Using sewage (wastewater) for ocean alkalinity enhancement (OAE) has been considered as one promising ocean negative carbon emissions (ONCE) approach due to its high carbon sequestration efficiency and low environmental risk. To make this process more profitable and sustainable, this perspective proposes to integrate bicarbonate-based microalgal production and sewage alkalinity enhancement for ONCE. In this concept, the spent aqueous alkaline bicarbonate-based microalgal medium is cheap or even free for OAE, while the produced microalgae with high value-added compositions make this process more profitable. To make the proposed idea more efficient and sustainable, the prospects for its future development are also discussed in this opinion article. This perspective provides a novel and practical idea for achieving efficient carbon neutralization and high economic value simultaneously.
{"title":"Integrating bicarbonate-based microalgal production with alkaline sewage for ocean negative carbon emissions.","authors":"Chenba Zhu, Chen Hu, Jihua Liu, Zhanyou Chi, Nianzhi Jiao","doi":"10.1016/j.tibtech.2024.06.015","DOIUrl":"10.1016/j.tibtech.2024.06.015","url":null,"abstract":"<p><p>Using sewage (wastewater) for ocean alkalinity enhancement (OAE) has been considered as one promising ocean negative carbon emissions (ONCE) approach due to its high carbon sequestration efficiency and low environmental risk. To make this process more profitable and sustainable, this perspective proposes to integrate bicarbonate-based microalgal production and sewage alkalinity enhancement for ONCE. In this concept, the spent aqueous alkaline bicarbonate-based microalgal medium is cheap or even free for OAE, while the produced microalgae with high value-added compositions make this process more profitable. To make the proposed idea more efficient and sustainable, the prospects for its future development are also discussed in this opinion article. This perspective provides a novel and practical idea for achieving efficient carbon neutralization and high economic value simultaneously.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"1592-1600"},"PeriodicalIF":14.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-06-21DOI: 10.1016/j.tibtech.2024.05.008
Binoop Mohan, Doni Thingujam, Karolina M Pajerowska-Mukhtar, Muhammad Shahid Mukhtar
Extrachromosomal circular DNA (eccDNA) is genetic material that exists outside of chromosomes and holds potential for next-generation genetic engineering in plant biology. By improving plant resilience, growth, and productivity, eccDNA offers a promising solution to global challenges in food security and environmental sustainability, making this a transformative era in agricultural biotechnology.
{"title":"EccDNA in plant-stress and biotechnological solutions in agriculture.","authors":"Binoop Mohan, Doni Thingujam, Karolina M Pajerowska-Mukhtar, Muhammad Shahid Mukhtar","doi":"10.1016/j.tibtech.2024.05.008","DOIUrl":"10.1016/j.tibtech.2024.05.008","url":null,"abstract":"<p><p>Extrachromosomal circular DNA (eccDNA) is genetic material that exists outside of chromosomes and holds potential for next-generation genetic engineering in plant biology. By improving plant resilience, growth, and productivity, eccDNA offers a promising solution to global challenges in food security and environmental sustainability, making this a transformative era in agricultural biotechnology.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"1588-1591"},"PeriodicalIF":14.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-12DOI: 10.1016/j.tibtech.2024.06.014
Lisa Marie Schmitz, Nicolai Kreitli, Lisa Obermaier, Nadine Weber, Michael Rychlik, Largus T Angenent
We recently proposed a two-stage Power-to-Protein technology to produce microbial protein from renewable electric power and CO2. Two stages were operated in series: Clostridium ljungdahlii in Stage A to reduce CO2 with H2 into acetate, and Saccharomyces cerevisiae in Stage B to utilize O2 and produce microbial protein from acetate. Renewable energy can be used to power water electrolysis to produce H2 and O2. A drawback of Stage A was the need for continuous vitamin supplementation. In this study, by using the more robust thermophilic acetogen Thermoanaerobacter kivui instead of C. ljungdahlii, vitamin supplementation was no longer needed. Additionally, S. cerevisiae produced folate when grown with acetate as a sole carbon source, achieving a total folate concentration of 6.7 mg per 100 g biomass with an average biomass concentration of 3 g l-1. The developed Power-to-Vitamin system enables folate production from renewable power and CO2 with zero or negative net-carbon emissions.
