Cancer immunotherapy agents fight cancer via immune system stimulation and have made significant advances in minimizing side effects and prolonging the survival of patients with solid tumors. However, major limitations still exist in cancer immunotherapy, including the inefficiency of immune response stimulation in specific cancer types, therapy resistance caused by the tumor microenvironment (TME), toxicities by the immune imbalance, and short lifetime of stimulator of interferon genes (STING) agonist. Recent advances in nanomedicine have shown significant potential in overcoming the obstacles of cancer immunotherapy. Several nanoscale agents have been reported for cancer immunotherapy, including nanoscale cancer vaccines impacting the STING pathway, nanomaterials reprogramming TME, nano-agents triggering immune response with immune checkpoint inhibitor synergy, ferroptosis-mediated and indoleamine-2,3-dioxygenase immunosuppression-mediated cancer immunotherapy, and nanomedicine-meditated chimeric antigen receptor-T-cell therapy. Herein, we summarize the major advances and innovations in nanomedicine-based cancer immunotherapy, and outline the opportunities and challenges to integrate more advanced nanomaterials into cancer immunotherapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
{"title":"Improved cancer immunotherapy strategies by nanomedicine.","authors":"Shuai Guo, Jie Feng, Zongheng Li, Sugeun Yang, Xiaozhong Qiu, Yikai Xu, Zheyu Shen","doi":"10.1002/wnan.1873","DOIUrl":"https://doi.org/10.1002/wnan.1873","url":null,"abstract":"<p><p>Cancer immunotherapy agents fight cancer via immune system stimulation and have made significant advances in minimizing side effects and prolonging the survival of patients with solid tumors. However, major limitations still exist in cancer immunotherapy, including the inefficiency of immune response stimulation in specific cancer types, therapy resistance caused by the tumor microenvironment (TME), toxicities by the immune imbalance, and short lifetime of stimulator of interferon genes (STING) agonist. Recent advances in nanomedicine have shown significant potential in overcoming the obstacles of cancer immunotherapy. Several nanoscale agents have been reported for cancer immunotherapy, including nanoscale cancer vaccines impacting the STING pathway, nanomaterials reprogramming TME, nano-agents triggering immune response with immune checkpoint inhibitor synergy, ferroptosis-mediated and indoleamine-2,3-dioxygenase immunosuppression-mediated cancer immunotherapy, and nanomedicine-meditated chimeric antigen receptor-T-cell therapy. Herein, we summarize the major advances and innovations in nanomedicine-based cancer immunotherapy, and outline the opportunities and challenges to integrate more advanced nanomaterials into cancer immunotherapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 3","pages":"e1873"},"PeriodicalIF":8.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9682961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As a new type of organic optical nanomaterials, semiconducting polymer nanoparticles (SPNs) have the advantages of good optical characteristics and photostability, low toxicity concerns, and relatively simple preparation processes. Particularly, near-infrared (NIR) absorbing SPNs have shown a great promise in biomedicine. In addition to acting as nanoprobes for molecular imaging, these SPNs can produce local heat and reactive oxygen species with the stimulation of NIR light, allowing photothermal therapy (PTT) and photodynamic therapy (PDT), respectively. Herein, we summarize the recent development of SPN-based nanomedicines for cancer therapy. The rational designs of SPNs for enhanced PTT, PDT, or combinational PTT/PDT to achieve effective ablation of tumor tissues are highlighted. Via loading/conjugating SPNs with other therapeutic elements (such as chemotherapeutic drugs and immunotherapeutic agents), phototherapy-combined chemotherapy or immunotherapy can be realized, which is then discussed. In especial, the constructions of SPN-based nanomedicines for NIR photoactivatable chemotherapy and immunotherapy are introduced with representative examples. Finally, we discuss the current challenges and key concerns of SPNs for their biomedical applications and give an outlook for their future clinical translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
