Pub Date : 2024-12-01Epub Date: 2024-12-09DOI: 10.2166/wst.2024.395
John Ngoni Zvimba, Eustina Musvoto, Buyisile Kholisa
The management of municipal wastewater sludge is a significant challenge for wastewater management, particularly the need to manage and dispose of the sludge in an environmentally friendly and sustainable manner. The emergence of stricter regulations regarding landfill disposal of wastewater sludge necessitates the need for alternative options for municipal wastewater sludge management, with thermochemical technologies potentially contributing towards achieving carbon neutrality goals and fostering sustainable development. This study sought to address these challenges through a technical and financial evaluation of a pilot-scale emerging thermochemical technology, the enhanced hydrothermal polymerization to provide adequate understanding of the technology's feasibility regarding its application for municipal wastewater sludge volarization into a multi-use hydrochar. The study findings indicated that the enhanced hydrothermal polymerization-generated hydrochar exhibited significant energy content compared to wastewater sludge, suggesting the potential use of the hydrochar as an energy source. The preliminary designs of a full-scale greenfield installation and retrofit processing 50 t/d and 35 t/d dry sludge, respectively, were evaluated to be technically feasible. Furthermore, on the basis of preliminary designs, the enhanced hydrothermal polymerization technology was determined to be the most financially feasible option, also offering other unique advantages over well-established technologies currently used within municipal wastewater services.
{"title":"Technical and financial evaluation of an emerging thermochemical technology for sustainable management of municipal wastewater sludge.","authors":"John Ngoni Zvimba, Eustina Musvoto, Buyisile Kholisa","doi":"10.2166/wst.2024.395","DOIUrl":"https://doi.org/10.2166/wst.2024.395","url":null,"abstract":"<p><p>The management of municipal wastewater sludge is a significant challenge for wastewater management, particularly the need to manage and dispose of the sludge in an environmentally friendly and sustainable manner. The emergence of stricter regulations regarding landfill disposal of wastewater sludge necessitates the need for alternative options for municipal wastewater sludge management, with thermochemical technologies potentially contributing towards achieving carbon neutrality goals and fostering sustainable development. This study sought to address these challenges through a technical and financial evaluation of a pilot-scale emerging thermochemical technology, the enhanced hydrothermal polymerization to provide adequate understanding of the technology's feasibility regarding its application for municipal wastewater sludge volarization into a multi-use hydrochar. The study findings indicated that the enhanced hydrothermal polymerization-generated hydrochar exhibited significant energy content compared to wastewater sludge, suggesting the potential use of the hydrochar as an energy source. The preliminary designs of a full-scale greenfield installation and retrofit processing 50 t/d and 35 t/d dry sludge, respectively, were evaluated to be technically feasible. Furthermore, on the basis of preliminary designs, the enhanced hydrothermal polymerization technology was determined to be the most financially feasible option, also offering other unique advantages over well-established technologies currently used within municipal wastewater services.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 12","pages":"3139-3148"},"PeriodicalIF":2.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mariane Yvonne Schneider, Kimberly Solon, Sovanna Tik
{"title":"Modelling and integrated assessment of urban water systems.","authors":"Mariane Yvonne Schneider, Kimberly Solon, Sovanna Tik","doi":"10.2166/wst.2024.389","DOIUrl":"https://doi.org/10.2166/wst.2024.389","url":null,"abstract":"","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 12","pages":"iii-vi"},"PeriodicalIF":2.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-12-02DOI: 10.2166/wst.2024.390
Huo Zhou, Lixi Xiao, Yuwei Deng, Rongling Wang, Qiang Li, Yuxuan Ye, Xuanyuan Pei, Lei Sun, Yingzhou Zhang, Fei Pan
Engineered nanomaterials are widely used in water and wastewater treatment processes, and minimizing their adverse effects on biological treatment processes in wastewater treatment plants has become the primary focus. In this study, activated carbon fiber (ACF)-loaded manganese oxide nanomaterials (MnOx@ACF) were synthesized. A small-scale sequencing batch reactor (SBR) was constructed to simulate the synergistic degradation of pollutants by nanomaterials and microorganisms and the effects of nanomaterials on the structure of the microbial community in a wastewater treatment plant. The MnOx@ACF exhibited efficient removal of pollutants (98.7% in 30 cycles) and chemical oxygen demand (COD 96.4% in 30 cycles) through the formation of Mn-microbial complexes and enhanced cycling between Mn(III) and Mn(II) over 30 operating cycles. Metagenome analysis results showed that the microbial population composition and functional abundance increased when the SBR was exposed to different dosages of MnOx@ACF for a long time, among which 0.2 g/L MnOx@ACF exhibited the highest stimulation and influence on the functional abundance of microorganisms, which showed optimum ecological effects.
