Pub Date : 2024-12-01Epub Date: 2024-08-29DOI: 10.1016/j.tibtech.2024.07.011
Julia Jodlbauer, Matthias Schmal, Christian Waltl, Thomas Rohr, Astrid R Mach-Aigner, Marko D Mihovilovic, Florian Rudroff
Cyanobacteria show promise as hosts for whole-cell biocatalysis. Their photoautotrophic metabolism can be leveraged for a sustainable production process. Despite advancements, performance still lags behind heterotrophic hosts. A key challenge is the limited ability to overexpress recombinant enzymes, which also hinders their biocatalytic efficiency. To address this, we generated large-scale expression libraries and developed a high-throughput method combining fluorescence-activated cell sorting (FACS) and deep sequencing in Synechocystis sp. PCC 6803 (Syn. 6803) to screen and optimize its genetic background. We apply this approach to enhance expression and biocatalyst performance for three enzymes: the ketoreductase LfSDR1M50, enoate reductase YqjM, and Baeyer-Villiger monooxygenase (BVMO) CHMOmut. Diverse genetic combinations yielded significant improvements: optimizing LfSDR1M50 expression showed a 17-fold increase to 39.2 U gcell dry weight (CDW)-1. In vivo activity of Syn. YqjM was improved 16-fold to 58.7 U gCDW-1 and, for Syn. CHMOmut, a 1.5-fold increase to 7.3 U gCDW-1 was achieved by tailored genetic design. Thus, this strategy offers a pathway to optimize cyanobacteria as expression hosts, paving the way for broader applications in other cyanobacteria strains and larger libraries.
{"title":"Unlocking the potential of cyanobacteria: a high-throughput strategy for enhancing biocatalytic performance through genetic optimization.","authors":"Julia Jodlbauer, Matthias Schmal, Christian Waltl, Thomas Rohr, Astrid R Mach-Aigner, Marko D Mihovilovic, Florian Rudroff","doi":"10.1016/j.tibtech.2024.07.011","DOIUrl":"10.1016/j.tibtech.2024.07.011","url":null,"abstract":"<p><p>Cyanobacteria show promise as hosts for whole-cell biocatalysis. Their photoautotrophic metabolism can be leveraged for a sustainable production process. Despite advancements, performance still lags behind heterotrophic hosts. A key challenge is the limited ability to overexpress recombinant enzymes, which also hinders their biocatalytic efficiency. To address this, we generated large-scale expression libraries and developed a high-throughput method combining fluorescence-activated cell sorting (FACS) and deep sequencing in Synechocystis sp. PCC 6803 (Syn. 6803) to screen and optimize its genetic background. We apply this approach to enhance expression and biocatalyst performance for three enzymes: the ketoreductase LfSDR1M50, enoate reductase YqjM, and Baeyer-Villiger monooxygenase (BVMO) CHMO<sub>mut</sub>. Diverse genetic combinations yielded significant improvements: optimizing LfSDR1M50 expression showed a 17-fold increase to 39.2 U g<sub>cell dry weight (CDW)</sub><sup>-1</sup>. In vivo activity of Syn. YqjM was improved 16-fold to 58.7 U g<sub>CDW</sub><sup>-1</sup> and, for Syn. CHMO<sub>mut</sub>, a 1.5-fold increase to 7.3 U g<sub>CDW</sub><sup>-1</sup> was achieved by tailored genetic design. Thus, this strategy offers a pathway to optimize cyanobacteria as expression hosts, paving the way for broader applications in other cyanobacteria strains and larger libraries.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"1795-1818"},"PeriodicalIF":14.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leather is important to the global manufacturing industry, contributing to both the economy and society. However, because of ecological and ethical considerations, alternative bio-based materials to natural leather are now being investigated. Advancements in biotechnology and bio-based materials, combined with flourishing biomanufacturing, have driven product development. In recent years, animal-free, biotechnology-based leather-like material has seen significant growth. Recent progress in leather-like bio-based materials development has been achieved using proteins, mycelium, cellulose, and other sustainable natural materials. This review provides a comprehensive overview of these bio-based materials, addressing their challenges, practical implications, and potential to play a growing role in the emerging field of animal-free alternative. The development of 'future leather' has significant economic and environmental potential.