{"title":"Near-infrared absorbing semiconducting polymer nanomedicines for cancer therapy.","authors":"Meng Li, Ming Zhao, Jingchao Li","doi":"10.1002/wnan.1865","DOIUrl":"https://doi.org/10.1002/wnan.1865","url":null,"abstract":"<p><p>As a new type of organic optical nanomaterials, semiconducting polymer nanoparticles (SPNs) have the advantages of good optical characteristics and photostability, low toxicity concerns, and relatively simple preparation processes. Particularly, near-infrared (NIR) absorbing SPNs have shown a great promise in biomedicine. In addition to acting as nanoprobes for molecular imaging, these SPNs can produce local heat and reactive oxygen species with the stimulation of NIR light, allowing photothermal therapy (PTT) and photodynamic therapy (PDT), respectively. Herein, we summarize the recent development of SPN-based nanomedicines for cancer therapy. The rational designs of SPNs for enhanced PTT, PDT, or combinational PTT/PDT to achieve effective ablation of tumor tissues are highlighted. Via loading/conjugating SPNs with other therapeutic elements (such as chemotherapeutic drugs and immunotherapeutic agents), phototherapy-combined chemotherapy or immunotherapy can be realized, which is then discussed. In especial, the constructions of SPN-based nanomedicines for NIR photoactivatable chemotherapy and immunotherapy are introduced with representative examples. Finally, we discuss the current challenges and key concerns of SPNs for their biomedical applications and give an outlook for their future clinical translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 3","pages":"e1865"},"PeriodicalIF":8.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9670835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The complicated tumor microenvironment (TME) is featured by low pH values, high redox status, and hypoxia, which greatly supports the genesis, development, and metastasis of tumors, leading to drug resistance and clinical failure. Moreover, a lot of immunosuppressive cells infiltrate in such TME, resulting in depressing immunotherapy. Therefore, the development of TME-responsive nanoplatforms has shown great significance in enhancing cancer therapeutics. Metal-phenolic networks (MPNs)-based nanosystems, which self-assemble via coordination of phenolic materials and metal ions, have emerged as excellent TME theranostic nanoplatforms. MPNs have unique properties including fast preparation, tunable morphologies, pH response, and biocompatibility. Besides, functionalization and surface modification can endow MPNs with specific functions for application requirements. Here, the representative engineering strategies of various polyphenols are first introduced, followed by the introduction of the engineering mechanisms of polyphenolic nanosystems, fabrication, and distinct properties of MPNs. Then, their advances in TME modulation are highlighted, such as antiangiogenesis, hypoxia relief, combination therapy sensitization, and immunosuppressive TME reversion. Finally, we will discuss the challenges and future perspectives of MPNs-based nanosystems for enhancing cancer therapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
{"title":"Engineering metal-phenolic networks for enhancing cancer therapy by tumor microenvironment modulation.","authors":"Lisi Xie, Jie Li, Leyu Wang, Yunlu Dai","doi":"10.1002/wnan.1864","DOIUrl":"https://doi.org/10.1002/wnan.1864","url":null,"abstract":"<p><p>The complicated tumor microenvironment (TME) is featured by low pH values, high redox status, and hypoxia, which greatly supports the genesis, development, and metastasis of tumors, leading to drug resistance and clinical failure. Moreover, a lot of immunosuppressive cells infiltrate in such TME, resulting in depressing immunotherapy. Therefore, the development of TME-responsive nanoplatforms has shown great significance in enhancing cancer therapeutics. Metal-phenolic networks (MPNs)-based nanosystems, which self-assemble via coordination of phenolic materials and metal ions, have emerged as excellent TME theranostic nanoplatforms. MPNs have unique properties including fast preparation, tunable morphologies, pH response, and biocompatibility. Besides, functionalization and surface modification can endow MPNs with specific functions for application requirements. Here, the representative engineering strategies of various polyphenols are first introduced, followed by the introduction of the engineering mechanisms of polyphenolic nanosystems, fabrication, and distinct properties of MPNs. Then, their advances in TME modulation are highlighted, such as antiangiogenesis, hypoxia relief, combination therapy sensitization, and immunosuppressive TME reversion. Finally, we will discuss the challenges and future perspectives of MPNs-based nanosystems for enhancing cancer therapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 3","pages":"e1864"},"PeriodicalIF":8.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10053476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valerii B Orel, Αndreas S Papazoglou, Christos Tsagkaris, Dimitrios V Moysidis, Stavros Papadakos, Olexander Yu Galkin, Valerii E Orel, Liubov A Syvak
