Artificial intelligence (AI) and machine learning (ML) have been recently applied extensively in various disciplines of vadose zone hydrology. However, not much attention has been paid to their database‐dependent accuracy and uncertainty, reproducibility, and delivery, which undermines their applications to real‐world problems. We discuss lessons from the past and emphasize the need for and lack of fundamental protocols (i.e., detailed clarification on data processing, ML models accessibility, and a clear path for reproducing results).
{"title":"Machine learning in vadose zone hydrology: A flashback","authors":"B. Ghanbarian, Y. Pachepsky","doi":"10.1002/vzj2.20212","DOIUrl":"https://doi.org/10.1002/vzj2.20212","url":null,"abstract":"Artificial intelligence (AI) and machine learning (ML) have been recently applied extensively in various disciplines of vadose zone hydrology. However, not much attention has been paid to their database‐dependent accuracy and uncertainty, reproducibility, and delivery, which undermines their applications to real‐world problems. We discuss lessons from the past and emphasize the need for and lack of fundamental protocols (i.e., detailed clarification on data processing, ML models accessibility, and a clear path for reproducing results).","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47823843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annelie Ehrhardt, Kristian Berger, V. Filipović, T. Wöhling, H. Vogel, H. Gerke
Lateral subsurface flow (LSF) is a phenomenon frequently occurring in the field induced by local water saturation along horizon boundaries under nonequilibrium conditions. However, observations of LSF in undisturbed soils under controlled irrigation in the laboratory are limited but needed for model improvement, prediction, and quantification of LSF. We present a method for extracting an undisturbed soil monolith along a soil horizon boundary and introduce an experimental setup for the measurement of LSF and an irrigation device for simulating rainfall. An experimental test run was simulated using HYDRUS 2D. Water infiltrating into the monolith and flowing either laterally along the horizon boundary or vertically through the bottom horizon could be separately captured by suction discs at the side and the bottom. Thus, a clear distinction between lateral and vertical flow was possible. Pressure heads and water contents were recorded by tensiometers and frequency domain reflectometry (FDR) sensors distributed across the monolith in a regular two‐dimensional, vertical, cross‐sectional pattern. Sensor readings indicated the presence of nonequilibrium conditions within the monolith. Modeling results could reproduce the lateral and vertical outflow of the monolith under constant irrigation, thus showing that water flow within the monolith under steady‐state conditions can be explained by the Richards equation and the van Genuchten–Mualem model. The presented method can be used to improve and verify models designed for the prediction of the onset of LSF including that induced by local nonequilibrium conditions.
{"title":"Tracing lateral subsurface flow in layered soils by undisturbed monolith sampling, targeted laboratory experiments, and model‐based analysis","authors":"Annelie Ehrhardt, Kristian Berger, V. Filipović, T. Wöhling, H. Vogel, H. Gerke","doi":"10.1002/vzj2.20206","DOIUrl":"https://doi.org/10.1002/vzj2.20206","url":null,"abstract":"Lateral subsurface flow (LSF) is a phenomenon frequently occurring in the field induced by local water saturation along horizon boundaries under nonequilibrium conditions. However, observations of LSF in undisturbed soils under controlled irrigation in the laboratory are limited but needed for model improvement, prediction, and quantification of LSF. We present a method for extracting an undisturbed soil monolith along a soil horizon boundary and introduce an experimental setup for the measurement of LSF and an irrigation device for simulating rainfall. An experimental test run was simulated using HYDRUS 2D. Water infiltrating into the monolith and flowing either laterally along the horizon boundary or vertically through the bottom horizon could be separately captured by suction discs at the side and the bottom. Thus, a clear distinction between lateral and vertical flow was possible. Pressure heads and water contents were recorded by tensiometers and frequency domain reflectometry (FDR) sensors distributed across the monolith in a regular two‐dimensional, vertical, cross‐sectional pattern. Sensor readings indicated the presence of nonequilibrium conditions within the monolith. Modeling results could reproduce the lateral and vertical outflow of the monolith under constant irrigation, thus showing that water flow within the monolith under steady‐state conditions can be explained by the Richards equation and the van Genuchten–Mualem model. The presented method can be used to improve and verify models designed for the prediction of the onset of LSF including that induced by local nonequilibrium conditions.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45546706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soil water potential is a cornerstone in defining the thermodynamic state of soil water required to quantify phenomena such as water phase change, water movement, heat transfer, electric current, chemical transport, and mechanical stress and deformation in the earth's shallow subsurface environment. This potential has historically been conceptualized as free energy stored in a until volume of soil water. Though the concept of soil water potential has been evolving over the past 120 yr, a consensual definition is still lacking, and answers to some fundamental questions remain controversial and elusive. What are the origins and mechanisms for the free energy of soil water? Can the common mathematical expression of soil water potential as superposition of gravitational, osmotic, and matric potentials be used to define water phase transitions in soil? Are these major components of soil water potential independent or coupled? Is pore water pressure always tensile under unsaturated conditions? If so, how can soil water density be as high as 1.7 g cm−3? How do adsorptive soil–water interactions originating from the electromagnetic field around and within soil particles transfer to mechanical pore pressure? In this review, the authors (a) provide critical analysis of historical definitions of soil water potential to identify their strengths, limitations, and flaws; (b) synthesize the origins of electromagnetic energies in soil to clarify the fundamental differences between adsorptive and capillary soil water potential mechanisms; (c) introduce a recently emerging concept of soil matric potential that unifies contributions of adsorption and capillarity to soil water potential; and (d) illustrate the generality and promise of the unified definition of soil water potential for answering some of the fundamental questions that remain elusive to the hydrology, geoengineering, and geoscience communities.
