首页 > 最新文献

Water Science and Technology最新文献

英文 中文
Symmetry to asymmetry: innovative evolvement of a gas-liquid-solid (GLS) separator in UASB/EGSB reactors on a new perspective.
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-02-01 Epub Date: 2025-02-07 DOI: 10.2166/wst.2025.018
Feilin Hao, Mingwei Shen

The transition from up-flow anaerobic sludge blanket (UASB) reactors to expanded granular sludge bed (EGSB) reactors presents challenges for traditional symmetric critical gas-liquid-solid (GLS) separators, including high spatial occupation, fluid-energy consumption, and reduced separation efficiency. This study introduced a novel GLS separation mechanism based on vortex circulation-induced deposition, agglomeration, and flowback of solid separation. Leveraging this mechanism, an innovative asymmetrical laboratory-scale GLS separator was developed and tested with both granular and flocculent sludge. The new prototype demonstrates superior solid separation performance, achieving 98.3% for granular sludge and 96.0% for flocculent sludge. It features a simple structure and optimized flow paths, resulting in approximately 30% reduction in height and 14.8% less material consumption compared to existing models. Flocculent sludge shows greater sensitivity to operational factors than granular sludge, with higher sludge concentration and smaller fragment size being preferable for high separation efficiency. This mechanism is validated by experimental observations and computational fluid dynamics (CFD) simulations, providing a new perspective on GLS separation and establishing the new model as a promising candidate for UASB/EGSB bio-reactors.

{"title":"Symmetry to asymmetry: innovative evolvement of a gas-liquid-solid (GLS) separator in UASB/EGSB reactors on a new perspective.","authors":"Feilin Hao, Mingwei Shen","doi":"10.2166/wst.2025.018","DOIUrl":"https://doi.org/10.2166/wst.2025.018","url":null,"abstract":"<p><p>The transition from up-flow anaerobic sludge blanket (UASB) reactors to expanded granular sludge bed (EGSB) reactors presents challenges for traditional symmetric critical gas-liquid-solid (GLS) separators, including high spatial occupation, fluid-energy consumption, and reduced separation efficiency. This study introduced a novel GLS separation mechanism based on vortex circulation-induced deposition, agglomeration, and flowback of solid separation. Leveraging this mechanism, an innovative asymmetrical laboratory-scale GLS separator was developed and tested with both granular and flocculent sludge. The new prototype demonstrates superior solid separation performance, achieving 98.3% for granular sludge and 96.0% for flocculent sludge. It features a simple structure and optimized flow paths, resulting in approximately 30% reduction in height and 14.8% less material consumption compared to existing models. Flocculent sludge shows greater sensitivity to operational factors than granular sludge, with higher sludge concentration and smaller fragment size being preferable for high separation efficiency. This mechanism is validated by experimental observations and computational fluid dynamics (CFD) simulations, providing a new perspective on GLS separation and establishing the new model as a promising candidate for UASB/EGSB bio-reactors.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 4","pages":"400-412"},"PeriodicalIF":2.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143524730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discharge performance of side gates with different shapes. 不同形状侧门的卸料性能。
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-02-01 Epub Date: 2025-02-10 DOI: 10.2166/wst.2025.019
Veysi Kartal, M Emin Emiroglu, M Fatih Yuksel

Flow measurement and water level control in open channels are vital to water management. Lateral intake structures are commonly used for different purposes in civil and environmental engineering applications. Flow characteristics of rectangular, triangular, and semi-circular shapes were experimentally investigated using 357 runs under subcritical flow conditions. Correlation analysis was conducted to determine the effect of various parameters on the discharge coefficient. Upstream Froude number (F1), the ratio of the gate opening to the upstream flow depth, and the gate length to flow depth ratio are influential for all side gates. However, the ratio of the gate opening to the gate length is also influential for triangular side gates. Discharge coefficient of the semi-circular side gate is relatively higher than that of the other tested gates within the range of 0.051<0.40; the discharge coefficient of the triangular side gate is relatively higher than that of the other shaped gates for 0.401<0.98 and the efficiency of the triangular side gate decreases more than that of the other gates as the downstream Froude number value increases. A reliable equation for side gates was developed. Good agreements were obtained between the proposed equations and the experimental data.