{"title":"Engineered, environmentally friendly leather-like bio-based materials.","authors":"Xinhua Liu, Xiaoyu Zhang, Xuechuan Wang, Ouyang Yue, Huie Jiang","doi":"10.1016/j.tibtech.2024.11.006","DOIUrl":"https://doi.org/10.1016/j.tibtech.2024.11.006","url":null,"abstract":"<p><p>Leather is important to the global manufacturing industry, contributing to both the economy and society. However, because of ecological and ethical considerations, alternative bio-based materials to natural leather are now being investigated. Advancements in biotechnology and bio-based materials, combined with flourishing biomanufacturing, have driven product development. In recent years, animal-free, biotechnology-based leather-like material has seen significant growth. Recent progress in leather-like bio-based materials development has been achieved using proteins, mycelium, cellulose, and other sustainable natural materials. This review provides a comprehensive overview of these bio-based materials, addressing their challenges, practical implications, and potential to play a growing role in the emerging field of animal-free alternative. The development of 'future leather' has significant economic and environmental potential.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142772628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1016/j.tibtech.2024.10.015
Razieh Rafieenia, Cinzia Klemm, Piotr Hapeta, Jing Fu, María Gallego García, Rodrigo Ledesma-Amaro
Microbial cell factories, which convert feedstocks into a product of value, have the potential to help transition toward a bio-based economy with more sustainable ways to produce food, fuels, chemicals, and materials. One common challenge found in most bioconversions is the co-production, together with the product of interest, of undesirable byproducts or overflow metabolites. Here, we designed a strategy based on synthetic microbial communities to address this issue and increase overall production yields. To achieve our goal, we created a Yarrowia lipolytica co-culture comprising a wild-type (WT) strain that consumes glucose to make biomass and citric acid (CA), and an 'upcycler' strain, which consumes the CA produced by the WT strain. The co-culture produced up to two times more β-carotene compared with the WT monoculture using either minimal medium or hydrolysate. The proposed strategy has the potential to be applied to other bioprocesses and organisms.
{"title":"Designing synthetic microbial communities with the capacity to upcycle fermentation byproducts to increase production yields.","authors":"Razieh Rafieenia, Cinzia Klemm, Piotr Hapeta, Jing Fu, María Gallego García, Rodrigo Ledesma-Amaro","doi":"10.1016/j.tibtech.2024.10.015","DOIUrl":"https://doi.org/10.1016/j.tibtech.2024.10.015","url":null,"abstract":"<p><p>Microbial cell factories, which convert feedstocks into a product of value, have the potential to help transition toward a bio-based economy with more sustainable ways to produce food, fuels, chemicals, and materials. One common challenge found in most bioconversions is the co-production, together with the product of interest, of undesirable byproducts or overflow metabolites. Here, we designed a strategy based on synthetic microbial communities to address this issue and increase overall production yields. To achieve our goal, we created a Yarrowia lipolytica co-culture comprising a wild-type (WT) strain that consumes glucose to make biomass and citric acid (CA), and an 'upcycler' strain, which consumes the CA produced by the WT strain. The co-culture produced up to two times more β-carotene compared with the WT monoculture using either minimal medium or hydrolysate. The proposed strategy has the potential to be applied to other bioprocesses and organisms.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142740474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1016/j.tibtech.2024.10.016
Aurin M Vos, Evelien Maaskant, Wouter Post, Dirk Bosch
The transition from a linear fossil-based economy to a renewable circular economy requires a new approach to produce building blocks for plastics. This provides opportunities to reshape the plastic landscape and will positively impact the wide range of applications that make use of plastics. We propose that plant enzymes, which underlie the large biochemical diversity present in plant specialized metabolism, will facilitate the production of novel building blocks for new polymers via biotechnological processes. Thereby, plant-inspired plastic building blocks may enable the development of new plastics for targeted applications that can contribute to a future with renewable plastics.
