We present an updated report highlighting significant developments in the field of xenotransplantation since March 2023. The past six months have witnessed significant strides in the field and the emergence of novel research that is expected to facilitate the journey towards clinical trials. We are reviewing here the most pertinent findings from March 2023 to November 2023.
{"title":"Xenotransplantation literature update March 2023-November 2023.","authors":"Shani Kamberi, Raphael P H Meier","doi":"10.1111/xen.12837","DOIUrl":"10.1111/xen.12837","url":null,"abstract":"<p><p>We present an updated report highlighting significant developments in the field of xenotransplantation since March 2023. The past six months have witnessed significant strides in the field and the emergence of novel research that is expected to facilitate the journey towards clinical trials. We are reviewing here the most pertinent findings from March 2023 to November 2023.</p>","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":"31 1","pages":"e12837"},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Corbin E Goerlich, Shani S Kamberi, Joseph Ladowski, Antonio Citro, Margaret Connolly, Konrad Fischer, Evelyn J Salvaris, Avneesh K Singh, Yi Wang, Jeffrey Stern, Raphael P H Meier
The 2023 IXA conference, hosted in San Diego, CA, brimmed with excitement against the backdrop of recent innovations in both the pre-clinical and clinical realms with several first-in-human applications of xenotransplantation. The theme, "Pigs are flying," alluded to the adage that xenotransplantation would only become a clinical reality "when pigs fly," suggesting a day that might never come. The event witnessed significant attendance, with 600 participants-the highest in the history of an IXA-IPITA joint congress. Among the attendees were members of the Food and Drug Administration (FDA), the National Institutes of Health (NIH), and corporate sponsors deeply engaged in the field. We summarize the latest topics from the congress, ranging from the pros/cons of decedent models of xenotransplantation and genetic engineering of porcine heart valves, solid organs, and cells for clinical translation and their regulatory and ethical landscape.
{"title":"The Young Investigator Committee of the International Xenotransplantation Association-Perspective of advancements in the field in 2023.","authors":"Corbin E Goerlich, Shani S Kamberi, Joseph Ladowski, Antonio Citro, Margaret Connolly, Konrad Fischer, Evelyn J Salvaris, Avneesh K Singh, Yi Wang, Jeffrey Stern, Raphael P H Meier","doi":"10.1111/xen.12845","DOIUrl":"https://doi.org/10.1111/xen.12845","url":null,"abstract":"<p><p>The 2023 IXA conference, hosted in San Diego, CA, brimmed with excitement against the backdrop of recent innovations in both the pre-clinical and clinical realms with several first-in-human applications of xenotransplantation. The theme, \"Pigs are flying,\" alluded to the adage that xenotransplantation would only become a clinical reality \"when pigs fly,\" suggesting a day that might never come. The event witnessed significant attendance, with 600 participants-the highest in the history of an IXA-IPITA joint congress. Among the attendees were members of the Food and Drug Administration (FDA), the National Institutes of Health (NIH), and corporate sponsors deeply engaged in the field. We summarize the latest topics from the congress, ranging from the pros/cons of decedent models of xenotransplantation and genetic engineering of porcine heart valves, solid organs, and cells for clinical translation and their regulatory and ethical landscape.</p>","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":"31 1","pages":"e12845"},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139973660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Porcine tissues display a great potential as donor tissues in xenotransplantation, including cell therapy. Cryopreserving clinical grade porcine tissue and using it as a source for establishing therapeutic cells should be advantageous for transportation and scheduled manufacturing of MSCs. Of note, we previously performed encapsulated porcine islet transplantation for the treatment of unstable type 1 diabetes mellitus in the clinical setting. It has been reported that co-transplantation of islets and Mesenchymal stem cells (MSCs) enhanced efficacy. We assume that co-transplantation of porcine islets and porcine islet-derived MSCs could improve the efficacy of clinical islet xenotransplantation.