我们最近提出了一种两阶段电力转化蛋白质技术,利用可再生电力和二氧化碳生产微生物蛋白质。两个阶段串联运行:梭菌在 A 阶段用 H2 将 CO2 还原成醋酸盐,而酿酒酵母则在 B 阶段利用 O2 并从醋酸盐生产微生物蛋白质。可再生能源可用于水电解产生 H2 和 O2。阶段 A 的缺点是需要持续补充维生素。在这项研究中,通过使用更强健的嗜热醋酸菌 Thermoanaerobacter kivui 代替 C. ljungdahlii,就不再需要补充维生素了。此外,在以醋酸盐为唯一碳源的情况下,S. cerevisiae 也能产生叶酸,每 100 克生物量的总叶酸浓度达到 6.7 毫克,平均生物量浓度为 3 克升-1。所开发的 "从电力到维生素 "系统可利用可再生能源和二氧化碳生产叶酸,净碳排放量为零或负。
{"title":"Power-to-vitamins: producing folate (vitamin B<sub>9</sub>) from renewable electric power and CO<sub>2</sub> with a microbial protein system.","authors":"Lisa Marie Schmitz, Nicolai Kreitli, Lisa Obermaier, Nadine Weber, Michael Rychlik, Largus T Angenent","doi":"10.1016/j.tibtech.2024.06.014","DOIUrl":"10.1016/j.tibtech.2024.06.014","url":null,"abstract":"<p><p>We recently proposed a two-stage Power-to-Protein technology to produce microbial protein from renewable electric power and CO<sub>2</sub>. Two stages were operated in series: Clostridium ljungdahlii in Stage A to reduce CO<sub>2</sub> with H<sub>2</sub> into acetate, and Saccharomyces cerevisiae in Stage B to utilize O<sub>2</sub> and produce microbial protein from acetate. Renewable energy can be used to power water electrolysis to produce H<sub>2</sub> and O<sub>2</sub>. A drawback of Stage A was the need for continuous vitamin supplementation. In this study, by using the more robust thermophilic acetogen Thermoanaerobacter kivui instead of C. ljungdahlii, vitamin supplementation was no longer needed. Additionally, S. cerevisiae produced folate when grown with acetate as a sole carbon source, achieving a total folate concentration of 6.7 mg per 100 g biomass with an average biomass concentration of 3 g l<sup>-1</sup>. The developed Power-to-Vitamin system enables folate production from renewable power and CO<sub>2</sub> with zero or negative net-carbon emissions.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"1691-1714"},"PeriodicalIF":14.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-13DOI: 10.1016/j.tibtech.2024.08.010
Carlos Castillo-Saldarriaga, Stephen Sarria, Christine N S Santos, Parayil K Ajikumar, Ralf Takors
Biomanufacturing is emerging as a key technology for the sustainable production of chemicals, materials, and food ingredients using engineered microbes. However, despite billions of dollars of investment, few processes have been successfully commercialized due to a lack of attention on industrial-scale bioprocess design and innovation. In this study, we address this challenge through the development of a novel semi-continuous bioprocess for the production of the terpene amorpha-4,11-diene (AMD4,11) using engineered Escherichia coli. Using a hydrophilic membrane for product and biomass retention, we successfully decoupled production at low growth rates (~0.01 1/h) and improved reactor productivity up to 166 mg/lReactor h, threefold compared with traditional fed-batch fermentations. When cell recycling was implemented, we showed sustained production at the highest conversion yield and production rate for up to three cycles, demonstrating the robustness of both the strain and the process and highlighting the potential for new bioprocess strategies to improve the economic viability of industrial biomanufacturing.