{"title":"Plant-inspired building blocks for future plastics.","authors":"Aurin M Vos, Evelien Maaskant, Wouter Post, Dirk Bosch","doi":"10.1016/j.tibtech.2024.10.016","DOIUrl":"https://doi.org/10.1016/j.tibtech.2024.10.016","url":null,"abstract":"<p><p>The transition from a linear fossil-based economy to a renewable circular economy requires a new approach to produce building blocks for plastics. This provides opportunities to reshape the plastic landscape and will positively impact the wide range of applications that make use of plastics. We propose that plant enzymes, which underlie the large biochemical diversity present in plant specialized metabolism, will facilitate the production of novel building blocks for new polymers via biotechnological processes. Thereby, plant-inspired plastic building blocks may enable the development of new plastics for targeted applications that can contribute to a future with renewable plastics.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142732815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1016/j.tibtech.2024.10.014
Enrique Asin-Garcia, James D Fawcett, Christos Batianis, Vitor A P Martins Dos Santos
Biomanufacturing is crucial for the bioeconomy, with growing investment and attention from industries and governments. Over recent decades numerous biotech companies have been founded, and policies have increasingly prioritised sustainable production methods. However, translation of biotechnological innovations into industrial applications remains challenging, requiring interdisciplinary research infrastructures (RIs) to address gaps in bioprocess development, scalability, and competitiveness. This opinion examines the current landscape of biomanufacturing and highlights the pivotal role of RIs in supporting these transitions. It also proposes enhanced research interoperability, standardisation, and democratisation through meta-workflows that streamline operations within and between RIs. By improving data sharing, process harmonisation, and scalability, these ecosystems can help to overcome technical and economic barriers in a concerted effort towards sustainable, bio-based global manufacturing.
{"title":"A snapshot of biomanufacturing and the need for enabling research infrastructure.","authors":"Enrique Asin-Garcia, James D Fawcett, Christos Batianis, Vitor A P Martins Dos Santos","doi":"10.1016/j.tibtech.2024.10.014","DOIUrl":"https://doi.org/10.1016/j.tibtech.2024.10.014","url":null,"abstract":"<p><p>Biomanufacturing is crucial for the bioeconomy, with growing investment and attention from industries and governments. Over recent decades numerous biotech companies have been founded, and policies have increasingly prioritised sustainable production methods. However, translation of biotechnological innovations into industrial applications remains challenging, requiring interdisciplinary research infrastructures (RIs) to address gaps in bioprocess development, scalability, and competitiveness. This opinion examines the current landscape of biomanufacturing and highlights the pivotal role of RIs in supporting these transitions. It also proposes enhanced research interoperability, standardisation, and democratisation through meta-workflows that streamline operations within and between RIs. By improving data sharing, process harmonisation, and scalability, these ecosystems can help to overcome technical and economic barriers in a concerted effort towards sustainable, bio-based global manufacturing.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142732811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-23DOI: 10.1016/j.tibtech.2024.10.018
Jinjin Diao, Yuxin Tian, Yifeng Hu, Tae Seok Moon
Poly(ethylene terephthalate) (PET) waste is of low degradability in nature, and its mismanagement threatens numerous ecosystems. To combat the accumulation of waste PET in the biosphere, PET bio-upcycling, which integrates chemical pretreatment to produce PET-derived monomers with their microbial conversion into value-added products, has shown promise. The recently discovered Rhodococcus jostii RPET strain can metabolically degrade terephthalic acid (TPA) and ethylene glycol (EG) as sole carbon sources, and it has been developed into a microbial chassis for PET upcycling. However, the scarcity of synthetic biology tools, specifically designed for this non-model microbe, limits the development of a microbial cell factory for expanding the repertoire of bioproducts from postconsumer PET. Herein, we describe the development of potent genetic tools for RPET, including two inducible and titratable expression systems for tunable gene expression, along with serine integrase-based recombinational tools (SIRT) for genome editing. Using these tools, we systematically engineered the RPET strain to ultimately establish microbial supply chains for producing multiple chemicals, including lycopene, lipids, and succinate, from postconsumer PET waste bottles, achieving the highest titer of lycopene ever reported thus far in RPET [i.e., 22.6 mg/l of lycopene, ~10 000-fold higher than that of the wild-type (WT) strain]. This work highlights the great potential of plastic upcycling as a generalizable means of sustainable production of diverse chemicals.