{"title":"Efficient degradation of tetracycline by Mn(III)-microbial complexes mediated by mnOx@ACF in sequencing batch reactors: performance, mechanism, and effect on microbial community structure.","authors":"Huo Zhou, Lixi Xiao, Yuwei Deng, Rongling Wang, Qiang Li, Yuxuan Ye, Xuanyuan Pei, Lei Sun, Yingzhou Zhang, Fei Pan","doi":"10.2166/wst.2024.390","DOIUrl":"https://doi.org/10.2166/wst.2024.390","url":null,"abstract":"<p><p>Engineered nanomaterials are widely used in water and wastewater treatment processes, and minimizing their adverse effects on biological treatment processes in wastewater treatment plants has become the primary focus. In this study, activated carbon fiber (ACF)-loaded manganese oxide nanomaterials (MnOx@ACF) were synthesized. A small-scale sequencing batch reactor (SBR) was constructed to simulate the synergistic degradation of pollutants by nanomaterials and microorganisms and the effects of nanomaterials on the structure of the microbial community in a wastewater treatment plant. The MnOx@ACF exhibited efficient removal of pollutants (98.7% in 30 cycles) and chemical oxygen demand (COD 96.4% in 30 cycles) through the formation of Mn-microbial complexes and enhanced cycling between Mn(III) and Mn(II) over 30 operating cycles. Metagenome analysis results showed that the microbial population composition and functional abundance increased when the SBR was exposed to different dosages of MnOx@ACF for a long time, among which 0.2 g/L MnOx@ACF exhibited the highest stimulation and influence on the functional abundance of microorganisms, which showed optimum ecological effects.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 11","pages":"3111-3122"},"PeriodicalIF":2.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study optimizes standard oxygen transfer efficiency (SOTE) in Venturi flumes investigating the impact of key parameters such as discharge per unit width (q), throat width (W), throat length (F), upstream entrance width (E), and gauge readings (Ha and Hb). To achieve this, a comprehensive experimental dataset was analyzed using multiple linear regression (MLR), multiple nonlinear regression (MNLR), gradient boosting machine (GBM), extreme gradient boosting (XRT), random forest (RF), M5 (pruned and unpruned), random tree (RT), and reduced error pruning (REP). Model performance was evaluated based on key metrics: correlation coefficient (CC), root mean square error (RMSE), and mean absolute error (MAE). Among the proposed models, M5_Unprun emerged as the top performer, exhibiting the highest CC (0.9455), the lowest RMSE (0.1918), and the lowest MAE (0.0030). GBM followed closely with a CC value of 0.9372, an RMSE value of 0.2067, and an MAE value of 0.0006. Uncertainty analysis further solidified the superior performance of M5_Unpruned (0.7522) and GBM (0.8055), with narrower prediction bands compared to other models, including MLR, which exhibited the widest band (1.4320). One-way analysis of variance confirmed the reliability and robustness of the proposed models. Sensitivity, correlation, and SHapley Additive exPlanations analyses identified W and Hb as the most influencing factors.