{"title":"Semi-continuous biomanufacturing for maximizing the production of complex chemicals and fuels: a case study of amorpha-4,11-diene.","authors":"Carlos Castillo-Saldarriaga, Stephen Sarria, Christine N S Santos, Parayil K Ajikumar, Ralf Takors","doi":"10.1016/j.tibtech.2024.08.010","DOIUrl":"10.1016/j.tibtech.2024.08.010","url":null,"abstract":"<p><p>Biomanufacturing is emerging as a key technology for the sustainable production of chemicals, materials, and food ingredients using engineered microbes. However, despite billions of dollars of investment, few processes have been successfully commercialized due to a lack of attention on industrial-scale bioprocess design and innovation. In this study, we address this challenge through the development of a novel semi-continuous bioprocess for the production of the terpene amorpha-4,11-diene (AMD4,11) using engineered Escherichia coli. Using a hydrophilic membrane for product and biomass retention, we successfully decoupled production at low growth rates (~0.01 1/h) and improved reactor productivity up to 166 mg/l<sub>Reactor</sub> h, threefold compared with traditional fed-batch fermentations. When cell recycling was implemented, we showed sustained production at the highest conversion yield and production rate for up to three cycles, demonstrating the robustness of both the strain and the process and highlighting the potential for new bioprocess strategies to improve the economic viability of industrial biomanufacturing.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"1777-1794"},"PeriodicalIF":14.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-18DOI: 10.1016/j.tibtech.2024.06.011
Sourik Dey, Shrikrishnan Sankaran
Recent advances in engineered bacterial therapeutics underscore their potential in treating diseases via targeted, live interventions. Despite their promising performance in early clinical phases, no engineered therapeutic bacteria have yet received approval, primarily due to challenges in proving efficacy while ensuring biosafety. Material science innovations, particularly the encapsulation of bacteria within hydrogels, present a promising avenue to enhance bacterial survival, efficacy, and safety in therapeutic applications. This review discusses this interdisciplinary approach to develop living therapeutic materials. Hydrogels not only safeguard the bacteria from harsh physiological conditions but also enable controlled therapeutic release and prevent unintended bacterial dissemination. The strategic use of encapsulation materials could redefine the delivery and functionality of engineered bacterial therapeutics, facilitating their clinical translation.
{"title":"Engineered bacterial therapeutics with material solutions.","authors":"Sourik Dey, Shrikrishnan Sankaran","doi":"10.1016/j.tibtech.2024.06.011","DOIUrl":"10.1016/j.tibtech.2024.06.011","url":null,"abstract":"<p><p>Recent advances in engineered bacterial therapeutics underscore their potential in treating diseases via targeted, live interventions. Despite their promising performance in early clinical phases, no engineered therapeutic bacteria have yet received approval, primarily due to challenges in proving efficacy while ensuring biosafety. Material science innovations, particularly the encapsulation of bacteria within hydrogels, present a promising avenue to enhance bacterial survival, efficacy, and safety in therapeutic applications. This review discusses this interdisciplinary approach to develop living therapeutic materials. Hydrogels not only safeguard the bacteria from harsh physiological conditions but also enable controlled therapeutic release and prevent unintended bacterial dissemination. The strategic use of encapsulation materials could redefine the delivery and functionality of engineered bacterial therapeutics, facilitating their clinical translation.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"1663-1676"},"PeriodicalIF":14.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-30DOI: 10.1016/j.tibtech.2024.08.003
Kerry R Love, Stacy E Martin, Devin G Morrison, Laura E Crowell
{"title":"Perfusion fermentation sets a path to democratize biomanufacturing.","authors":"Kerry R Love, Stacy E Martin, Devin G Morrison, Laura E Crowell","doi":"10.1016/j.tibtech.2024.08.003","DOIUrl":"10.1016/j.tibtech.2024.08.003","url":null,"abstract":"","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"1819-1821"},"PeriodicalIF":14.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The understanding of cellular energy metabolism activation by engineered scaffolds remains limited, posing challenges for therapeutic applications in tissue regeneration. This study presents biosynthesized poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] and its major degradation product, 3-hydroxybutyrate (3HB), as endogenous bioenergetic fuels that augment cellular anabolism, thereby facilitating the progression of human bone marrow-derived mesenchymal stem cells (hBMSCs) towards osteoblastogenesis. Our research demonstrated that 3HB markedly boosts in vitro ATP production, elevating mitochondrial membrane potential and capillary-like tube formation. Additionally, it raises citrate levels in the tricarboxylic acid (TCA) cycle, facilitating the synthesis of citrate-containing apatite during hBMSCs osteogenesis. Furthermore, 3HB administration significantly increased bone mass in rats with osteoporosis induced by ovariectomy. The findings also showed that P(3HB-co-4HB) scaffold substantially enhances long-term vascularized bone regeneration in rat cranial defect models. These findings reveal a previously unknown role of 3HB in promoting osteogenesis of hBMSCs and highlight the metabolic activation of P(3HB-co-4HB) scaffold for bone regeneration.