Methods: MSCs were established from fresh and cryopreserved non-clinical grade neonatal porcine islets and bone marrow (termed non-clinical grade npISLET-MSCs and npBM-MSCs, respectively), as well as from cryopreserved clinical grade neonatal porcine islets (termed clinical grade npISLET-MSCs). Subsequently, the cell proliferation rate and diameter, surface marker expression, adipogenesis, osteogenesis, and colony-forming efficiency of the MSCs were assessed.
Results: Cell proliferation rate and diameter did not differ between clinical grade and non-clinical grade npISLET-MSCs. However, non-clinical grade npBM-MSCs were significantly shorter and smaller than both npISLET-MSCs (p < 0.05). MSC markers (CD29, CD44, and CD90) were strongly expressed in clinical grade npISLET-MSCs and non-clinical grade npISLET-MSCs and npBM-MSCs. The expression of MSC-negative markers CD31, CD34, and SLA-DR was low in all MSCs. Clinical grade npISLET-MSCs derived from adipose and osteoid tissues were positive for Oil Red and alkaline phosphatase staining. The results of colony-forming assay were not significantly different between clinical grade npISLET-MSCs and non-clinical grade npBM-MSCs.
Conclusion: The method described herein was successful in of developing clinical grade npISLET-MSCs from cryopreserved islets. Cryopreserved clinical grade porcine islets could be an excellent stable source of MSCs for cell therapy.
{"title":"Development and characterization of islet-derived mesenchymal stem cells from clinical grade neonatal porcine cryopreserved islets.","authors":"Takeshi Kikuchi, Masuhiro Nishimura, Natsuki Komori, Naho Iizuka, Takeshige Otoi, Shinichi Matsumoto","doi":"10.1111/xen.12831","DOIUrl":"10.1111/xen.12831","url":null,"abstract":"<p><strong>Background: </strong>Porcine tissues display a great potential as donor tissues in xenotransplantation, including cell therapy. Cryopreserving clinical grade porcine tissue and using it as a source for establishing therapeutic cells should be advantageous for transportation and scheduled manufacturing of MSCs. Of note, we previously performed encapsulated porcine islet transplantation for the treatment of unstable type 1 diabetes mellitus in the clinical setting. It has been reported that co-transplantation of islets and Mesenchymal stem cells (MSCs) enhanced efficacy. We assume that co-transplantation of porcine islets and porcine islet-derived MSCs could improve the efficacy of clinical islet xenotransplantation.</p><p><strong>Methods: </strong>MSCs were established from fresh and cryopreserved non-clinical grade neonatal porcine islets and bone marrow (termed non-clinical grade npISLET-MSCs and npBM-MSCs, respectively), as well as from cryopreserved clinical grade neonatal porcine islets (termed clinical grade npISLET-MSCs). Subsequently, the cell proliferation rate and diameter, surface marker expression, adipogenesis, osteogenesis, and colony-forming efficiency of the MSCs were assessed.</p><p><strong>Results: </strong>Cell proliferation rate and diameter did not differ between clinical grade and non-clinical grade npISLET-MSCs. However, non-clinical grade npBM-MSCs were significantly shorter and smaller than both npISLET-MSCs (p < 0.05). MSC markers (CD29, CD44, and CD90) were strongly expressed in clinical grade npISLET-MSCs and non-clinical grade npISLET-MSCs and npBM-MSCs. The expression of MSC-negative markers CD31, CD34, and SLA-DR was low in all MSCs. Clinical grade npISLET-MSCs derived from adipose and osteoid tissues were positive for Oil Red and alkaline phosphatase staining. The results of colony-forming assay were not significantly different between clinical grade npISLET-MSCs and non-clinical grade npBM-MSCs.</p><p><strong>Conclusion: </strong>The method described herein was successful in of developing clinical grade npISLET-MSCs from cryopreserved islets. Cryopreserved clinical grade porcine islets could be an excellent stable source of MSCs for cell therapy.</p>","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":" ","pages":"e12831"},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41239050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-10-21DOI: 10.1111/xen.12833
Isabel DeLaura, Joanna Zikos, Imran J Anwar, Janghoon Yoon, Joseph Ladowski, Annette Jackson, Koen Van Rompay, Diogo Magnani, Stuart J Knechtle, Jean Kwun
Background: Highly sensitized patients face many barriers to kidney transplantation, including higher rates of antibody-mediated rejection after HLA-incompatible transplant. IdeS, an endopeptidase that cleaves IgG nonspecifically, has been trialed as desensitization prior to kidney transplant, and successfully cleaves donor-specific antibody (DSA), albeit with rebound.