Magnetic nanoparticles (MNs) are typically used as contrast agents for magnetic resonance imaging or as drug carriers with a remotely controlled delivery to the tumor. However, they can also potentiate the action of anticancer drugs under the influence of applied constant magnetic (CMFs) and electromagnetic fields (EMFs). This review demonstrates the role of magneto-mechanochemical effects produced by MNs alone and loaded with anticancer agents (MNCs) in response to CMFs and EMFs for modulation of tumor redox state. The combined treatment is suggested to act by two mechanisms: spin-dependent electron transport propagates free radical chain reactions, while magnetomechanical interactions cause conformational changes in drug molecules loaded onto MNs and generate reactive oxygen species (ROS). By adjusting the parameters of CMFs and EMFs during the magneto-mechanochemical synthesis and subsequent treatment, it is possible to modulate ROS production and switch redox signaling involved in ERK1/2 and NF-κB pathways from initiation of tumor growth to inhibition. Observations of tumor volume in different animal models and treatment combinations reported a 6%-70% reduction as compared with conventional drugs. Despite these results, there is a general lack of research in magnetic nanotheranostics that link redox changes across multiple levels of organization in the tumor-bearing host. Further multidisciplinary studies with more focus on the relationship between the electron transport processes in biomolecules and their effects on the tumor-host interaction should accelerate the clinical translation of magnetic nanotheranostics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
{"title":"Nanotherapy based on magneto-mechanochemical modulation of tumor redox state.","authors":"Valerii B Orel, Αndreas S Papazoglou, Christos Tsagkaris, Dimitrios V Moysidis, Stavros Papadakos, Olexander Yu Galkin, Valerii E Orel, Liubov A Syvak","doi":"10.1002/wnan.1868","DOIUrl":"https://doi.org/10.1002/wnan.1868","url":null,"abstract":"<p><p>Magnetic nanoparticles (MNs) are typically used as contrast agents for magnetic resonance imaging or as drug carriers with a remotely controlled delivery to the tumor. However, they can also potentiate the action of anticancer drugs under the influence of applied constant magnetic (CMFs) and electromagnetic fields (EMFs). This review demonstrates the role of magneto-mechanochemical effects produced by MNs alone and loaded with anticancer agents (MNCs) in response to CMFs and EMFs for modulation of tumor redox state. The combined treatment is suggested to act by two mechanisms: spin-dependent electron transport propagates free radical chain reactions, while magnetomechanical interactions cause conformational changes in drug molecules loaded onto MNs and generate reactive oxygen species (ROS). By adjusting the parameters of CMFs and EMFs during the magneto-mechanochemical synthesis and subsequent treatment, it is possible to modulate ROS production and switch redox signaling involved in ERK1/2 and NF-κB pathways from initiation of tumor growth to inhibition. Observations of tumor volume in different animal models and treatment combinations reported a 6%-70% reduction as compared with conventional drugs. Despite these results, there is a general lack of research in magnetic nanotheranostics that link redox changes across multiple levels of organization in the tumor-bearing host. Further multidisciplinary studies with more focus on the relationship between the electron transport processes in biomolecules and their effects on the tumor-host interaction should accelerate the clinical translation of magnetic nanotheranostics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 3","pages":"e1868"},"PeriodicalIF":8.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9670837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomimetic antimicrobial polymers have been an area of great interest as the need for novel antimicrobial compounds grows due to the development of resistance. These polymers were designed and developed to mimic naturally occurring antimicrobial peptides in both physicochemical composition and mechanism of action. These antimicrobial peptide mimetic polymers have been extensively investigated using chemical, biophysical, microbiological, and computational approaches to gain a deeper understanding of the molecular interactions that drive function. These studies have helped inform SARs, mechanism of action, and general physicochemical factors that influence the activity and properties of antimicrobial polymers. However, there are still lingering questions in this field regarding 3D structural patterning, bioavailability, and applicability to alternative targets. In this review, we present a perspective on the development and characterization of several antimicrobial polymers and discuss novel applications of these molecules emerging in the field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