{"title":"Optimising Venturi flume oxygen transfer efficiency using uncertainty-aware decision trees.","authors":"Nand Kumar Tiwari, Dinesh Panwar","doi":"10.2166/wst.2024.393","DOIUrl":"https://doi.org/10.2166/wst.2024.393","url":null,"abstract":"<p><p>This study optimizes standard oxygen transfer efficiency (SOTE) in Venturi flumes investigating the impact of key parameters such as discharge per unit width (<i>q</i>), throat width (<i>W</i>), throat length (<i>F</i>), upstream entrance width (<i>E</i>), and gauge readings (<i>H<sub>a</sub></i> and <i>H<sub>b</sub></i>). To achieve this, a comprehensive experimental dataset was analyzed using multiple linear regression (MLR), multiple nonlinear regression (MNLR), gradient boosting machine (GBM), extreme gradient boosting (XRT), random forest (RF), M5 (pruned and unpruned), random tree (RT), and reduced error pruning (REP). Model performance was evaluated based on key metrics: correlation coefficient (CC), root mean square error (RMSE), and mean absolute error (MAE). Among the proposed models, M5_Unprun emerged as the top performer, exhibiting the highest CC (0.9455), the lowest RMSE (0.1918), and the lowest MAE (0.0030). GBM followed closely with a CC value of 0.9372, an RMSE value of 0.2067, and an MAE value of 0.0006. Uncertainty analysis further solidified the superior performance of M5_Unpruned (0.7522) and GBM (0.8055), with narrower prediction bands compared to other models, including MLR, which exhibited the widest band (1.4320). One-way analysis of variance confirmed the reliability and robustness of the proposed models. Sensitivity, correlation, and SHapley Additive exPlanations analyses identified <i>W</i> and <i>H<sub>b</sub></i> as the most influencing factors.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 12","pages":"3210-3240"},"PeriodicalIF":2.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-28DOI: 10.2166/wst.2024.388
Haoran Sun, Hua Wang, Xinmin Zhang, Weihua Cheng, Xuyang Li
Fruit waste is one of the main components of municipal waste. To study its potential and characteristics in anaerobic digestion, this study took fruit waste and its waste liquid as raw materials, investigate the influence of thermal pretreatment on the anaerobic digestion characteristics under 35 ± 17 °C. The anaerobic digestion materials were fruit waste liquid (group A1), fruit waste liquid after thermal pretreatment (group A2), fruit slurry (group A3), and the material of A2 and A3 mixed with municipal sludge (groups A4 and A5) has also been involved. The results showed that the thermal pretreatment is in favor of increasing the total gas production rate, which the waste liquid after thermal pretreatment (A2) was the highest one with 767.09 mL/gVS which 6.51% higher than A1; while it has not obviously influence on the total hydrogen production rate of waste liquid; the addition of municipal sludge increased the total methane production rate of fruit waste or its liquid. After thermal pretreatment, the pH of fruit waste was 0.37 lower than initial pH; VFAs and SCOD content were both increased, which are benefit for anaerobic digestion. In addition, the experimental data were verified by the modified Gompertz model.