土壤水势是定义土壤水热力学状态的基石,需要对地球浅层地下环境中的水相变、水运动、传热、电流、化学传输以及机械应力和变形等现象进行量化。这种潜力在历史上被概念化为储存在一定体积的土壤水中的自由能。尽管土壤水势的概念在过去的120年里一直在发展,但仍然缺乏一致的定义,一些基本问题的答案仍然存在争议和难以捉摸。土壤水分自由能的来源和机制是什么?土壤水势的常见数学表达式是重力势、渗透势和基质势的叠加,可以用来定义土壤中的水相变吗?土壤水势的这些主要组成部分是独立的还是耦合的?孔隙水压力在非饱和条件下总是拉伸的吗?如果是这样,土壤水分密度怎么能高达1.7 g cm−3?土壤颗粒周围和内部电磁场产生的吸附性土壤-水相互作用如何转化为机械孔隙压力?在这篇综述中,作者(a)对土壤水势的历史定义进行了批判性分析,以确定其优势、局限性和缺陷;(b) 综合土壤中电磁能的来源,阐明吸附和毛细土壤水势机制之间的根本区别;(c) 引入了最近出现的土壤基质势的概念,该概念将吸附和毛细管作用对土壤水势的贡献统一起来;以及(d)说明土壤水势统一定义的普遍性和前景,以回答水文、地球工程和地球科学界仍然难以捉摸的一些基本问题。
{"title":"Soil water potential: A historical perspective and recent breakthroughs","authors":"Shengmin Luo, N. Lu, Chao Zhang, W. Likos","doi":"10.1002/vzj2.20203","DOIUrl":"https://doi.org/10.1002/vzj2.20203","url":null,"abstract":"Soil water potential is a cornerstone in defining the thermodynamic state of soil water required to quantify phenomena such as water phase change, water movement, heat transfer, electric current, chemical transport, and mechanical stress and deformation in the earth's shallow subsurface environment. This potential has historically been conceptualized as free energy stored in a until volume of soil water. Though the concept of soil water potential has been evolving over the past 120 yr, a consensual definition is still lacking, and answers to some fundamental questions remain controversial and elusive. What are the origins and mechanisms for the free energy of soil water? Can the common mathematical expression of soil water potential as superposition of gravitational, osmotic, and matric potentials be used to define water phase transitions in soil? Are these major components of soil water potential independent or coupled? Is pore water pressure always tensile under unsaturated conditions? If so, how can soil water density be as high as 1.7 g cm−3? How do adsorptive soil–water interactions originating from the electromagnetic field around and within soil particles transfer to mechanical pore pressure? In this review, the authors (a) provide critical analysis of historical definitions of soil water potential to identify their strengths, limitations, and flaws; (b) synthesize the origins of electromagnetic energies in soil to clarify the fundamental differences between adsorptive and capillary soil water potential mechanisms; (c) introduce a recently emerging concept of soil matric potential that unifies contributions of adsorption and capillarity to soil water potential; and (d) illustrate the generality and promise of the unified definition of soil water potential for answering some of the fundamental questions that remain elusive to the hydrology, geoengineering, and geoscience communities.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49417113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soil wetness is an important property in determining the variable disposition of hillslopes to shallow landslides. Recent studies have demonstrated the potential of in situ soil wetness information for landslide early warning. However, the spatial representativeness of in situ sensors may be affected by local heterogeneities of soil properties and hydrological processes, and their installation may be destructive. Electrical resistivity tomography (ERT) has been used in the past to estimate plot‐scale soil moisture variation and may overcome these limitations. In this study, we installed and operated an automated ERT monitoring system on a landslide‐prone hillslope in the Napf region (Switzerland). The system was operational during a period of 9 mo, and measurements were conducted at high temporal resolution and under different soil hydrological conditions. Electrical resistivity was measured along two perpendicular profile lines in Wenner–Schlumberger configuration at 0.25‐m electrode spacing. Soil saturation was calculated by the Archie's law and the parameters were fitted with colocated soil moisture sensors. Comparison of ERT‐derived soil moisture with soil wetness from in situ sensors showed a good correlation, and infiltration properties critical for landslide early warning could be reliably reproduced. Further, analysis of spatial saturation variation revealed that ERT was capable to detect heterogeneities of soil hydrological process. Under highly saturated conditions, the reliability of the saturation estimation was affected by an increased number of faulty measurements and the spatial heterogeneity of the infiltration process.