{"title":"Discharge performance of side gates with different shapes.","authors":"Veysi Kartal, M Emin Emiroglu, M Fatih Yuksel","doi":"10.2166/wst.2025.019","DOIUrl":"https://doi.org/10.2166/wst.2025.019","url":null,"abstract":"<p><p>Flow measurement and water level control in open channels are vital to water management. Lateral intake structures are commonly used for different purposes in civil and environmental engineering applications. Flow characteristics of rectangular, triangular, and semi-circular shapes were experimentally investigated using 357 runs under subcritical flow conditions. Correlation analysis was conducted to determine the effect of various parameters on the discharge coefficient. Upstream Froude number (F<sub>1</sub>), the ratio of the gate opening to the upstream flow depth, and the gate length to flow depth ratio are influential for all side gates. However, the ratio of the gate opening to the gate length is also influential for triangular side gates. Discharge coefficient of the semi-circular side gate is relatively higher than that of the other tested gates within the range of 0.05<F<sub>1</sub><0.40; the discharge coefficient of the triangular side gate is relatively higher than that of the other shaped gates for 0.40<F<sub>1</sub><0.98 and the efficiency of the triangular side gate decreases more than that of the other gates as the downstream Froude number value increases. A reliable equation for side gates was developed. Good agreements were obtained between the proposed equations and the experimental data.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 4","pages":"344-362"},"PeriodicalIF":2.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143524728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of magnetotactic bacteria (MTB) on membrane fouling control in an ultrafiltration treatment of chromium-containing surface water. 趋磁细菌(MTB)对含铬地表水超滤处理膜污染控制的影响。
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-01-01 Epub Date: 2024-12-18 DOI: 10.2166/wst.2024.400
Shuailiang Lu, Guicai Liu, Yingjie Dou, Zhengzhou Zhang, Zhiyong Zhou, Kang Xie

Ultrafiltration membranes are widely used in the treatment of surface water. However, membrane fouling is a core issue that needs to be addressed in its application. Magnetotactic bacteria (MTB) show early film-forming and magnetotactic behaviour in the presence of external magnetic fields. The objective of this study was to alleviate membrane fouling in ultrafiltration membranes using MTB, which can prioritise film formation and show directional movement under external magnetic fields. The concentration of Cr6+ in the water was 10 mg/L, and the dosage of MTB was 10 mg/L. Results show that the transmembrane pressure of the ultrafiltration membrane decreased by 5 kPa following the application of a magnetic field of 33.71 mT for a period of 90 min, and the membrane fouling could therefore be effectively controlled. With the addition of MTB, the average removal of Cr6+ from water by the ultrafiltration system was 20.10%, which was 14.56% higher than that of the conventional ultrafiltration system. The average removal of chromaticity was 20.13%, which was 10% higher than that achieved by the conventional ultrafiltration system. Furthermore, MTB progressively developed into the predominant flora during the operational phase, thereby enhancing the efficiency of the ultrafiltration system.

超滤膜在地表水处理中有着广泛的应用。然而,膜污染是其应用中需要解决的核心问题。趋磁细菌(MTB)在外加磁场作用下表现出早期成膜和趋磁行为。本研究的目的是利用MTB减轻超滤膜中的膜污染,MTB可以优先成膜并在外加磁场下表现出定向运动。水中Cr6+浓度为10 mg/L, MTB用量为10 mg/L。结果表明:在33.71 mT的磁场作用90 min后,超滤膜的跨膜压力降低了5 kPa,膜污染得到有效控制。添加MTB后,超滤系统对水中Cr6+的平均去除率为20.10%,比常规超滤系统提高了14.56%。平均色度去除率为20.13%,比常规超滤系统的去除率提高10%。此外,MTB在操作阶段逐渐发展成为优势菌群,从而提高了超滤系统的效率。
{"title":"Effects of magnetotactic bacteria (MTB) on membrane fouling control in an ultrafiltration treatment of chromium-containing surface water.","authors":"Shuailiang Lu, Guicai Liu, Yingjie Dou, Zhengzhou Zhang, Zhiyong Zhou, Kang Xie","doi":"10.2166/wst.2024.400","DOIUrl":"https://doi.org/10.2166/wst.2024.400","url":null,"abstract":"<p><p>Ultrafiltration membranes are widely used in the treatment of surface water. However, membrane fouling is a core issue that needs to be addressed in its application. Magnetotactic bacteria (MTB) show early film-forming and magnetotactic behaviour in the presence of external magnetic fields. The objective of this study was to alleviate membrane fouling in ultrafiltration membranes using MTB, which can prioritise film formation and show directional movement under external magnetic fields. The concentration of Cr<sup>6+</sup> in the water was 10 mg/L, and the dosage of MTB was 10 mg/L. Results show that the transmembrane pressure of the ultrafiltration membrane decreased by 5 kPa following the application of a magnetic field of 33.71 mT for a period of 90 min, and the membrane fouling could therefore be effectively controlled. With the addition of MTB, the average removal of Cr<sup>6+</sup> from water by the ultrafiltration system was 20.10%, which was 14.56% higher than that of the conventional ultrafiltration system. The average removal of chromaticity was 20.13%, which was 10% higher than that achieved by the conventional ultrafiltration system. Furthermore, MTB progressively developed into the predominant flora during the operational phase, thereby enhancing the efficiency of the ultrafiltration system.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 1","pages":"40-55"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cost-effective evaluation of modified ochre soil and its combination with cationic polyacrylamide for municipal wastewater sludge conditioning.
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-01-01 Epub Date: 2025-01-11 DOI: 10.2166/wst.2025.005
Behzad Aghababaei, Masoud Taheriyoun, Rana Mahdavi Far