{"title":"Effects of thermal pretreatment on the anaerobic digestion characteristics of fruit waste liquids.","authors":"Haoran Sun, Hua Wang, Xinmin Zhang, Weihua Cheng, Xuyang Li","doi":"10.2166/wst.2024.388","DOIUrl":"https://doi.org/10.2166/wst.2024.388","url":null,"abstract":"<p><p>Fruit waste is one of the main components of municipal waste. To study its potential and characteristics in anaerobic digestion, this study took fruit waste and its waste liquid as raw materials, investigate the influence of thermal pretreatment on the anaerobic digestion characteristics under 35 ± 17 °C. The anaerobic digestion materials were fruit waste liquid (group A1), fruit waste liquid after thermal pretreatment (group A2), fruit slurry (group A3), and the material of A2 and A3 mixed with municipal sludge (groups A4 and A5) has also been involved. The results showed that the thermal pretreatment is in favor of increasing the total gas production rate, which the waste liquid after thermal pretreatment (A2) was the highest one with 767.09 mL/gVS which 6.51% higher than A1; while it has not obviously influence on the total hydrogen production rate of waste liquid; the addition of municipal sludge increased the total methane production rate of fruit waste or its liquid. After thermal pretreatment, the pH of fruit waste was 0.37 lower than initial pH; VFAs and SCOD content were both increased, which are benefit for anaerobic digestion. In addition, the experimental data were verified by the modified Gompertz model.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 11","pages":"3041-3051"},"PeriodicalIF":2.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-23DOI: 10.2166/wst.2024.351
Priscila B R Alves, Ebenezer Amanguah, Devin McNally, Maria Espinoza, Hamed Ghaedi, Allison C Reilly, Marccus D Hendricks
Urban flooding is a pervasive global risk, posing a great challenge to urban planners, policymakers, and particularly communities. This paper reviews the literature to analyze how urban flooding is defined across scientific disciplines. Our objectives are to uncover the elements used to define urban flooding and evaluate how these elements can impact future research and practice. A key difficulty is the lack of a consistent, comprehensive definition that captures both physical and social dimensions of urban flooding. Current definitions often focus solely on physical aspects (e.g., rainfall, infrastructure) or social impacts, rarely integrating both. This fragmentation hinders effective flood risk management and interdisciplinary collaboration. Our contribution is a multifaceted definition incorporating spatial and social concerns, including water origins, built environment characteristics, and local community aspects. We introduce the 'Urban Water Transect' concept to illustrate the continuum of flood risk across urban zones, addressing a gap in the literature. The analysis reveals that many papers discuss flooding causes without providing an explicit definition. Urban flooding is predominantly defined based on water source, imperviousness, and drainage infrastructure. Future research should adopt an interdisciplinary perspective considering both physical and social aspects, potentially transforming urban flood risk management.
{"title":"Navigating the definition of urban flooding: A conceptual and systematic review of the literature.","authors":"Priscila B R Alves, Ebenezer Amanguah, Devin McNally, Maria Espinoza, Hamed Ghaedi, Allison C Reilly, Marccus D Hendricks","doi":"10.2166/wst.2024.351","DOIUrl":"https://doi.org/10.2166/wst.2024.351","url":null,"abstract":"<p><p>Urban flooding is a pervasive global risk, posing a great challenge to urban planners, policymakers, and particularly communities. This paper reviews the literature to analyze how urban flooding is defined across scientific disciplines. Our objectives are to uncover the elements used to define urban flooding and evaluate how these elements can impact future research and practice. A key difficulty is the lack of a consistent, comprehensive definition that captures both physical and social dimensions of urban flooding. Current definitions often focus solely on physical aspects (e.g., rainfall, infrastructure) or social impacts, rarely integrating both. This fragmentation hinders effective flood risk management and interdisciplinary collaboration. Our contribution is a multifaceted definition incorporating spatial and social concerns, including water origins, built environment characteristics, and local community aspects. We introduce the 'Urban Water Transect' concept to illustrate the continuum of flood risk across urban zones, addressing a gap in the literature. The analysis reveals that many papers discuss flooding causes without providing an explicit definition. Urban flooding is predominantly defined based on water source, imperviousness, and drainage infrastructure. Future research should adopt an interdisciplinary perspective considering both physical and social aspects, potentially transforming urban flood risk management.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 10","pages":"2796-2812"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-08DOI: 10.2166/wst.2024.366
Eskandar Poorasgari, Banu Örmeci
A series of dewaterability tests were conducted on various types of sludges to establish a wholistic relationship between sludge water fractions. Sludge samples were obtained from batch and continuous sludge digesters, which were operated anaerobically and aerobically under mesophilic and thermophilic conditions. Dewaterability of the sludge samples and the distribution of water fractions were studied using centrifugation and thermal drying. Thickened waste activated sludge (T-WAS) contained 10-11 g bound water (BW)/g of total solids (TS), and it was more hydrophilic than primary and digested sludges. During anaerobic digestion, BW content fluctuated between 3.2 and 4.2 g BW/g TS. However, aerobic digestion at 55°C reduced the BW content of the mixed T-WAS + primary sludges from 3.7 to 2.1 g BW/g TS. A linear function was developed to correlate supernatant and BW mass fractions (R2 = 0.995). An equation was derived from the linear function to estimate the mass of dewatered sludge based on the TS concentration of the initial wet sludge. The developed expression is applicable to different kinds of wastewater sludges. Such an expression would be helpful for the designers and operators of sludge thickening and dewatering systems that use centrifugal separation.