{"title":"Biomimetic antimicrobial polymers-Design, characterization, antimicrobial, and novel applications.","authors":"Haruko Takahashi, Iva Sovadinova, Kazuma Yasuhara, Satyavani Vemparala, Gregory A Caputo, Kenichi Kuroda","doi":"10.1002/wnan.1866","DOIUrl":"https://doi.org/10.1002/wnan.1866","url":null,"abstract":"<p><p>Biomimetic antimicrobial polymers have been an area of great interest as the need for novel antimicrobial compounds grows due to the development of resistance. These polymers were designed and developed to mimic naturally occurring antimicrobial peptides in both physicochemical composition and mechanism of action. These antimicrobial peptide mimetic polymers have been extensively investigated using chemical, biophysical, microbiological, and computational approaches to gain a deeper understanding of the molecular interactions that drive function. These studies have helped inform SARs, mechanism of action, and general physicochemical factors that influence the activity and properties of antimicrobial polymers. However, there are still lingering questions in this field regarding 3D structural patterning, bioavailability, and applicability to alternative targets. In this review, we present a perspective on the development and characterization of several antimicrobial polymers and discuss novel applications of these molecules emerging in the field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 3","pages":"e1866"},"PeriodicalIF":8.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9670840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soumyadip Dutta, Nehil Shreyash, Bhabani Kumar Satapathy, Sampa Saha
Grafting of polymer brush (assembly of polymer chains tethered to the substrate by one end) is emerging as one of the most viable approach to alter the surface of inorganic nanomaterials. Inorganic nanomaterials despite their intrinsic functional superiority, their applications remain restricted due to their incompatibility with organic or biological moieties vis-à-vis agglomeration issues. To overcome such a shortcoming, polymer brush modified surfaces of inorganic nanomaterials have lately proved to be of immense potential. For example, polymer brush-modified inorganic nanomaterials can act as efficient substrates/platforms in biomedical applications, ranging from drug-delivery to protein-array due to their integrated advantages such as amphiphilicity, stimuli responsiveness, enhanced biocompatibility, and so on. In this review, the current state of the art related to polymer brush-modified inorganic nanomaterials focusing, not only, on their synthetic strategies and applications in biomedical field but also the architectural influence of polymer brushes on the responsiveness properties of modified nanomaterials have comprehensively been discussed and its associated future perspective is also presented. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
{"title":"Advances in design of polymer brush functionalized inorganic nanomaterials and their applications in biomedical arena.","authors":"Soumyadip Dutta, Nehil Shreyash, Bhabani Kumar Satapathy, Sampa Saha","doi":"10.1002/wnan.1861","DOIUrl":"https://doi.org/10.1002/wnan.1861","url":null,"abstract":"<p><p>Grafting of polymer brush (assembly of polymer chains tethered to the substrate by one end) is emerging as one of the most viable approach to alter the surface of inorganic nanomaterials. Inorganic nanomaterials despite their intrinsic functional superiority, their applications remain restricted due to their incompatibility with organic or biological moieties vis-à-vis agglomeration issues. To overcome such a shortcoming, polymer brush modified surfaces of inorganic nanomaterials have lately proved to be of immense potential. For example, polymer brush-modified inorganic nanomaterials can act as efficient substrates/platforms in biomedical applications, ranging from drug-delivery to protein-array due to their integrated advantages such as amphiphilicity, stimuli responsiveness, enhanced biocompatibility, and so on. In this review, the current state of the art related to polymer brush-modified inorganic nanomaterials focusing, not only, on their synthetic strategies and applications in biomedical field but also the architectural influence of polymer brushes on the responsiveness properties of modified nanomaterials have comprehensively been discussed and its associated future perspective is also presented. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 3","pages":"e1861"},"PeriodicalIF":8.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9670834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qin Wang, E Pang, Qiuxia Tan, Shaojing Zhao, Jianing Yi, Jie Zeng, Minhuan Lan
As a new zero-dimensional carbon-based material, carbon dots (CDs) have attracted extensive attention owing to their advantages such as easy preparation and surface modification, good biocompatibility and water solubility, and tunable photochemical properties. CDs have become one of the most promising nanomaterials in the field of fluorescent sensing, bioimaging, and cancer therapy. How to precisely regulate the photochemical properties, especially the absorption, fluorescence, phosphorescence, reactive oxygen species generation, and photothermal conversion of the CDs, is the key to developing highly efficient phototheranostics for cancer treatment. Although many studies on cancer therapy using CDs have been published, no review has focused on the regulation of photochemical properties of CDs for phototheranostic applications. In this review, we summarized the strategies such as the selection of suitable carbon source, heteroatomic doping, optimum reaction conditions, surface modification, and assembly strategy to efficiently regulate the photochemical properties of the CDs to meet the requirements of different practical applications. This review might provide some valuable insight and new ideas for the development of CDs with excellent phototheranostic performance. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