One of the most costly stages of activated sludge wastewater treatment plants is the treatment and dewatering of waste sludge. Chemical conditioning of sludge, as one of the most widespread methods to enhance sludge dewaterability, accounts for a significant portion of operational expenses due to the consumption of expensive polymeric compounds. This research aims to assess the cost-effectiveness of ochre soil, modified with hydrochloric acid, as an affordable mineral for conditioning waste sludge in an activated sludge system. The optimal conditions for acid modifications are obtained using response surface methodology. Then, its performance is compared with conventional coagulants (ferric chloride and alum) and in combination with cationic polyacrylamide (CPAM). To assess the conditioning process efficiency, the specific resistance to filtration (SRF) parameter was employed. At an optimal dose of modified ochre soil (MOS) equal to 300 (mg/g dry solids), the SRF value decreased from 31.96 to 2.7 Tm/kg. The combination of 100 (mg/gDS) MOS with 0.5 (mg/gDS) CPAM showed as the most cost-effective among the coagulants tested, with a 31% greater SRF reduction compared to CPAM used alone. This study shows the practical efficacy of an eco-friendly natural mineral as a polymer alternative, with the potential for sludge dewatering.

{"title":"Cost-effective evaluation of modified ochre soil and its combination with cationic polyacrylamide for municipal wastewater sludge conditioning.","authors":"Behzad Aghababaei, Masoud Taheriyoun, Rana Mahdavi Far","doi":"10.2166/wst.2025.005","DOIUrl":"https://doi.org/10.2166/wst.2025.005","url":null,"abstract":"<p><p>One of the most costly stages of activated sludge wastewater treatment plants is the treatment and dewatering of waste sludge. Chemical conditioning of sludge, as one of the most widespread methods to enhance sludge dewaterability, accounts for a significant portion of operational expenses due to the consumption of expensive polymeric compounds. This research aims to assess the cost-effectiveness of ochre soil, modified with hydrochloric acid, as an affordable mineral for conditioning waste sludge in an activated sludge system. The optimal conditions for acid modifications are obtained using response surface methodology. Then, its performance is compared with conventional coagulants (ferric chloride and alum) and in combination with cationic polyacrylamide (CPAM). To assess the conditioning process efficiency, the specific resistance to filtration (SRF) parameter was employed. At an optimal dose of modified ochre soil (MOS) equal to 300 (mg/g dry solids), the SRF value decreased from 31.96 to 2.7 Tm/kg. The combination of 100 (mg/gDS) MOS with 0.5 (mg/gDS) CPAM showed as the most cost-effective among the coagulants tested, with a 31% greater SRF reduction compared to CPAM used alone. This study shows the practical efficacy of an eco-friendly natural mineral as a polymer alternative, with the potential for sludge dewatering.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 2","pages":"174-191"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143067696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance evaluation of the amperometric total residual oxidant sensor with the electrochlorination-based Ballast Water Management System.
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-01-01 Epub Date: 2025-01-15 DOI: 10.2166/wst.2025.006
Xunzhou Li, Jinjin Song, Fengqi Xu, Ying Li, Tingyong Wang, Zhilei Wang, Wei Liu, Chao Li