聚对苯二甲酸乙二酯(PET)废物在自然界中的降解性很低,管理不当会威胁到许多生态系统。为解决废弃 PET 在生物圈中的积累问题,PET 生物升级再循环技术已显示出良好的前景,该技术将化学预处理生产 PET 衍生单体与微生物转化为增值产品相结合。最近发现的Rhodococcus jostii RPET菌株可以代谢降解对苯二甲酸(TPA)和乙二醇(EG)作为唯一的碳源,它已被开发成用于PET升级再循环的微生物底盘。然而,由于缺乏专门为这种非模式微生物设计的合成生物学工具,限制了微生物细胞工厂的发展,无法从消费后 PET 中获得更多生物产品。在本文中,我们介绍了针对 RPET 的强效基因工具的开发情况,包括两个用于可调基因表达的可诱导和可滴定表达系统,以及用于基因组编辑的基于丝氨酸整合酶的重组工具 (SIRT)。利用这些工具,我们系统地设计了 RPET 菌株,最终建立了微生物供应链,利用消费后 PET 废瓶生产多种化学物质,包括番茄红素、脂类和琥珀酸盐,实现了迄今为止报道的 RPET 番茄红素的最高滴度[即 22.6 毫克/升番茄红素,比野生型(WT)菌株高出约 10 000 倍]。这项工作凸显了塑料升级再循环作为可持续生产各种化学品的通用手段的巨大潜力。
{"title":"Producing multiple chemicals through biological upcycling of waste poly(ethylene terephthalate).","authors":"Jinjin Diao, Yuxin Tian, Yifeng Hu, Tae Seok Moon","doi":"10.1016/j.tibtech.2024.10.018","DOIUrl":"https://doi.org/10.1016/j.tibtech.2024.10.018","url":null,"abstract":"<p><p>Poly(ethylene terephthalate) (PET) waste is of low degradability in nature, and its mismanagement threatens numerous ecosystems. To combat the accumulation of waste PET in the biosphere, PET bio-upcycling, which integrates chemical pretreatment to produce PET-derived monomers with their microbial conversion into value-added products, has shown promise. The recently discovered Rhodococcus jostii RPET strain can metabolically degrade terephthalic acid (TPA) and ethylene glycol (EG) as sole carbon sources, and it has been developed into a microbial chassis for PET upcycling. However, the scarcity of synthetic biology tools, specifically designed for this non-model microbe, limits the development of a microbial cell factory for expanding the repertoire of bioproducts from postconsumer PET. Herein, we describe the development of potent genetic tools for RPET, including two inducible and titratable expression systems for tunable gene expression, along with serine integrase-based recombinational tools (SIRT) for genome editing. Using these tools, we systematically engineered the RPET strain to ultimately establish microbial supply chains for producing multiple chemicals, including lycopene, lipids, and succinate, from postconsumer PET waste bottles, achieving the highest titer of lycopene ever reported thus far in RPET [i.e., 22.6 mg/l of lycopene, ~10 000-fold higher than that of the wild-type (WT) strain]. This work highlights the great potential of plastic upcycling as a generalizable means of sustainable production of diverse chemicals.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.tibtech.2024.10.008
Yuan Huang, Yuanyuan Zhang, Xiaofeng Yang, Zhanglin Lin
Protein purification remains a formidable and costly technical obstacle in biotechnology. Here, we present a new column-free method, utilizing the cleavable self-aggregating tag 2.0 (cSAT2.0) scheme, to streamline protein production in Escherichia coli, yielding high quantities with exceptional purity. In shake-flask experiments using lysogeny broth (LB) medium, the cSAT2.0 scheme successfully produced one peptide and five proteins, with yields ranging from 24 mg/l to 89 mg/l, and purity levels exceeding 98%. The cSAT2.0 scheme also enabled high-throughput protein preparation on microplates. Furthermore, we scaled up the fermentation process for caplacizumab, achieving 1.4 g/l of highly purified protein in a 5-l fermenter. Our results demonstrate that the cSAT2.0 scheme can serve as an economical and robust platform for protein production from microplate to fermenter scales.
