bioremediation period (p ˂ 0.05). The ability of isolates to utilise hydrocarbons was highest for Pseudomonas and Bacillus species and lowest for Klebsiella and Serratia species. After a germination period of 12 days, a germination test showed that the bioattenuated polluted soil improved germination of bean seeds. Bioattenuation methods should be used and improved as a means of remediating petroleum-polluted sites because they are cost-effective and environmentally friendly.","PeriodicalId":23323,"journal":{"name":"Tropical Aquatic and Soil Pollution","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79577978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Abulude, Matthew Ojo Oluwafemi, K. M. Arifalo, J. J. Elisha, A. Yusuf
According to the World Health Organization, particulate matter (2.5 m) is responsible for more than 4 million deaths worldwide. In real-time, low-cost sensors have assisted in the measurement of PM indoors. SentiAir, a low-cost instrument used in this study, monitors particulate matter (1, 2.5, and 10), as well as nitrogen dioxide, sulphur dioxide, carbon dioxide, ozone, temperature, and relative humidity. The goal of this study was to place the sensor in a typical household indoor space and evaluate all variables for 30 days as an initial investigation assessment. The sensor's proper procedure was strictly observed. PM1 (17.80 µg/m3), PM2.5 (25.21 µg/m3), PM10 (27.61 µg/m3), CO2 (419.7 ppm), O3 (24.75 ppb), NO2 (66.52 ppb), SO2 (48.04 ppb), temperature (34.1 °C), and humidity were the results (mean) (64%). Once those findings were compared to those of the WHO, it was discovered that PM2.5 and PM10 were well within the 24-hour guideline values of 25 and 50 µg/m3, respectively. However, PM2.5 may pose a risk. Temperature and humidity had a significant impact on the PM and gases. Cooking, especially frying and baking, produced a great increment in PM indoors.
{"title":"Assessment of Indoor Household Air Quality Using SentinAir's Cost-effective Sensor","authors":"F. Abulude, Matthew Ojo Oluwafemi, K. M. Arifalo, J. J. Elisha, A. Yusuf","doi":"10.53623/tasp.v3i1.131","DOIUrl":"https://doi.org/10.53623/tasp.v3i1.131","url":null,"abstract":"According to the World Health Organization, particulate matter (2.5 m) is responsible for more than 4 million deaths worldwide. In real-time, low-cost sensors have assisted in the measurement of PM indoors. SentiAir, a low-cost instrument used in this study, monitors particulate matter (1, 2.5, and 10), as well as nitrogen dioxide, sulphur dioxide, carbon dioxide, ozone, temperature, and relative humidity. The goal of this study was to place the sensor in a typical household indoor space and evaluate all variables for 30 days as an initial investigation assessment. The sensor's proper procedure was strictly observed. PM1 (17.80 µg/m3), PM2.5 (25.21 µg/m3), PM10 (27.61 µg/m3), CO2 (419.7 ppm), O3 (24.75 ppb), NO2 (66.52 ppb), SO2 (48.04 ppb), temperature (34.1 °C), and humidity were the results (mean) (64%). Once those findings were compared to those of the WHO, it was discovered that PM2.5 and PM10 were well within the 24-hour guideline values of 25 and 50 µg/m3, respectively. However, PM2.5 may pose a risk. Temperature and humidity had a significant impact on the PM and gases. Cooking, especially frying and baking, produced a great increment in PM indoors.","PeriodicalId":23323,"journal":{"name":"Tropical Aquatic and Soil Pollution","volume":"6 2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78089667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}