Nowadays, performance studies on the amperometric total residual oxidant (TRO) sensor are only in the bench test stage and have not been conducted under specific maritime conditions with Ballast Water Management System (BWMS). In this study, the application of the amperometric TRO sensor in land-based biological efficacy (BE) testing, operation and maintenance (O&M) testing, as well as shipboard (SB) testing, was explored by comparing with the existing di-phenylene-diamine (DPD) TRO sensor. The results showed that the average TRO measurement deviation between the amperometric sensor and the DPD sensor was within ±10% in valid BE test cycles and the O&M testing exceeding 47 operating hours. The TRO value measured by amperometric sensor exhibited significant fluctuations, but the improved control logic could achieve smoothing out the fluctuation, with stability comparable to or even higher than that of the DPD sensor. The practicality and reliability of the amperometric sensor in electrochlorination-based BWMS were further verified through SB testing.

{"title":"Performance evaluation of the amperometric total residual oxidant sensor with the electrochlorination-based Ballast Water Management System.","authors":"Xunzhou Li, Jinjin Song, Fengqi Xu, Ying Li, Tingyong Wang, Zhilei Wang, Wei Liu, Chao Li","doi":"10.2166/wst.2025.006","DOIUrl":"https://doi.org/10.2166/wst.2025.006","url":null,"abstract":"<p><p>Nowadays, performance studies on the amperometric total residual oxidant (TRO) sensor are only in the bench test stage and have not been conducted under specific maritime conditions with Ballast Water Management System (BWMS). In this study, the application of the amperometric TRO sensor in land-based biological efficacy (BE) testing, operation and maintenance (O&M) testing, as well as shipboard (SB) testing, was explored by comparing with the existing di-phenylene-diamine (DPD) TRO sensor. The results showed that the average TRO measurement deviation between the amperometric sensor and the DPD sensor was within ±10% in valid BE test cycles and the O&M testing exceeding 47 operating hours. The TRO value measured by amperometric sensor exhibited significant fluctuations, but the improved control logic could achieve smoothing out the fluctuation, with stability comparable to or even higher than that of the DPD sensor. The practicality and reliability of the amperometric sensor in electrochlorination-based BWMS were further verified through SB testing.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 2","pages":"192-201"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wastewater biotreatment and bioaugmentation for remediation of contaminated sites at an oil recycling plant.
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-01-01 Epub Date: 2024-11-05 DOI: 10.2166/wst.2024.364
Meryem Jemli, Fatma Karray, Lamjed Mansour, Slim Loukil, Rihab Bouhdida, Krishna Kumar Yadav, Sami Sayadi

This work focused on the biotreatment of wastewater and contaminated soil in a used oil recycling plant located in Bizerte. A continuous stirred tank reactor (CSTR) and a trickling filter (TF) were used to treat stripped and collected wastewater, respectively. The CSTR was started up and stabilized for 90 days. Over the following 170 days, the operational organic loading rates of the TF and the CSTR were around 1,200 and 3,000 g chemical oxygen demand (COD) m-3 day-1, respectively. The treatment efficiency was 94% for total petroleum hydrocarbons (TPHs), 89.5% for COD, 83.34% for biological oxygen demand (BOD5), and 91.25% for phenol. Treated industrial wastewater from the TF was used for bioaugmentation (BA) of contaminated soil. The assessment of the soil took 24 weeks to complete. The effectiveness of the soil BA strategy was confirmed by monitoring phenolic compounds, aliphatic and polycyclic aromatic hydrocarbons, heavy metals, and germination index. The biodegradation rate of contaminants was improved and the time required for their removal was reduced. The soil bacterial communities were dominated by species of the genera Mycobacterium, Proteiniphilum, Nocardioides, Luteimicrobium, and Azospirillum, which were identified as hydrocarbon and phenol-degrading bacteria.