对不同类型的污泥进行了一系列的脱水试验,以建立污泥水组分之间的整体关系。污泥样品从间歇式和连续式污泥消化器中获得,在厌氧和好氧条件下,在中温和亲热条件下运行。采用离心和热干燥两种方法研究了污泥样品的脱水性能和水分组分的分布。浓稠型废活性污泥(T-WAS)的结合水(BW)/总固体(TS)为10 ~ 11 g,亲水性优于原生污泥和消化污泥。在厌氧消化过程中,BW含量在3.2 ~ 4.2 g BW/g TS之间波动,而在55°C的好氧消化过程中,混合T-WAS +初级污泥的BW含量从3.7 g BW/g TS降至2.1 g BW/g TS,上清液与BW质量分数呈线性关系(R2 = 0.995)。由线性函数推导出基于初始湿污泥TS浓度估算脱水污泥质量的方程。所开发的表达式适用于不同类型的污水污泥。这样的表达式对采用离心分离的污泥浓缩脱水系统的设计者和操作人员有一定的帮助。
{"title":"Developing a universal equation to estimate the mass of dewatered wastewater sludge during biological digestion at mesophilic and thermophilic temperatures.","authors":"Eskandar Poorasgari, Banu Örmeci","doi":"10.2166/wst.2024.366","DOIUrl":"https://doi.org/10.2166/wst.2024.366","url":null,"abstract":"<p><p>A series of dewaterability tests were conducted on various types of sludges to establish a wholistic relationship between sludge water fractions. Sludge samples were obtained from batch and continuous sludge digesters, which were operated anaerobically and aerobically under mesophilic and thermophilic conditions. Dewaterability of the sludge samples and the distribution of water fractions were studied using centrifugation and thermal drying. Thickened waste activated sludge (T-WAS) contained 10-11 g bound water (BW)/g of total solids (TS), and it was more hydrophilic than primary and digested sludges. During anaerobic digestion, BW content fluctuated between 3.2 and 4.2 g BW/g TS. However, aerobic digestion at 55°C reduced the BW content of the mixed T-WAS + primary sludges from 3.7 to 2.1 g BW/g TS. A linear function was developed to correlate supernatant and BW mass fractions (R<sup>2</sup> = 0.995). An equation was derived from the linear function to estimate the mass of dewatered sludge based on the TS concentration of the initial wet sludge. The developed expression is applicable to different kinds of wastewater sludges. Such an expression would be helpful for the designers and operators of sludge thickening and dewatering systems that use centrifugal separation.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 10","pages":"2894-2910"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bioretention systems effectively capture rubber particles and other microplastics in stormwater runoff. However, it is uncertain whether long-term particle accumulation affects pollutant removal efficacy. This study investigated the impact of various concentrations of ethylene-propylene-diene-monomer (EPDM) particles (0, 50, 100, and 400 mg/L) on bioretention system nitrogen removal performance. The input of EPDM during short-duration (2 h) rainfall favored the removal of nitrogen, and the total nitrogen effluent concentration of the bioretention system with EPDM was reduced by 0.59-1.52 mg/L compared with that of the system without EPDM. In addition, the input of EPDM reduced the negative effects of drought. During long-duration (24 h) rainfall, higher concentrations of EPDM led to lower nitrate-nitrogen concentrations in the effluent. The bioretention system with EPDM required less time for nitrate-nitrogen removal to reach 50% than that without EPDM input. Microbial community analysis showed that EPDM increased the relative total abundance of denitrifying bacteria (such as Dechloromonas, Zoogloea, Ramlibacter, and Aeromonas) by 7.25-10.26%, which improved the denitrification capacity of the system.
