Approximately 80% of breast cancers (BC) are estrogen receptor (ER)-positive and thus endocrine therapy (ET) should be considered complementary to surgery in the majority of patients. The advantages of oophorectomy, adrenalectomy and hypophysectomy in women with advanced BC have been demonstrated many years ago, and currently ET consist of (1) ovarian function suppression (OFS), usually obtained using gonadotropin-releasing hormone agonists (GnRHa); (2) selective estrogen receptor modulators or down-regulators (SERMs or SERDs); and (3) aromatase inhibitors (AIs), or a combination of two or more drugs. For patients aged less than 50 years and ER+ BC, there is no conclusive evidence that the combination of OFS and SERMs (i.e., tamoxifen) or chemotherapy is superior to OFS alone. Tamoxifen users exhibit a reduced risk of BC, both invasive and in situ, especially during the first 5 years of therapy, and extending the treatment to 10 years further reduced the risk of recurrences. SERDs (i.e., fulvestrant) are especially useful in the neoadjuvant treatment of advanced BC, alone or in combination with either cytotoxic agents or AIs. There are two types of AIs: type I are permanent steroidal inhibitors of aromatase, while type II are reversible nonsteroidal inhibitors. Several studies demonstrated the superiority of the third-generation AIs (i.e., anastrozole and letrozole) compared with tamoxifen, and adjuvant therapy with AIs reduces the recurrence risk especially in patients with advanced BC. Unfortunately, some cancers are or became ET-resistant, and thus other drugs have been suggested in combination with SERMs or AIs, including cyclin-dependent kinase 4/6 inhibitors (palbociclib) and mammalian target of rapamycin (mTOR) inhibitors, such as everolimus. Further studies are required to confirm their real usefulness.
Deregulated c-Myc expression is a hallmark of many human cancers. We have recently identified a role of mammalian homolog of yeast SPT-ADA-GCN5-acetyltransferas (SAGA) complex component, SAGA-associated factor 29 (SGF29), in regulating the c-Myc overexpression. Here, we discuss the molecular nature of SFG29 in SPT3-TAF9-GCN5-acetyltransferase complex, a counterpart of yeast SAGA complex, and the mechanism through which the elevated SGF29 expression contribute to oncogenic potential of c-Myc in hepatocellularcarcinoma (HCC). We propose that the upstream regulation of SGF29 elicited by sex-determining region Y (Sry) is also augmented in HCC. We hypothesize that c-Myc elevation driven by the deregulated Sry and SGF29 pathway is implicated in the male specific acquisition of human HCCs.
Aerobic glycolysis, i.e., the Warburg effect, may contribute to the aggressive phenotype of hepatocellular carcinoma. However, increasing evidence highlights the limitations of the Warburg effect, such as high mitochondrial respiration and low glycolysis rates in cancer cells. To explain such contradictory phenomena with regard to the Warburg effect, a metabolic interplay between glycolytic and oxidative cells was proposed, i.e., the "reverse Warburg effect". Aerobic glycolysis may also occur in the stromal compartment that surrounds the tumor; thus, the stromal cells feed the cancer cells with lactate and this interaction prevents the creation of an acidic condition in the tumor microenvironment. This concept provides great heterogeneity in tumors, which makes the disease difficult to cure using a single agent. Understanding metabolic flexibility by lactate shuttles offers new perspectives to develop treatments that target the hypoxic tumor microenvironment and overcome the limitations of glycolytic inhibitors.