{"title":"A high-performance protein preparation approach in a single column-free step.","authors":"Yuan Huang, Yuanyuan Zhang, Xiaofeng Yang, Zhanglin Lin","doi":"10.1016/j.tibtech.2024.10.008","DOIUrl":"https://doi.org/10.1016/j.tibtech.2024.10.008","url":null,"abstract":"<p><p>Protein purification remains a formidable and costly technical obstacle in biotechnology. Here, we present a new column-free method, utilizing the cleavable self-aggregating tag 2.0 (cSAT2.0) scheme, to streamline protein production in Escherichia coli, yielding high quantities with exceptional purity. In shake-flask experiments using lysogeny broth (LB) medium, the cSAT2.0 scheme successfully produced one peptide and five proteins, with yields ranging from 24 mg/l to 89 mg/l, and purity levels exceeding 98%. The cSAT2.0 scheme also enabled high-throughput protein preparation on microplates. Furthermore, we scaled up the fermentation process for caplacizumab, achieving 1.4 g/l of highly purified protein in a 5-l fermenter. Our results demonstrate that the cSAT2.0 scheme can serve as an economical and robust platform for protein production from microplate to fermenter scales.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.tibtech.2024.10.012
Jinpeng Zou, Xiangbing Meng, Zhengyuan Hong, Yuchun Rao, Kejian Wang, Jiayang Li, Hong Yu, Chun Wang
In molecular design breeding, the simultaneous introduction of desired functional genes through specific nucleotide modifications and the elimination of genes regulating undesired phenotypic traits or agronomic components require advanced gene editing tools. Due to limited editing efficiency, even with the use of highly precise editing tools, such as prime editing (PE), simultaneous editing of multiple mutation types poses a challenge. Here, we replaced Cas9 nickase (nCas9) with Cas9 to construct a Cas9-mediated PE (Cas9-PE) system in rice. This system not only enables precise editing, but also allows for site-specific random mutation. Moreover, leveraging the precision of Cas9-PE, we established a transgene-free multiplex gene editing system using a co-editing strategy. This strategy involved the Agrobacterium-mediated transient expression of the precise editing rice endogenous acetolactate synthase gene ALSS627I to confer herbicide bispyribac-sodium (BS) resistance as a selection marker. This study provides a versatile and efficient multiplex gene editing tool for molecular design breeding.
{"title":"Cas9-PE: a robust multiplex gene editing tool for simultaneous precise editing and site-specific random mutation in rice.","authors":"Jinpeng Zou, Xiangbing Meng, Zhengyuan Hong, Yuchun Rao, Kejian Wang, Jiayang Li, Hong Yu, Chun Wang","doi":"10.1016/j.tibtech.2024.10.012","DOIUrl":"https://doi.org/10.1016/j.tibtech.2024.10.012","url":null,"abstract":"<p><p>In molecular design breeding, the simultaneous introduction of desired functional genes through specific nucleotide modifications and the elimination of genes regulating undesired phenotypic traits or agronomic components require advanced gene editing tools. Due to limited editing efficiency, even with the use of highly precise editing tools, such as prime editing (PE), simultaneous editing of multiple mutation types poses a challenge. Here, we replaced Cas9 nickase (nCas9) with Cas9 to construct a Cas9-mediated PE (Cas9-PE) system in rice. This system not only enables precise editing, but also allows for site-specific random mutation. Moreover, leveraging the precision of Cas9-PE, we established a transgene-free multiplex gene editing system using a co-editing strategy. This strategy involved the Agrobacterium-mediated transient expression of the precise editing rice endogenous acetolactate synthase gene ALS<sup>S627I</sup> to confer herbicide bispyribac-sodium (BS) resistance as a selection marker. This study provides a versatile and efficient multiplex gene editing tool for molecular design breeding.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.tibtech.2024.10.011
Wenqian Liu, Yingjia Pan, Yu Zhang, Chang Dong, Lei Huang, Jiazhang Lian
Despite the prevalence of genome editing tools, there are still some limitations in dynamic and continuous genome editing. In vivo single-stranded DNA (ssDNA)-mediated genome mutation has emerged as a valuable and promising approach for continuous genome editing. In this review, we summarize the various types of intracellular ssDNA production systems and notable achievements in genome engineering in both prokaryotic and eukaryotic cells. We also review progress in the development of applications based on retron-based systems, which have demonstrated significant potential in molecular recording, multiplex genome editing, high-throughput functional variant screening, and gene-specific continuous in vivo evolution. Furthermore, we discuss the major challenges of ssDNA-mediated continuous genome editing and its prospects for future applications.