{"title":"Influence of rubber particle inputs on nitrogen removal efficiency of bioretention systems.","authors":"Tuanping Hu, Wenyi Li, Jiaqing Xiong, Jiajia Zhou, Qianhe Xia","doi":"10.2166/wst.2024.363","DOIUrl":"https://doi.org/10.2166/wst.2024.363","url":null,"abstract":"<p><p>Bioretention systems effectively capture rubber particles and other microplastics in stormwater runoff. However, it is uncertain whether long-term particle accumulation affects pollutant removal efficacy. This study investigated the impact of various concentrations of ethylene-propylene-diene-monomer (EPDM) particles (0, 50, 100, and 400 mg/L) on bioretention system nitrogen removal performance. The input of EPDM during short-duration (2 h) rainfall favored the removal of nitrogen, and the total nitrogen effluent concentration of the bioretention system with EPDM was reduced by 0.59-1.52 mg/L compared with that of the system without EPDM. In addition, the input of EPDM reduced the negative effects of drought. During long-duration (24 h) rainfall, higher concentrations of EPDM led to lower nitrate-nitrogen concentrations in the effluent. The bioretention system with EPDM required less time for nitrate-nitrogen removal to reach 50% than that without EPDM input. Microbial community analysis showed that EPDM increased the relative total abundance of denitrifying bacteria (such as <i>Dechloromonas</i>, <i>Zoogloea</i>, <i>Ramlibacter</i>, and <i>Aeromonas</i>) by 7.25-10.26%, which improved the denitrification capacity of the system.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 10","pages":"2734-2746"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-11DOI: 10.2166/wst.2024.370
Hana Posavcic, Katarina Licht, Ivan Halkijevic, Domagoj Nakic
Chemical kinetics can be a useful tool for determining the optimal operating time of electrochemical processes. The main objective of the study was to determine the mineral oil removal rate by sono-electrochemical treatment. In this study, zero-, first-, and second-order kinetic models were used to determine the reaction rate of mineral oil removal with the sono-electrochemical process. The reaction rate experiments were conducted under the following optimal conditions: 8 min of treatment time, a current density of 53.1 A/m2, and a flow rate of 0.23 L/s. It was found that the changes in mineral oil concentrations follow second-order kinetics with a coefficient of determination of 0.9732. The mineral oil removal efficiency was 94.4%. This study concludes that sono-electrochemical process could be a promising technology for the removal of mineral oil from wastewater, and that the mineral oil removal rate can be determined by chemical kinetics. The results obtained may be useful for the optimization of the sono-EC process and reactor design.
化学动力学是确定电化学过程最佳操作时间的有用工具。研究的主要目的是确定超声电化学处理对矿物油的去除率。本研究采用零、一、二级动力学模型确定了超声电化学过程中矿物油去除的反应速率。反应速率实验在处理时间8 min、电流密度53.1 a /m2、流速0.23 L/s的最佳条件下进行。结果表明,矿物油浓度的变化符合二级动力学,决定系数为0.9732。矿物油去除率为94.4%。研究结果表明,超声电化学技术是一种很有前途的去除废水中矿物油的技术,并且矿物油的去除率可以通过化学动力学来确定。所得结果可为超声- ec工艺的优化和反应器的设计提供参考。
{"title":"Kinetic study of mineral oil removal from wastewater by the sono-electrochemical process.","authors":"Hana Posavcic, Katarina Licht, Ivan Halkijevic, Domagoj Nakic","doi":"10.2166/wst.2024.370","DOIUrl":"https://doi.org/10.2166/wst.2024.370","url":null,"abstract":"<p><p>Chemical kinetics can be a useful tool for determining the optimal operating time of electrochemical processes. The main objective of the study was to determine the mineral oil removal rate by sono-electrochemical treatment. In this study, zero-, first-, and second-order kinetic models were used to determine the reaction rate of mineral oil removal with the sono-electrochemical process. The reaction rate experiments were conducted under the following optimal conditions: 8 min of treatment time, a current density of 53.1 A/m<sup>2</sup>, and a flow rate of 0.23 L/s. It was found that the changes in mineral oil concentrations follow second-order kinetics with a coefficient of determination of 0.9732. The mineral oil removal efficiency was 94.4%. This study concludes that sono-electrochemical process could be a promising technology for the removal of mineral oil from wastewater, and that the mineral oil removal rate can be determined by chemical kinetics. The results obtained may be useful for the optimization of the sono-EC process and reactor design.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 10","pages":"2911-2917"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-11DOI: 10.2166/wst.2024.369