{"title":"Monitoring critically saturated conditions for shallow landslide occurrence using electrical resistivity tomography","authors":"A. Wicki, C. Hauck","doi":"10.1002/vzj2.20204","DOIUrl":"https://doi.org/10.1002/vzj2.20204","url":null,"abstract":"Soil wetness is an important property in determining the variable disposition of hillslopes to shallow landslides. Recent studies have demonstrated the potential of in situ soil wetness information for landslide early warning. However, the spatial representativeness of in situ sensors may be affected by local heterogeneities of soil properties and hydrological processes, and their installation may be destructive. Electrical resistivity tomography (ERT) has been used in the past to estimate plot‐scale soil moisture variation and may overcome these limitations. In this study, we installed and operated an automated ERT monitoring system on a landslide‐prone hillslope in the Napf region (Switzerland). The system was operational during a period of 9 mo, and measurements were conducted at high temporal resolution and under different soil hydrological conditions. Electrical resistivity was measured along two perpendicular profile lines in Wenner–Schlumberger configuration at 0.25‐m electrode spacing. Soil saturation was calculated by the Archie's law and the parameters were fitted with colocated soil moisture sensors. Comparison of ERT‐derived soil moisture with soil wetness from in situ sensors showed a good correlation, and infiltration properties critical for landslide early warning could be reliably reproduced. Further, analysis of spatial saturation variation revealed that ERT was capable to detect heterogeneities of soil hydrological process. Under highly saturated conditions, the reliability of the saturation estimation was affected by an increased number of faulty measurements and the spatial heterogeneity of the infiltration process.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48035165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Hamamoto, Yushi Ohko, Y. Ohtake, P. Møldrup, T. Nishimura
The connectivity and tortuosity of fluid‐filled pore networks in the water and air phases strongly influence the mass transport in porous media. Moisture conditions (water content and distribution) alter water‐ or air‐filled pore networks. In this study, using a sand column with variable saturated conditions, water‐ and air‐filled pore networks were analyzed using X‐ray computed tomography (CT). Water and air transport parameters, including hydraulic conductivity, gas diffusion coefficient, and air permeability, were measured. The objectives were (a) to identify the effects of entrapped air on the water‐filled pore network and hydraulic conductivity and (b) to understand the water‐ and air‐filled pore networks and relevant transport parameters in the sand column during the drying and wetting processes. Measurements of hydraulic conductivity using quasisaturated samples showed that hydraulic conductivity was drastically reduced when smaller in situ air bubbles were present inside the sand column. At the same air‐filled porosity, higher gas diffusivity and air permeability were obtained under wetting than those during drying. X‐ray CT image analysis revealed that the air‐filled pore network connectivity during wetting was higher than that during drying, resulting in enhanced gas transport parameters during the wetting process. The observed differences in water‐ and air‐filled pore networks during drying and wetting processes are highly promising for future multiphase mass transport models in soils.