{"title":"Wastewater biotreatment and bioaugmentation for remediation of contaminated sites at an oil recycling plant.","authors":"Meryem Jemli, Fatma Karray, Lamjed Mansour, Slim Loukil, Rihab Bouhdida, Krishna Kumar Yadav, Sami Sayadi","doi":"10.2166/wst.2024.364","DOIUrl":"https://doi.org/10.2166/wst.2024.364","url":null,"abstract":"<p><p>This work focused on the biotreatment of wastewater and contaminated soil in a used oil recycling plant located in Bizerte. A continuous stirred tank reactor (CSTR) and a trickling filter (TF) were used to treat stripped and collected wastewater, respectively. The CSTR was started up and stabilized for 90 days. Over the following 170 days, the operational organic loading rates of the TF and the CSTR were around 1,200 and 3,000 g chemical oxygen demand (COD) m<sup>-3</sup> day<sup>-1</sup>, respectively. The treatment efficiency was 94% for total petroleum hydrocarbons (TPHs), 89.5% for COD, 83.34% for biological oxygen demand (BOD<sub>5</sub>), and 91.25% for phenol. Treated industrial wastewater from the TF was used for bioaugmentation (BA) of contaminated soil. The assessment of the soil took 24 weeks to complete. The effectiveness of the soil BA strategy was confirmed by monitoring phenolic compounds, aliphatic and polycyclic aromatic hydrocarbons, heavy metals, and germination index. The biodegradation rate of contaminants was improved and the time required for their removal was reduced. The soil bacterial communities were dominated by species of the genera <i>Mycobacterium, Proteiniphilum, Nocardioides, Luteimicrobium</i>, and <i>Azospirillum</i>, which were identified as hydrocarbon and phenol-degrading bacteria.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 2","pages":"139-159"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic bibliographic analysis of heavy metal remediation. 重金属修复的系统文献分析。
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-01-01 Epub Date: 2024-12-09 DOI: 10.2166/wst.2024.396
Shan Chen, Yuanzhao Ding

Heavy metals pose a significant threat to human health, with contaminated water sources linked to severe conditions, including gastric cancer. Consequently, the effective remediation of heavy metals is crucial. This study employs a bibliographic analysis to examine key methodologies, leading organizations, and prominent countries involved in heavy metal remediation. By systematically reviewing around 1,000 records, the paper identifies the most critical remediation techniques and provides a comprehensive overview of current practices in the field. Additionally, the study explores prospects, emphasizing the potential of emerging technologies such as big data and machine learning to enhance remediation efforts. It highlights recent advancements, identifies significant trends, such as the growing use of bioremediation and nanotechnology, and addresses critical challenges in the remediation landscape, including regulatory hurdles and technological limitations. By making stronger connections between the identified trends and their implications for future research, this comprehensive analysis aims to provide valuable insights and guide the development of improved strategies for mitigating the impact of heavy metal contamination, ultimately safeguarding public health.

重金属对人类健康构成重大威胁,受污染的水源与胃癌等严重疾病有关。因此,重金属的有效修复至关重要。本研究采用文献分析的方法,考察了重金属修复的主要方法、主要组织和主要国家。通过系统地回顾大约1000条记录,本文确定了最关键的补救技术,并提供了该领域当前实践的全面概述。此外,该研究还探讨了前景,强调了大数据和机器学习等新兴技术在加强补救工作方面的潜力。它强调了最近的进展,确定了重要的趋势,例如越来越多地使用生物修复和纳米技术,并解决了修复领域的关键挑战,包括监管障碍和技术限制。通过在已确定的趋势及其对未来研究的影响之间建立更强的联系,这项综合分析旨在提供有价值的见解,并指导制定减轻重金属污染影响的改进战略,最终保障公众健康。
{"title":"Systematic bibliographic analysis of heavy metal remediation.","authors":"Shan Chen, Yuanzhao Ding","doi":"10.2166/wst.2024.396","DOIUrl":"https://doi.org/10.2166/wst.2024.396","url":null,"abstract":"<p><p>Heavy metals pose a significant threat to human health, with contaminated water sources linked to severe conditions, including gastric cancer. Consequently, the effective remediation of heavy metals is crucial. This study employs a bibliographic analysis to examine key methodologies, leading organizations, and prominent countries involved in heavy metal remediation. By systematically reviewing around 1,000 records, the paper identifies the most critical remediation techniques and provides a comprehensive overview of current practices in the field. Additionally, the study explores prospects, emphasizing the potential of emerging technologies such as big data and machine learning to enhance remediation efforts. It highlights recent advancements, identifies significant trends, such as the growing use of bioremediation and nanotechnology, and addresses critical challenges in the remediation landscape, including regulatory hurdles and technological limitations. By making stronger connections between the identified trends and their implications for future research, this comprehensive analysis aims to provide valuable insights and guide the development of improved strategies for mitigating the impact of heavy metal contamination, ultimately safeguarding public health.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 1","pages":"56-68"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nuclear power plant waste heat opens a window of next-generation desalination hybridization: a SOAR-based review. 核电站废热打开了下一代海水淡化杂交的窗口:基于soar的评论。
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-01-01 Epub Date: 2024-12-20 DOI: 10.2166/wst.2024.399
Pitchaiah Sudalaimuthu, Ravishankar Sathyamurthy, Ammar Elshiekh