Wenjiao Sang, Zhenxue Ge, Qian Zhang, Fangmao Gan, Nianhong Wan, Lei Zou
In this study, the impact of exogenous N-acyl-homoserine lactones (AHLs) on greenhouse gas (GHG) emissions in anaerobic/anoxic/oxic (A/A/O) systems was analyzed by manipulating the type and dosage of AHLs. The mechanism behind AHLs' effects on GHG emissions was explored through changes in microbial community structure. Findings revealed that N-octanoyl-homoserine lactone (C8-HSL) and high-dose N-dodecanoyl-homoserine lactone (C12-HSL) increased GHG emissions, while low-dose C12-HSL decreased them. Moreover, C8-HSL and high-dose C12-HSL promoted methane (CH4) and nitrous oxide (N2O) production by affecting sludge particle size. Bacterial community analysis highlighted Acinetobacter and Flavobacterium's roles in N2O emissions and acetate methanogens in methane synthesis. Metabolic pathway analysis showed that the acetic acid (CH3COOH) methanogenic pathway was the main methanogenic pathway; C8-HSL and C12-HSL influenced methane emission by affecting the methanogenic pathway and N2O emission by changing nitrous oxide reductase (Nos) abundance. This research underscores AHL-based quorum sensing's potential in mitigating GHG emissions during activated sludge wastewater treatment, offering insights into their application and impact on key microbial activities. Limitations include the absence of methane emission reduction by signaling molecules and the need for further investigation into their effects on sludge accumulation.
{"title":"A new strategy for greenhouse gas emission reduction in the anaerobic/anoxic/oxic biological treatment process using exogenous N-acyl-homoserine lactones, a quorum-sensing signaling molecules.","authors":"Wenjiao Sang, Zhenxue Ge, Qian Zhang, Fangmao Gan, Nianhong Wan, Lei Zou","doi":"10.2166/wst.2024.369","DOIUrl":"https://doi.org/10.2166/wst.2024.369","url":null,"abstract":"<p><p>In this study, the impact of exogenous N-acyl-homoserine lactones (AHLs) on greenhouse gas (GHG) emissions in anaerobic/anoxic/oxic (A/A/O) systems was analyzed by manipulating the type and dosage of AHLs. The mechanism behind AHLs' effects on GHG emissions was explored through changes in microbial community structure. Findings revealed that N-octanoyl-homoserine lactone (C8-HSL) and high-dose N-dodecanoyl-homoserine lactone (C12-HSL) increased GHG emissions, while low-dose C12-HSL decreased them. Moreover, C8-HSL and high-dose C12-HSL promoted methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O) production by affecting sludge particle size. Bacterial community analysis highlighted <i>Acinetobacter</i> and <i>Flavobacterium</i>'s roles in N<sub>2</sub>O emissions and acetate methanogens in methane synthesis. Metabolic pathway analysis showed that the acetic acid (CH<sub>3</sub>COOH) methanogenic pathway was the main methanogenic pathway; C8-HSL and C12-HSL influenced methane emission by affecting the methanogenic pathway and N<sub>2</sub>O emission by changing nitrous oxide reductase (<i>Nos</i>) abundance. This research underscores AHL-based quorum sensing's potential in mitigating GHG emissions during activated sludge wastewater treatment, offering insights into their application and impact on key microbial activities. Limitations include the absence of methane emission reduction by signaling molecules and the need for further investigation into their effects on sludge accumulation.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 10","pages":"2764-2783"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}