{"title":"Water‐ and air‐filled pore networks and transport parameters under drying and wetting processes","authors":"S. Hamamoto, Yushi Ohko, Y. Ohtake, P. Møldrup, T. Nishimura","doi":"10.1002/vzj2.20205","DOIUrl":"https://doi.org/10.1002/vzj2.20205","url":null,"abstract":"The connectivity and tortuosity of fluid‐filled pore networks in the water and air phases strongly influence the mass transport in porous media. Moisture conditions (water content and distribution) alter water‐ or air‐filled pore networks. In this study, using a sand column with variable saturated conditions, water‐ and air‐filled pore networks were analyzed using X‐ray computed tomography (CT). Water and air transport parameters, including hydraulic conductivity, gas diffusion coefficient, and air permeability, were measured. The objectives were (a) to identify the effects of entrapped air on the water‐filled pore network and hydraulic conductivity and (b) to understand the water‐ and air‐filled pore networks and relevant transport parameters in the sand column during the drying and wetting processes. Measurements of hydraulic conductivity using quasisaturated samples showed that hydraulic conductivity was drastically reduced when smaller in situ air bubbles were present inside the sand column. At the same air‐filled porosity, higher gas diffusivity and air permeability were obtained under wetting than those during drying. X‐ray CT image analysis revealed that the air‐filled pore network connectivity during wetting was higher than that during drying, resulting in enhanced gas transport parameters during the wetting process. The observed differences in water‐ and air‐filled pore networks during drying and wetting processes are highly promising for future multiphase mass transport models in soils.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47736876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Groh, E. Diamantopoulos, X. Duan, F. Ewert, Florian Heinlein, M. Herbst, M. Holbak, B. Kamali, K. Kersebaum, M. Kuhnert, C. Nendel, E. Priesack, J. Steidl, Michael Sommer, T. Pütz, J. Vanderborght, H. Vereecken, E. Wallor, Tobias K. D. Weber, M. Wegehenkel, L. Weihermüller, H. Gerke
Crop model intercomparison studies have mostly focused on the assessment of predictive capabilities for crop development using weather and basic soil data from the same location. Still challenging is the model performance when considering complex interrelations between soil and crop dynamics under a changing climate. The objective of this study was to test the agronomic crop and environmental flux‐related performance of a set of crop models. The aim was to predict weighing lysimeter‐based crop (i.e., agronomic) and water‐related flux or state data (i.e., environmental) obtained for the same soil monoliths that were taken from their original environment and translocated to regions with different climatic conditions, after model calibration at the original site. Eleven models were deployed in the study. The lysimeter data (2014–2018) were from the Dedelow (Dd), Bad Lauchstädt (BL), and Selhausen (Se) sites of the TERENO (TERrestrial ENvironmental Observatories) SOILCan network. Soil monoliths from Dd were transferred to the drier and warmer BL site and the wetter and warmer Se site, which allowed a comparison of similar soil and crop under varying climatic conditions. The model parameters were calibrated using an identical set of crop‐ and soil‐related data from Dd. Environmental fluxes and crop growth of Dd soil were predicted for conditions at BL and Se sites using the calibrated models. The comparison of predicted and measured data of Dd lysimeters at BL and Se revealed differences among models. At site BL, the crop models predicted agronomic and environmental components similarly well. Model performance values indicate that the environmental components at site Se were better predicted than agronomic ones. The multi‐model mean was for most observations the better predictor compared with those of individual models. For Se site conditions, crop models failed to predict site‐specific crop development indicating that climatic conditions (i.e., heat stress) were outside the range of variation in the data sets considered for model calibration. For improving predictive ability of crop models (i.e., productivity and fluxes), more attention should be paid to soil‐related data (i.e., water fluxes and system states) when simulating soil–crop–climate interrelations in changing climatic conditions.
{"title":"Same soil, different climate: Crop model intercomparison on translocated lysimeters","authors":"J. Groh, E. Diamantopoulos, X. Duan, F. Ewert, Florian Heinlein, M. Herbst, M. Holbak, B. Kamali, K. Kersebaum, M. Kuhnert, C. Nendel, E. Priesack, J. Steidl, Michael Sommer, T. Pütz, J. Vanderborght, H. Vereecken, E. Wallor, Tobias K. D. Weber, M. Wegehenkel, L. Weihermüller, H. Gerke","doi":"10.1002/vzj2.20202","DOIUrl":"https://doi.org/10.1002/vzj2.20202","url":null,"abstract":"Crop model intercomparison studies have mostly focused on the assessment of predictive capabilities for crop development using weather and basic soil data from the same location. Still challenging is the model performance when considering complex interrelations between soil and crop dynamics under a changing climate. The objective of this study was to test the agronomic crop and environmental flux‐related performance of a set of crop models. The aim was to predict weighing lysimeter‐based crop (i.e., agronomic) and water‐related flux or state data (i.e., environmental) obtained for the same soil monoliths that were taken from their original environment and