{"title":"Regulating photochemical properties of carbon dots for theranostic applications.","authors":"Qin Wang, E Pang, Qiuxia Tan, Shaojing Zhao, Jianing Yi, Jie Zeng, Minhuan Lan","doi":"10.1002/wnan.1862","DOIUrl":"https://doi.org/10.1002/wnan.1862","url":null,"abstract":"<p><p>As a new zero-dimensional carbon-based material, carbon dots (CDs) have attracted extensive attention owing to their advantages such as easy preparation and surface modification, good biocompatibility and water solubility, and tunable photochemical properties. CDs have become one of the most promising nanomaterials in the field of fluorescent sensing, bioimaging, and cancer therapy. How to precisely regulate the photochemical properties, especially the absorption, fluorescence, phosphorescence, reactive oxygen species generation, and photothermal conversion of the CDs, is the key to developing highly efficient phototheranostics for cancer treatment. Although many studies on cancer therapy using CDs have been published, no review has focused on the regulation of photochemical properties of CDs for phototheranostic applications. In this review, we summarized the strategies such as the selection of suitable carbon source, heteroatomic doping, optimum reaction conditions, surface modification, and assembly strategy to efficiently regulate the photochemical properties of the CDs to meet the requirements of different practical applications. This review might provide some valuable insight and new ideas for the development of CDs with excellent phototheranostic performance. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 3","pages":"e1862"},"PeriodicalIF":8.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9733047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francisco Javier de la Mata, Rafael Gómez, Jesús Cano, Javier Sánchez-Nieves, Paula Ortega, Sandra García Gallego
Dendrimers are multifunctional molecules with well-defined size and structure due to the step-by-step synthetic procedures required in their preparation. Dendritic constructs based on carbosilane scaffolds present carbon-carbon and carbon-silicon bonds, which results in stable, lipophilic, inert, and flexible structures. These properties are highly appreciated in different areas, including the pharmaceutical field, as they can increase the interaction with cell membranes and improve the therapeutic action. This article summarizes the most recent advances in the pharmaceutical applications of carbosilane dendritic molecules, from therapeutics to diagnostics and prevention tools. Dendrimers decorated with cationic, anionic, or other moieties, including metallodendrimers; supramolecular assemblies; dendronized nanoparticles and surfaces; as well as dendritic networks like hydrogels are described. The collected examples confirm the potential of carbosilane dendrimers and dendritic materials as antiviral or antibacterial agents; in therapy against cancer, neurodegenerative disease, or oxidative stress; or many other biomedical applications. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
{"title":"Carbosilane dendritic nanostructures, highly versatile platforms for pharmaceutical applications.","authors":"Francisco Javier de la Mata, Rafael Gómez, Jesús Cano, Javier Sánchez-Nieves, Paula Ortega, Sandra García Gallego","doi":"10.1002/wnan.1871","DOIUrl":"https://doi.org/10.1002/wnan.1871","url":null,"abstract":"<p><p>Dendrimers are multifunctional molecules with well-defined size and structure due to the step-by-step synthetic procedures required in their preparation. Dendritic constructs based on carbosilane scaffolds present carbon-carbon and carbon-silicon bonds, which results in stable, lipophilic, inert, and flexible structures. These properties are highly appreciated in different areas, including the pharmaceutical field, as they can increase the interaction with cell membranes and improve the therapeutic action. This article summarizes the most recent advances in the pharmaceutical applications of carbosilane dendritic molecules, from therapeutics to diagnostics and prevention tools. Dendrimers decorated with cationic, anionic, or other moieties, including metallodendrimers; supramolecular assemblies; dendronized nanoparticles and surfaces; as well as dendritic networks like hydrogels are described. The collected examples confirm the potential of carbosilane dendrimers and dendritic materials as antiviral or antibacterial agents; in therapy against cancer, neurodegenerative disease, or oxidative stress; or many other biomedical applications. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 3","pages":"e1871"},"PeriodicalIF":8.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9677669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Allison N DuRoss, Jack Phan, Alexander J Lazar, Joshua M Walker, Alexander R Guimaraes, Carole Baas, Sunil Krishnan, Charles R Thomas, Conroy Sun, Alexander F Bagley
