首页 > 最新文献

Water Resources Management最新文献

英文 中文
Comparative Analysis of Drought Modeling and Forecasting Using Soft Computing Techniques 基于软计算技术的干旱模拟与预报的对比分析
3区 环境科学与生态学 Q1 ENGINEERING, CIVIL Pub Date : 2023-10-20 DOI: 10.1007/s11269-023-03642-6
K. A. Jariwala, P. G. Agnihotri
{"title":"Comparative Analysis of Drought Modeling and Forecasting Using Soft Computing Techniques","authors":"K. A. Jariwala, P. G. Agnihotri","doi":"10.1007/s11269-023-03642-6","DOIUrl":"https://doi.org/10.1007/s11269-023-03642-6","url":null,"abstract":"","PeriodicalId":23611,"journal":{"name":"Water Resources Management","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135569914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of the Low-Impact Development Facility Area Based on a Surrogate Model 基于代理模型的低影响发展设施区域优化
3区 环境科学与生态学 Q1 ENGINEERING, CIVIL Pub Date : 2023-10-17 DOI: 10.1007/s11269-023-03630-w
Jing Feng, Yuanyuan Yang, Jianzhu Li
{"title":"Optimization of the Low-Impact Development Facility Area Based on a Surrogate Model","authors":"Jing Feng, Yuanyuan Yang, Jianzhu Li","doi":"10.1007/s11269-023-03630-w","DOIUrl":"https://doi.org/10.1007/s11269-023-03630-w","url":null,"abstract":"","PeriodicalId":23611,"journal":{"name":"Water Resources Management","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136033637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid Extreme Gradient Boosting and Nonlinear Ensemble Models for Suspended Sediment Load Prediction in an Agricultural Catchment 农业流域悬沙负荷预测的混合极端梯度增强和非线性集合模型
3区 环境科学与生态学 Q1 ENGINEERING, CIVIL Pub Date : 2023-10-17 DOI: 10.1007/s11269-023-03629-3
Gebre Gelete
{"title":"Hybrid Extreme Gradient Boosting and Nonlinear Ensemble Models for Suspended Sediment Load Prediction in an Agricultural Catchment","authors":"Gebre Gelete","doi":"10.1007/s11269-023-03629-3","DOIUrl":"https://doi.org/10.1007/s11269-023-03629-3","url":null,"abstract":"","PeriodicalId":23611,"journal":{"name":"Water Resources Management","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136032616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the Impact of Inclined Cutoff-Wall to Control Seawater Intrusion in Heterogeneous Coastal Aquifers 非均质沿海含水层倾斜截流墙控制海水入侵效果评价
3区 环境科学与生态学 Q1 ENGINEERING, CIVIL Pub Date : 2023-10-16 DOI: 10.1007/s11269-023-03641-7
Sobhy R. Emara, Tamer A. Gado, Bakenaz A. Zeidan, Asaad M. Armanuos
Abstract Subsurface physical barriers have been effectively used to mitigate seawater intrusion (SWI). Traditionally, the primary emphasis in both numerical studies and practical implementations has been on vertical barriers. The current research aims to explore the dynamics of SWI under various cutoff-wall inclination angles and depths, as well as aquifer heterogeneity using both experimental and numerical simulations. The impact of aquifer characteristics was assessed by utilizing a low hydraulic conductivity (K) aquifer (case L), a high hydraulic conductivity aquifer (case H), and two stratified aquifers. The stratified aquifers were created by grouping different hydraulic conductivity layers into two cases: high K above low K (case H/L) and low K above high K (case L/H). The model simulations covered seven different cutoff-wall inclination angles: 45.0°, 63.4°, 76.0°, 90.0°, 104.0°, 116.6°, and 135.0°. The maximum repulsion ratio of SWI wedge length was observed at an inclination angle of 76.0° for cutoff-wall depth ratios up to 0.623. However, as the depth ratio increased to 0.811, the maximum repulsion ratio shifted to an angle of 63.4° for all aquifers studied. At an inclined cutoff depth ratio of 0.811, the cutoff-wall inclination angle of 45.0° had the most significant impact on the saltwater wedge area. This results in SWI area reductions of 74.9%, 79.8%, 74.7%, and 62.6% for case L, case H, case H/L, and case L/H, respectively. This study provides practical insights into the prevention of SWI. Nevertheless, a thorough cost–benefit analysis is necessary to assess the feasibility of constructing inclined cutoff-walls.