translocated to regions with different climatic conditions, after model calibration at the original site. Eleven models were deployed in the study. The lysimeter data (2014–2018) were from the Dedelow (Dd), Bad Lauchstädt (BL), and Selhausen (Se) sites of the TERENO (TERrestrial ENvironmental Observatories) SOILCan network. Soil monoliths from Dd were transferred to the drier and warmer BL site and the wetter and warmer Se site, which allowed a comparison of similar soil and crop under varying climatic conditions. The model parameters were calibrated using an identical set of crop‐ and soil‐related data from Dd. Environmental fluxes and crop growth of Dd soil were predicted for conditions at BL and Se sites using the calibrated models. The comparison of predicted and measured data of Dd lysimeters at BL and Se revealed differences among models. At site BL, the crop models predicted agronomic and environmental components similarly well. Model performance values indicate that the environmental components at site Se were better predicted than agronomic ones. The multi‐model mean was for most observations the better predictor compared with those of individual models. For Se site conditions, crop models failed to predict site‐specific crop development indicating that climatic conditions (i.e., heat stress) were outside the range of variation in the data sets considered for model calibration. For improving predictive ability of crop models (i.e., productivity and fluxes), more attention should be paid to soil‐related data (i.e., water fluxes and system states) when simulating soil–crop–climate interrelations in changing climatic conditions.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48711159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Na Wen, J. Zhang, Huiping Zeng, Gang Liu, R. Horton
Earthworms (Lumbricus terrestris) play a critical role in soil ecosystems. Analyzing the spatial structure of earthworm burrows is important to understand their effect on water flow and solute transport. The aim of this study was to quantitatively characterize structural characteristics (cross‐sectional area [A], circularity [C], diameter [D], actual length [Lt], tortuosity [τ]) of anecic earthworm burrows that were open and connected at the soil surface at two sites of different tillage treatments (no‐till at Lu Yuan [LY] and rotary tillage at Shang Zhuang [SZ]) by combining a new in‐situ tin casting method with three‐dimensional (3D) laser scanning technology. The cross‐sections of anecic earthworm burrows were almost circular, and the C values were significantly negatively correlated with D and A. Statistically, there were no significant differences in the τ values (1.143 ± 0.082 vs. 1.133 ± 0.108) of anecic earthworm burrows at LY and SZ, but D (6.456 ± 1.585 mm) and A (36.929 ± 21.656 mm2) of anecic earthworm burrows at LY were significantly larger than D (3.449 ± 0.531 mm) and A (9.786 ± 2.885 mm2) at SZ. Our study showed that burrow structures at two different sites differed from each other. Soil tillage methods, soil texture, and soil organic matter content at the two sites could have affected earthworm species composition, variation of earthworm size and the morphology of burrows. The method used in this research enabled us to adequately assess the spatial structure of anecic earthworm burrows in the field with a limited budget.
{"title":"In‐situ tin casting combined with three‐dimensional scanner to quantify anecic earthworm burrows","authors":"Na Wen, J. Zhang, Huiping Zeng, Gang Liu, R. Horton","doi":"10.1002/vzj2.20198","DOIUrl":"https://doi.org/10.1002/vzj2.20198","url":null,"abstract":"Earthworms (Lumbricus terrestris) play a critical role in soil ecosystems. Analyzing the spatial structure of earthworm burrows is important to understand their effect on water flow and solute transport. The aim of this study was to quantitatively characterize structural characteristics (cross‐sectional area [A], circularity [C], diameter [D], actual length [Lt], tortuosity [τ]) of anecic earthworm burrows that were open and connected at the soil surface at two sites of different tillage treatments (no‐till at Lu Yuan [LY] and rotary tillage at Shang Zhuang [SZ]) by combining a new in‐situ tin casting method with three‐dimensional (3D) laser scanning technology. The cross‐sections of anecic earthworm burrows were almost circular, and the C values were significantly negatively correlated with D and A. Statistically, there were no significant differences in the τ values (1.143 ± 0.082 vs. 1.133 ± 0.108) of anecic earthworm burrows at LY and SZ, but D (6.456 ± 1.585 mm) and A (36.929 ± 21.656 mm2) of anecic earthworm burrows at LY were significantly larger than D (3.449 ± 0.531 mm) and A (9.786 ± 2.885 mm2) at SZ. Our study showed that burrow structures at two different sites differed from each other. Soil tillage methods, soil texture, and soil organic matter content at the two sites could have affected earthworm species composition, variation of earthworm size and the morphology of burrows. The method used in this research enabled us to adequately assess the spatial structure of anecic earthworm burrows in the field with a limited budget.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45449569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum to: A methodology for simulating perched conditions in multilayer aquifer systems with 2D variably saturated flow","authors":"","doi":"10.1002/vzj2.20196","DOIUrl":"https://doi.org/10.1002/vzj2.20196","url":null,"abstract":"","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45357045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}