Radioenhancing nanoparticles (NPs) are being evaluated in ongoing clinical trials for various cancers including head and neck, lung, esophagus, pancreas, prostate, and soft tissue sarcoma. Supported by decades of preclinical investigation and recent randomized trial data establishing clinical activity, these agents are poised to influence future multimodality treatment paradigms involving radiotherapy. Although the physical interactions between NPs and ionizing radiation are well characterized, less is known about how these agents modify the tumor microenvironment, particularly regarding tumor immunogenicity. In this review, we describe the key multidisciplinary considerations related to radiation, surgery, immunology, and pathology for designing radioenhancing NP clinical trials. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
{"title":"Radiotherapy reimagined: Integrating nanomedicines into radiotherapy clinical trials.","authors":"Allison N DuRoss, Jack Phan, Alexander J Lazar, Joshua M Walker, Alexander R Guimaraes, Carole Baas, Sunil Krishnan, Charles R Thomas, Conroy Sun, Alexander F Bagley","doi":"10.1002/wnan.1867","DOIUrl":"https://doi.org/10.1002/wnan.1867","url":null,"abstract":"<p><p>Radioenhancing nanoparticles (NPs) are being evaluated in ongoing clinical trials for various cancers including head and neck, lung, esophagus, pancreas, prostate, and soft tissue sarcoma. Supported by decades of preclinical investigation and recent randomized trial data establishing clinical activity, these agents are poised to influence future multimodality treatment paradigms involving radiotherapy. Although the physical interactions between NPs and ionizing radiation are well characterized, less is known about how these agents modify the tumor microenvironment, particularly regarding tumor immunogenicity. In this review, we describe the key multidisciplinary considerations related to radiation, surgery, immunology, and pathology for designing radioenhancing NP clinical trials. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 3","pages":"e1867"},"PeriodicalIF":8.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9678623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magnetically-activated lipid nanocarriers have become a research hotspot in the field of biomedicine. Liposomes and other lipid-based carriers possess good biocompatibility as well as the ability to carrying therapeutic cargo with a range of physicochemical properties. Previous studies have demonstrated that magnetic materials have potential wide applications in clinical diagnosis and therapy, such as in MRI as contrast agents and in hyperthermic obliteration of cancer tissues. More recently magneto-thermal activation of lipid carriers to stimulate drug release has extended the range of further therapeutic benefits. Here, an overview of the current development of magnetically-activated lipid nanocarriers in the field of biomedicine is provided, including the methods of fabrication of the nanocarriers and their in vitro and in vivo performance. A discussion of the current barriers to translation of these materials as medicines is provided in the context of clinical and regulatory complexities of using magnetically responsive materials in therapeutic applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
{"title":"Magnetically-activated lipid nanocarriers in biomedical applications: A review of current status and perspective.","authors":"Xiaohan Sun, Angel Tan, Ben J Boyd","doi":"10.1002/wnan.1863","DOIUrl":"https://doi.org/10.1002/wnan.1863","url":null,"abstract":"<p><p>Magnetically-activated lipid nanocarriers have become a research hotspot in the field of biomedicine. Liposomes and other lipid-based carriers possess good biocompatibility as well as the ability to carrying therapeutic cargo with a range of physicochemical properties. Previous studies have demonstrated that magnetic materials have potential wide applications in clinical diagnosis and therapy, such as in MRI as contrast agents and in hyperthermic obliteration of cancer tissues. More recently magneto-thermal activation of lipid carriers to stimulate drug release has extended the range of further therapeutic benefits. Here, an overview of the current development of magnetically-activated lipid nanocarriers in the field of biomedicine is provided, including the methods of fabrication of the nanocarriers and their in vitro and in vivo performance. A discussion of the current barriers to translation of these materials as medicines is provided in the context of clinical and regulatory complexities of using magnetically responsive materials in therapeutic applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 3","pages":"e1863"},"PeriodicalIF":8.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9677672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}