{"title":"Metabolically activated energetic materials mediate cellular anabolism for bone regeneration.","authors":"Jian Li, Xu Zhang, Zi-Xin Peng, Jian-Hai Chen, Jian-Hui Liang, Li-Qing Ke, Dan Huang, Wen-Xiang Cheng, Sien Lin, Gang Li, Rui Hou, Wen-Zhao Zhong, Zheng-Jie Lin, Ling Qin, Guo-Qiang Chen, Peng Zhang","doi":"10.1016/j.tibtech.2024.08.002","DOIUrl":"10.1016/j.tibtech.2024.08.002","url":null,"abstract":"<p><p>The understanding of cellular energy metabolism activation by engineered scaffolds remains limited, posing challenges for therapeutic applications in tissue regeneration. This study presents biosynthesized poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] and its major degradation product, 3-hydroxybutyrate (3HB), as endogenous bioenergetic fuels that augment cellular anabolism, thereby facilitating the progression of human bone marrow-derived mesenchymal stem cells (hBMSCs) towards osteoblastogenesis. Our research demonstrated that 3HB markedly boosts in vitro ATP production, elevating mitochondrial membrane potential and capillary-like tube formation. Additionally, it raises citrate levels in the tricarboxylic acid (TCA) cycle, facilitating the synthesis of citrate-containing apatite during hBMSCs osteogenesis. Furthermore, 3HB administration significantly increased bone mass in rats with osteoporosis induced by ovariectomy. The findings also showed that P(3HB-co-4HB) scaffold substantially enhances long-term vascularized bone regeneration in rat cranial defect models. These findings reveal a previously unknown role of 3HB in promoting osteogenesis of hBMSCs and highlight the metabolic activation of P(3HB-co-4HB) scaffold for bone regeneration.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"1745-1776"},"PeriodicalIF":14.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-25DOI: 10.1016/j.tibtech.2024.08.015
Matthias P Lutolf, Milica Radisic, Jeffrey Beekman, Dan Dongeun Huh, Meritxell Huch, Margherita Yayoi Turco, Zeinab Niloofar Tahmasebi Birgani, Dong Gao, Rui Yao, Hang Lin, Takanori Takebe
{"title":"In vitro human cell-based models: What can they do and what are their limitations?","authors":"Matthias P Lutolf, Milica Radisic, Jeffrey Beekman, Dan Dongeun Huh, Meritxell Huch, Margherita Yayoi Turco, Zeinab Niloofar Tahmasebi Birgani, Dong Gao, Rui Yao, Hang Lin, Takanori Takebe","doi":"10.1016/j.tibtech.2024.08.015","DOIUrl":"10.1016/j.tibtech.2024.08.015","url":null,"abstract":"","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"1577-1582"},"PeriodicalIF":14.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-05-10DOI: 10.1016/j.tibtech.2024.04.002
Guo Jiang, Yuanli Gao, Nan Zhou, Baojun Wang
RNA sensing in vivo evaluates past or ongoing endogenous RNA disturbances, which is crucial for identifying cell types and states and diagnosing diseases. Recently, the CRISPR-driven genetic circuits have offered promising solutions to burgeoning challenges in RNA sensing. This review delves into the cutting-edge developments of CRISPR-powered RNA sensors in vivo, reclassifying these RNA sensors into four categories based on their working mechanisms, including programmable reassembly of split single-guide RNA (sgRNA), RNA-triggered RNA processing and protein cleavage, miRNA-triggered RNA interference (RNAi), and strand displacement reactions. Then, we discuss the advantages and challenges of existing methodologies in diverse application scenarios and anticipate and analyze obstacles and opportunities in forthcoming practical implementations.