地下物理屏障已被有效地用于缓解海水入侵。传统上,数值研究和实际实施的主要重点是垂直屏障。本研究旨在通过实验和数值模拟两种方法,探讨不同截流壁倾角和深度下SWI的动态变化,以及含水层的非均质性。通过使用低导水率(K)含水层(案例L)、高导水率含水层(案例H)和两个分层含水层来评估含水层特征的影响。分层含水层是通过将不同的导水性层分为两种情况:高钾高于低钾(案例H/L)和低钾高于高钾(案例L/H)而形成的。模型模拟了45.0°、63.4°、76.0°、90.0°、104.0°、116.6°和135.0°7种不同的截止壁倾角。当截流壁深比达到0.623时,SWI楔形长度的最大斥力比为76.0°。然而,当深度比增加到0.811时,所有含水层的最大斥力比都变为63.4°。在倾斜切断深度比为0.811时,切断壁倾角为45.0°对咸水楔面积的影响最为显著。这导致病例L、病例H、病例H/L和病例L/H的SWI面积分别减少74.9%、79.8%、74.7%和62.6%。本研究为SWI的预防提供了实用的见解。然而,全面的成本效益分析是必要的,以评估建设倾斜截流墙的可行性。
{"title":"Evaluating the Impact of Inclined Cutoff-Wall to Control Seawater Intrusion in Heterogeneous Coastal Aquifers","authors":"Sobhy R. Emara, Tamer A. Gado, Bakenaz A. Zeidan, Asaad M. Armanuos","doi":"10.1007/s11269-023-03641-7","DOIUrl":"https://doi.org/10.1007/s11269-023-03641-7","url":null,"abstract":"Abstract Subsurface physical barriers have been effectively used to mitigate seawater intrusion (SWI). Traditionally, the primary emphasis in both numerical studies and practical implementations has been on vertical barriers. The current research aims to explore the dynamics of SWI under various cutoff-wall inclination angles and depths, as well as aquifer heterogeneity using both experimental and numerical simulations. The impact of aquifer characteristics was assessed by utilizing a low hydraulic conductivity (K) aquifer (case L), a high hydraulic conductivity aquifer (case H), and two stratified aquifers. The stratified aquifers were created by grouping different hydraulic conductivity layers into two cases: high K above low K (case H/L) and low K above high K (case L/H). The model simulations covered seven different cutoff-wall inclination angles: 45.0°, 63.4°, 76.0°, 90.0°, 104.0°, 116.6°, and 135.0°. The maximum repulsion ratio of SWI wedge length was observed at an inclination angle of 76.0° for cutoff-wall depth ratios up to 0.623. However, as the depth ratio increased to 0.811, the maximum repulsion ratio shifted to an angle of 63.4° for all aquifers studied. At an inclined cutoff depth ratio of 0.811, the cutoff-wall inclination angle of 45.0° had the most significant impact on the saltwater wedge area. This results in SWI area reductions of 74.9%, 79.8%, 74.7%, and 62.6% for case L, case H, case H/L, and case L/H, respectively. This study provides practical insights into the prevention of SWI. Nevertheless, a thorough cost–benefit analysis is necessary to assess the feasibility of constructing inclined cutoff-walls.","PeriodicalId":23611,"journal":{"name":"Water Resources Management","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136114052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Optimal Energy Productıon Usıng Deterministic, Probabilistic and Risky Cases In a Multi-Reservoir System 多水库系统的确定性、概率和风险情况下的最优能量评价Productıon Usıng
3区 环境科学与生态学 Q1 ENGINEERING, CIVIL Pub Date : 2023-10-14 DOI: 10.1007/s11269-023-03633-7
Efsun Bacaksız, Mücahit Opan, Zuhal Elif Kara Dilek, Murat Karadeniz
{"title":"Evaluation of Optimal Energy Productıon Usıng Deterministic, Probabilistic and Risky Cases In a Multi-Reservoir System","authors":"Efsun Bacaksız, Mücahit Opan, Zuhal Elif Kara Dilek, Murat Karadeniz","doi":"10.1007/s11269-023-03633-7","DOIUrl":"https://doi.org/10.1007/s11269-023-03633-7","url":null,"abstract":"","PeriodicalId":23611,"journal":{"name":"Water Resources Management","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135802064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting Background Leakages in Water Infrastructure With Fiber Optic Distributed Temperature Sensing: Insights From a Heat Transfer-Unsaturated Flow Model 用光纤分布式温度传感检测水基础设施中的背景泄漏:来自传热-不饱和流动模型的见解
3区 环境科学与生态学 Q1 ENGINEERING, CIVIL Pub Date : 2023-10-13 DOI: 10.1007/s11269-023-03617-7
Andrea D’Aniello