This review examines the potential for utilizing nuclear power plant (NPP) waste heat in hybrid desalination systems, focusing on Reverse Osmosis-Low-Temperature Evaporation (RO-LTE) driven by renewable energy sources and atomic waste heat. By employing a SOAR (Strengths, Opportunities, Aspirations, Results) analysis, the study evaluates the integration of NPP waste heat into various desalination technologies, emphasizing the environmental benefits and energy efficiency improvements. Fundamental aspirations include advancements in material science and heat exchanger designs, which enhance heat transfer and evaporation processes. The review also explores cost reduction strategies, such as integrating hydrogen production and mineral recovery from desalination by-products. Passive technologies and process optimization are proposed to minimize operational costs and energy consumption, supporting long-term sustainability. This review serves as a resource for decision-makers, offering insights into the strategic use of NPP waste heat in desalination to address water scarcity while promoting energy efficiency and sustainability.

本文综述了在混合海水淡化系统中利用核电厂(NPP)废热的潜力,重点是由可再生能源和原子废热驱动的反渗透-低温蒸发(RO-LTE)。通过采用SOAR(优势、机会、抱负、结果)分析,该研究评估了将核电站废热整合到各种海水淡化技术中的情况,强调了环境效益和能源效率的提高。基本愿望包括材料科学和热交换器设计的进步,这加强了传热和蒸发过程。本报告还探讨了降低成本的战略,例如将制氢和从脱盐副产品中回收矿物结合起来。被动式技术和工艺优化提出,以最大限度地降低运营成本和能源消耗,支持长期可持续发展。本综述为决策者提供了资源,为战略性地利用核电站废热进行海水淡化提供了见解,以解决水资源短缺问题,同时促进能源效率和可持续性。
{"title":"Nuclear power plant waste heat opens a window of next-generation desalination hybridization: a SOAR-based review.","authors":"Pitchaiah Sudalaimuthu, Ravishankar Sathyamurthy, Ammar Elshiekh","doi":"10.2166/wst.2024.399","DOIUrl":"https://doi.org/10.2166/wst.2024.399","url":null,"abstract":"<p><p>This review examines the potential for utilizing nuclear power plant (NPP) waste heat in hybrid desalination systems, focusing on Reverse Osmosis-Low-Temperature Evaporation (RO-LTE) driven by renewable energy sources and atomic waste heat. By employing a SOAR (Strengths, Opportunities, Aspirations, Results) analysis, the study evaluates the integration of NPP waste heat into various desalination technologies, emphasizing the environmental benefits and energy efficiency improvements. Fundamental aspirations include advancements in material science and heat exchanger designs, which enhance heat transfer and evaporation processes. The review also explores cost reduction strategies, such as integrating hydrogen production and mineral recovery from desalination by-products. Passive technologies and process optimization are proposed to minimize operational costs and energy consumption, supporting long-term sustainability. This review serves as a resource for decision-makers, offering insights into the strategic use of NPP waste heat in desalination to address water scarcity while promoting energy efficiency and sustainability.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 1","pages":"1-11"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anthraquinone-2-sulfonate immobilized on granular activated carbon inhibits methane production during the anaerobic digestion of swine wastewater.
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-01-01 Epub Date: 2025-01-10 DOI: 10.2166/wst.2025.001
Irina Cobos, Miriam Orrantia, Denisse Serrano-Palacios, Edna R Meza, Miguel A Armenta, Vianey A Burboa, Luis H Alvarez

Granular activated carbon (GAC) and GAC modified with anthraquinone-2-sulfonate (AQS) were used as conductive materials during the anaerobic digestion of swine wastewater (SW). The electron transfer capacity (ETC) in the GAC-AQS was 2.1-fold higher than the unmodified GAC. Despite the improvement in the ETC, the GAC-AQS cultures showed an inhibitory effect, evidenced by the lowest methane productivity. Indeed, the cultures with unmodified GAC achieved 236 mL CH4/g CODi (chemical oxygen demand, initial), representing an increment of 1.14- and 2.05-fold compared with the control (without conductive materials) and GAC-AQS, respectively. In addition, the methane production rate (Rmax) and yield were also improved with unmodified GAC, but they decreased with GAC-AQS. The role of solid-phase AQS (GAC-AQS) as a terminal electron acceptor during microbial respiration competes with methanogenesis for the electrons instead of serving as an electron conduit.