{"title":"CRISPR-powered RNA sensing in vivo.","authors":"Guo Jiang, Yuanli Gao, Nan Zhou, Baojun Wang","doi":"10.1016/j.tibtech.2024.04.002","DOIUrl":"10.1016/j.tibtech.2024.04.002","url":null,"abstract":"<p><p>RNA sensing in vivo evaluates past or ongoing endogenous RNA disturbances, which is crucial for identifying cell types and states and diagnosing diseases. Recently, the CRISPR-driven genetic circuits have offered promising solutions to burgeoning challenges in RNA sensing. This review delves into the cutting-edge developments of CRISPR-powered RNA sensors in vivo, reclassifying these RNA sensors into four categories based on their working mechanisms, including programmable reassembly of split single-guide RNA (sgRNA), RNA-triggered RNA processing and protein cleavage, miRNA-triggered RNA interference (RNAi), and strand displacement reactions. Then, we discuss the advantages and challenges of existing methodologies in diverse application scenarios and anticipate and analyze obstacles and opportunities in forthcoming practical implementations.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"1601-1614"},"PeriodicalIF":14.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140909261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-17DOI: 10.1016/j.tibtech.2024.06.008
Ileana L Co, Aleksandra Fomina, Michelle Nurse, Alison P McGuigan
Understanding the highly complex tumor-immune landscape is an important goal for developing novel immune therapies for solid cancers. To this end, 3D cancer-immune models have emerged as patient-relevant in vitro tools for modeling the tumor-immune landscape and the cellular interactions within it. In this review, we provide an overview of the components and applications of 3D cancer-immune models and discuss their evolution from 2015 to 2023. Specifically, we observe trends in primary cell-sourced, T cell-based complex models used for therapy evaluation and biological discovery. Finally, we describe the challenges of implementing 3D cancer-immune models and the opportunities for maximizing their potential for deciphering the complex tumor-immune microenvironment and identifying novel, clinically relevant drug targets.
了解高度复杂的肿瘤免疫格局是开发新型实体瘤免疫疗法的一个重要目标。为此,三维癌症免疫模型作为与患者相关的体外工具应运而生,用于模拟肿瘤免疫格局及其中的细胞相互作用。在这篇综述中,我们概述了三维癌症免疫模型的组成和应用,并讨论了它们从 2015 年到 2023 年的演变。具体而言,我们观察了用于疗法评估和生物发现的原代细胞来源、基于 T 细胞的复杂模型的发展趋势。最后,我们介绍了实施三维癌症免疫模型所面临的挑战,以及最大限度地发挥其潜力的机遇,以破译复杂的肿瘤免疫微环境并确定新型临床相关药物靶点。
{"title":"Applications and evolution of 3D cancer-immune cell models.","authors":"Ileana L Co, Aleksandra Fomina, Michelle Nurse, Alison P McGuigan","doi":"10.1016/j.tibtech.2024.06.008","DOIUrl":"10.1016/j.tibtech.2024.06.008","url":null,"abstract":"<p><p>Understanding the highly complex tumor-immune landscape is an important goal for developing novel immune therapies for solid cancers. To this end, 3D cancer-immune models have emerged as patient-relevant in vitro tools for modeling the tumor-immune landscape and the cellular interactions within it. In this review, we provide an overview of the components and applications of 3D cancer-immune models and discuss their evolution from 2015 to 2023. Specifically, we observe trends in primary cell-sourced, T cell-based complex models used for therapy evaluation and biological discovery. Finally, we describe the challenges of implementing 3D cancer-immune models and the opportunities for maximizing their potential for deciphering the complex tumor-immune microenvironment and identifying novel, clinically relevant drug targets.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"1615-1627"},"PeriodicalIF":14.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}