Abstract The use of fiber optic distributed temperature sensing (DTS) to detect and locate leaks is still in its infancy in water infrastructure, despite its promising capabilities. Only few experiments tested this technology, and none of these studies focused on small but persistent leaks, like background leakages, which are ubiquitous and generally go undetected with the technology currently available, thus posing a serious threat to the available water resource. To test the feasibility of detecting and locating background leakages with fiber optic DTS, this study provides a detailed analysis on flow and temperature alterations around leaking water pipelines in presence of small leaks (5, 25, and 125 L/d) with small to moderate temperature differences with the surrounding soil, under 3 different pipe defect configurations, either in absence or in presence of pipe thermal insulation. Transient 3D heat transfer-unsaturated flow numerical simulations showed that there is potential to use temperature alterations to detect and locate incredibly small leaks with fiber optic DTS, like background leakages, despite the influence of pipe temperature on the surrounding soil. The analysis showed that extent, distribution, and magnitude of these alterations are convection dominated at a given temperature difference between leaked water and undisturbed soil, and that it may not be strictly necessary to place the optical fiber directly below the pipe. Indeed, optical fibers located within the utility trench at the sides of the pipe and below its bottom showed comparable or even better performance, thus giving new opportunities to retrofit existing pipelines as well.
使用光纤分布式温度传感(DTS)来检测和定位泄漏在水利基础设施中仍处于起步阶段,尽管它具有很好的能力。只有少数实验测试了这项技术,而且这些研究都没有关注小而持久的泄漏,如背景泄漏,这些泄漏无处不在,通常无法用现有技术检测到,从而对现有水资源构成严重威胁。为了测试光纤DTS检测和定位背景泄漏的可行性,本研究详细分析了在3种不同管道缺陷配置下,在没有或有管道保温的情况下,存在与周围土壤温差小到中等的泄漏(5、25和125 L/d)的情况下,泄漏水管周围的流量和温度变化。瞬态三维传热-非饱和流动数值模拟表明,尽管管道温度对周围土壤有影响,但光纤DTS仍有可能利用温度变化来检测和定位非常小的泄漏,如背景泄漏。分析表明,在泄漏的水和未受干扰的土壤之间给定的温差下,这些变化的范围、分布和幅度以对流为主,并且可能没有必要将光纤直接放置在管道下方。事实上,位于管道两侧和底部以下的公用沟槽内的光纤表现出相当甚至更好的性能,从而也为改造现有管道提供了新的机会。
{"title":"Detecting Background Leakages in Water Infrastructure With Fiber Optic Distributed Temperature Sensing: Insights From a Heat Transfer-Unsaturated Flow Model","authors":"Andrea D’Aniello","doi":"10.1007/s11269-023-03617-7","DOIUrl":"https://doi.org/10.1007/s11269-023-03617-7","url":null,"abstract":"Abstract The use of fiber optic distributed temperature sensing (DTS) to detect and locate leaks is still in its infancy in water infrastructure, despite its promising capabilities. Only few experiments tested this technology, and none of these studies focused on small but persistent leaks, like background leakages, which are ubiquitous and generally go undetected with the technology currently available, thus posing a serious threat to the available water resource. To test the feasibility of detecting and locating background leakages with fiber optic DTS, this study provides a detailed analysis on flow and temperature alterations around leaking water pipelines in presence of small leaks (5, 25, and 125 L/d) with small to moderate temperature differences with the surrounding soil, under 3 different pipe defect configurations, either in absence or in presence of pipe thermal insulation. Transient 3D heat transfer-unsaturated flow numerical simulations showed that there is potential to use temperature alterations to detect and locate incredibly small leaks with fiber optic DTS, like background leakages, despite the influence of pipe temperature on the surrounding soil. The analysis showed that extent, distribution, and magnitude of these alterations are convection dominated at a given temperature difference between leaked water and undisturbed soil, and that it may not be strictly necessary to place the optical fiber directly below the pipe. Indeed, optical fibers located within the utility trench at the sides of the pipe and below its bottom showed comparable or even better performance, thus giving new opportunities to retrofit existing pipelines as well.","PeriodicalId":23611,"journal":{"name":"Water Resources Management","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135858103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Long-Term Operational Scheme for Hybrid Hydro-Photovoltaic (PV) Systems that Considers the Uncertainties in Reservoir Inflow and Solar Radiation Based on Scenario Trees 基于情景树的考虑库流和太阳辐射不确定性的水电光伏混合发电系统长期运行方案
3区 环境科学与生态学 Q1 ENGINEERING, CIVIL Pub Date : 2023-10-13 DOI: 10.1007/s11269-023-03609-7
Han Cao, Jun Qiu, Hui-Min Zuo, Fang-Fang Li