{"title":"Intracellularly synthesized ssDNA for continuous genome engineering.","authors":"Wenqian Liu, Yingjia Pan, Yu Zhang, Chang Dong, Lei Huang, Jiazhang Lian","doi":"10.1016/j.tibtech.2024.10.011","DOIUrl":"https://doi.org/10.1016/j.tibtech.2024.10.011","url":null,"abstract":"<p><p>Despite the prevalence of genome editing tools, there are still some limitations in dynamic and continuous genome editing. In vivo single-stranded DNA (ssDNA)-mediated genome mutation has emerged as a valuable and promising approach for continuous genome editing. In this review, we summarize the various types of intracellular ssDNA production systems and notable achievements in genome engineering in both prokaryotic and eukaryotic cells. We also review progress in the development of applications based on retron-based systems, which have demonstrated significant potential in molecular recording, multiplex genome editing, high-throughput functional variant screening, and gene-specific continuous in vivo evolution. Furthermore, we discuss the major challenges of ssDNA-mediated continuous genome editing and its prospects for future applications.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142629079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-09DOI: 10.1016/j.tibtech.2024.10.002
Eylul Gulsen Yilmaz, Nedim Hacıosmanoğlu, Sebastian Bruno Ulrich Jordi, Bahtiyar Yilmaz, Fatih Inci
Inflammatory bowel disease (IBD) comprises chronic inflammatory conditions with complex mechanisms and diverse manifestations, posing significant clinical challenges. Traditional animal models and ethical concerns in human studies necessitate innovative approaches. This review provides an overview of human intestinal architecture in health and inflammation, emphasizing the role of microfluidics and on-chip technologies in IBD research. These technologies allow precise manipulation of cellular and microbial interactions in a physiologically relevant context, simulating the intestinal ecosystem microscopically. By integrating cellular components and replicating 3D tissue architecture, they offer promising models for studying host-microbe interactions, wound healing, and therapeutic approaches. Continuous refinement of these technologies promises to advance IBD understanding and therapy development, inspiring further innovation and cross-disciplinary collaboration.
{"title":"Revolutionizing IBD research with on-chip models of disease modeling and drug screening.","authors":"Eylul Gulsen Yilmaz, Nedim Hacıosmanoğlu, Sebastian Bruno Ulrich Jordi, Bahtiyar Yilmaz, Fatih Inci","doi":"10.1016/j.tibtech.2024.10.002","DOIUrl":"https://doi.org/10.1016/j.tibtech.2024.10.002","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) comprises chronic inflammatory conditions with complex mechanisms and diverse manifestations, posing significant clinical challenges. Traditional animal models and ethical concerns in human studies necessitate innovative approaches. This review provides an overview of human intestinal architecture in health and inflammation, emphasizing the role of microfluidics and on-chip technologies in IBD research. These technologies allow precise manipulation of cellular and microbial interactions in a physiologically relevant context, simulating the intestinal ecosystem microscopically. By integrating cellular components and replicating 3D tissue architecture, they offer promising models for studying host-microbe interactions, wound healing, and therapeutic approaches. Continuous refinement of these technologies promises to advance IBD understanding and therapy development, inspiring further innovation and cross-disciplinary collaboration.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142629164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}