{"title":"Anthraquinone-2-sulfonate immobilized on granular activated carbon inhibits methane production during the anaerobic digestion of swine wastewater.","authors":"Irina Cobos, Miriam Orrantia, Denisse Serrano-Palacios, Edna R Meza, Miguel A Armenta, Vianey A Burboa, Luis H Alvarez","doi":"10.2166/wst.2025.001","DOIUrl":"https://doi.org/10.2166/wst.2025.001","url":null,"abstract":"<p><p>Granular activated carbon (GAC) and GAC modified with anthraquinone-2-sulfonate (AQS) were used as conductive materials during the anaerobic digestion of swine wastewater (SW). The electron transfer capacity (ETC) in the GAC-AQS was 2.1-fold higher than the unmodified GAC. Despite the improvement in the ETC, the GAC-AQS cultures showed an inhibitory effect, evidenced by the lowest methane productivity. Indeed, the cultures with unmodified GAC achieved 236 mL CH<sub>4</sub>/g COD<sub>i</sub> (chemical oxygen demand, initial), representing an increment of 1.14- and 2.05-fold compared with the control (without conductive materials) and GAC-AQS, respectively. In addition, the methane production rate (<i>R</i><sub>max</sub>) and yield were also improved with unmodified GAC, but they decreased with GAC-AQS. The role of solid-phase AQS (GAC-AQS) as a terminal electron acceptor during microbial respiration competes with methanogenesis for the electrons instead of serving as an electron conduit.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 2","pages":"117-125"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143067769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms for removing phosphorus species through sequential coagulation using inorganic coagulants and organic polymers.
IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2025-01-01 Epub Date: 2024-12-20 DOI: 10.2166/wst.2024.401
Evelina Koltsova, Roman Smotraiev, Anastasiia Nehrii, Malik Zhekeev, Harsha Ratnaweera

The need for stringent phosphorus removal from domestic wastewater is increasing to mitigate eutrophication, while efficient phosphate reuse is critical due to the global phosphate crisis. Combining aluminum sulfate (ALS) with high molecular weight organic polymers achieved 95-99% removal of particles, turbidity, and phosphates, reducing ALS usage by 40%. We propose mechanisms to explain the enhanced treatment efficiency. Particle and turbidity removal is more influenced by polymer charge density than molecular weight, while orthophosphate (OP) removal is linked to a change in zeta potential from negative to positive, allowing additional OP binding through complex formation with hydrolysis products and polymers. Enhanced phospholipid (PL) removal likely results from adsorption and neutralization of micelle PL charges by intermediate positively charged aluminum hydroxyphosphate ions. Higher PL removal with low ALS doses is attributed to a two-stage dosing process that optimizes coagulant and polymer dosages. The combined removal of OP and PL improves phosphorus bioavailability, increasing the sludge's fertilizer value.

{"title":"Mechanisms for removing phosphorus species through sequential coagulation using inorganic coagulants and organic polymers.","authors":"Evelina Koltsova, Roman Smotraiev, Anastasiia Nehrii, Malik Zhekeev, Harsha Ratnaweera","doi":"10.2166/wst.2024.401","DOIUrl":"https://doi.org/10.2166/wst.2024.401","url":null,"abstract":"<p><p>The need for stringent phosphorus removal from domestic wastewater is increasing to mitigate eutrophication, while efficient phosphate reuse is critical due to the global phosphate crisis. Combining aluminum sulfate (ALS) with high molecular weight organic polymers achieved 95-99% removal of particles, turbidity, and phosphates, reducing ALS usage by 40%. We propose mechanisms to explain the enhanced treatment efficiency. Particle and turbidity removal is more influenced by polymer charge density than molecular weight, while orthophosphate (OP) removal is linked to a change in zeta potential from negative to positive, allowing additional OP binding through complex formation with hydrolysis products and polymers. Enhanced phospholipid (PL) removal likely results from adsorption and neutralization of micelle PL charges by intermediate positively charged aluminum hydroxyphosphate ions. Higher PL removal with low ALS doses is attributed to a two-stage dosing process that optimizes coagulant and polymer dosages. The combined removal of OP and PL improves phosphorus bioavailability, increasing the sludge's fertilizer value.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 2","pages":"202-218"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143067783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Water Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1