{"title":"A Long-Term Operational Scheme for Hybrid Hydro-Photovoltaic (PV) Systems that Considers the Uncertainties in Reservoir Inflow and Solar Radiation Based on Scenario Trees","authors":"Han Cao, Jun Qiu, Hui-Min Zuo, Fang-Fang Li","doi":"10.1007/s11269-023-03609-7","DOIUrl":"https://doi.org/10.1007/s11269-023-03609-7","url":null,"abstract":"","PeriodicalId":23611,"journal":{"name":"Water Resources Management","volume":"159 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135858164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time of Concentration Model for Non-Urban Tropical Basins Based on Physiographic Characteristics and Observed Rainfall Responses 基于地理特征和观测降水响应的非城市热带盆地浓度模式时间
3区 环境科学与生态学 Q1 ENGINEERING, CIVIL Pub Date : 2023-10-12 DOI: 10.1007/s11269-023-03616-8
Aleska Kaufmann Almeida, Isabel Kaufmann de Almeida, José Antonio Guarienti, Luiz Felipe Finck, Sandra Garcia Gabas
{"title":"Time of Concentration Model for Non-Urban Tropical Basins Based on Physiographic Characteristics and Observed Rainfall Responses","authors":"Aleska Kaufmann Almeida, Isabel Kaufmann de Almeida, José Antonio Guarienti, Luiz Felipe Finck, Sandra Garcia Gabas","doi":"10.1007/s11269-023-03616-8","DOIUrl":"https://doi.org/10.1007/s11269-023-03616-8","url":null,"abstract":"","PeriodicalId":23611,"journal":{"name":"Water Resources Management","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135967732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Scenario-based Interval Multi-objective Mixed-integer Programming Model for a Water Supply Problem: An Integrated AHP Technique 基于场景的供水问题区间多目标混合整数规划模型:一种综合AHP技术
3区 环境科学与生态学 Q1 ENGINEERING, CIVIL Pub Date : 2023-10-12 DOI: 10.1007/s11269-023-03638-2
Nadire Ucler, Hale Gonce Kocken
{"title":"A Scenario-based Interval Multi-objective Mixed-integer Programming Model for a Water Supply Problem: An Integrated AHP Technique","authors":"Nadire Ucler, Hale Gonce Kocken","doi":"10.1007/s11269-023-03638-2","DOIUrl":"https://doi.org/10.1007/s11269-023-03638-2","url":null,"abstract":"","PeriodicalId":23611,"journal":{"name":"Water Resources Management","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135963939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging Transfer Learning in LSTM Neural Networks for Data-Efficient Burst Detection in Water Distribution Systems 利用LSTM神经网络中的迁移学习实现配水系统的数据高效突发检测
3区 环境科学与生态学 Q1 ENGINEERING, CIVIL Pub Date : 2023-10-12 DOI: 10.1007/s11269-023-03637-3
Konstantinos Glynis, Zoran Kapelan, Martijn Bakker, Riccardo Taormina
Abstract Researchers and engineers employ machine learning (ML) tools to detect pipe bursts and prevent significant non-revenue water losses in water distribution systems (WDS). Nonetheless, many approaches developed so far consider a fixed number of sensors, which requires the ML model redevelopment and collection of sufficient data with the new sensor configuration for training. To overcome these issues, this study presents a novel approach based on Long Short-Term Memory neural networks (NNs) that leverages transfer learning to manage a varying number of sensors and retain good detection performance with limited training data. The proposed detection model first learns to reproduce the normal behavior of the system on a dataset obtained in burst-free conditions. The training process involves predicting flow and pressure one-time step ahead using historical data and time-related features as inputs. During testing, a post-prediction step flags potential bursts based on the comparison between the observations and model predictions using a time-varied error threshold. When adding new sensors, we implement transfer learning by replicating the weights of existing channels and then fine-tune the augmented NN. We evaluate the robustness of the methodology on simulated fire hydrant bursts and real-bursts in 10 district metered areas (DMAs) of the UK. For real bursts, we perform a sensitivity analysis to understand the impact of data resolution and error threshold on burst detection performance. The results obtained demonstrate that this ML-based methodology can achieve Precision of up to 98.1% in real-life settings and can identify bursts, even in data scarce conditions.
研究人员和工程师使用机器学习(ML)工具来检测管道爆裂并防止供水系统(WDS)中的重大非收入水损失。尽管如此,迄今为止开发的许多方法都考虑了固定数量的传感器,这需要重新开发ML模型并收集足够的数据,并使用新的传感器配置进行训练。为了克服这些问题,本研究提出了一种基于长短期记忆神经网络(NNs)的新方法,该方法利用迁移学习来管理不同数量的传感器,并在有限的训练数据下保持良好的检测性能。提出的检测模型首先学习在无突发条件下获得的数据集上再现系统的正常行为。训练过程包括使用历史数据和时间相关特征作为输入,提前一步预测流量和压力。在测试过程中,基于使用时变误差阈值的观测值和模型预测之间的比较,后预测步骤标记潜在的爆发。当增加新的传感器时,我们通过复制现有通道的权重来实现迁移学习,然后对增强的神经网络进行微调。我们评估了该方法的鲁棒性在模拟消火栓爆发和真实爆发在10区计量区域(dma)的英国。对于真实的突发,我们进行了灵敏度分析,以了解数据分辨率和错误阈值对突发检测性能的影响。结果表明,这种基于ml的方法在实际环境中可以达到高达98.1%的精度,即使在数据稀缺的条件下也可以识别突发。
{"title":"Leveraging Transfer Learning in LSTM Neural Networks for Data-Efficient Burst Detection in Water Distribution Systems","authors":"Konstantinos Glynis, Zoran Kapelan, Martijn Bakker, Riccardo Taormina","doi":"10.1007/s11269-023-03637-3","DOIUrl":"https://doi.org/10.1007/s11269-023-03637-3","url":null,"abstract":"Abstract Researchers and engineers employ machine learning (ML) tools to detect pipe bursts and prevent significant non-revenue water losses in water distribution systems (WDS). Nonetheless, many approaches developed so far consider a fixed number of sensors, which requires the ML model redevelopment and collection of sufficient data with the new sensor configuration for training. To overcome these issues, this study presents a novel approach based on Long Short-Term Memory neural networks (NNs) that leverages transfer learning to manage a varying number of sensors and retain good detection performance with limited training data. The proposed detection model first learns to reproduce the normal behavior of the system on a dataset obtained in burst-free conditions. The training process involves predicting flow and pressure one-time step ahead using historical data and time-related features as inputs. During testing, a post-prediction step flags potential bursts based on the comparison between the observations and model predictions using a time-varied error threshold. When adding new sensors, we implement transfer learning by replicating the weights of existing channels and then fine-tune the augmented NN. We evaluate the robustness of the methodology on simulated fire hydrant bursts and real-bursts in 10 district metered areas (DMAs) of the UK. For real bursts, we perform a sensitivity analysis to understand the impact of data resolution and error threshold on burst detection performance. The results obtained demonstrate that this ML-based methodology can achieve Precision of up to 98.1% in real-life settings and can identify bursts, even in data scarce conditions.","PeriodicalId":23611,"journal":{"name":"Water Resources Management","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136012558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Water Resources Management
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1