Methods: IdeS was generated and tested (2 mg/kg, IV) in two naïve and four allosensitized nonhuman primates (NHP). Peripheral blood samples were collected at regular intervals following IdeS administration. Total IgG, total IgM, and anti-CMV antibodies were quantified with ELISA, and donor-specific antibody (DSA) and anti-pig antibodies were evaluated using flow cytometric crossmatch. B cell populations were assessed using flow cytometry.
Results: IdeS successfully cleaved rhesus IgG in vitro. In allosensitized NHP, robust reduction of total, DSA, anti-pig, and anti-CMV IgG was observed within one day following IdeS administration. Rapid rebound of all IgG antibody populations was observed, with antibody levels returning to baseline around day 14 post-infusion. Total IgM level was not affected by IdeS. Interestingly, a comparable reduction in antibody populations was observed after the second dose of IdeS. However, we have not observed any significant modulation of B cell subpopulations after IdeS.
Conclusions: This study evaluated efficacy of IdeS in the allosensitized NHP in IgG with various specificities, mirroring antibody kinetics in human patients. The efficacy of IdeS on preexisting anti-pig antibodies may be useful in clinical xenotransplantation. However, given the limitation of IdeS on its durability as a monotherapy, optimization of IdeS with other agents targeting the humoral response is further needed.
{"title":"The impact of IdeS (imlifidase) on allo-specific, xeno-reactive, and protective antibodies in a sensitized rhesus macaque model.","authors":"Isabel DeLaura, Joanna Zikos, Imran J Anwar, Janghoon Yoon, Joseph Ladowski, Annette Jackson, Koen Van Rompay, Diogo Magnani, Stuart J Knechtle, Jean Kwun","doi":"10.1111/xen.12833","DOIUrl":"10.1111/xen.12833","url":null,"abstract":"<p><strong>Background: </strong>Highly sensitized patients face many barriers to kidney transplantation, including higher rates of antibody-mediated rejection after HLA-incompatible transplant. IdeS, an endopeptidase that cleaves IgG nonspecifically, has been trialed as desensitization prior to kidney transplant, and successfully cleaves donor-specific antibody (DSA), albeit with rebound.</p><p><strong>Methods: </strong>IdeS was generated and tested (2 mg/kg, IV) in two naïve and four allosensitized nonhuman primates (NHP). Peripheral blood samples were collected at regular intervals following IdeS administration. Total IgG, total IgM, and anti-CMV antibodies were quantified with ELISA, and donor-specific antibody (DSA) and anti-pig antibodies were evaluated using flow cytometric crossmatch. B cell populations were assessed using flow cytometry.</p><p><strong>Results: </strong>IdeS successfully cleaved rhesus IgG in vitro. In allosensitized NHP, robust reduction of total, DSA, anti-pig, and anti-CMV IgG was observed within one day following IdeS administration. Rapid rebound of all IgG antibody populations was observed, with antibody levels returning to baseline around day 14 post-infusion. Total IgM level was not affected by IdeS. Interestingly, a comparable reduction in antibody populations was observed after the second dose of IdeS. However, we have not observed any significant modulation of B cell subpopulations after IdeS.</p><p><strong>Conclusions: </strong>This study evaluated efficacy of IdeS in the allosensitized NHP in IgG with various specificities, mirroring antibody kinetics in human patients. The efficacy of IdeS on preexisting anti-pig antibodies may be useful in clinical xenotransplantation. However, given the limitation of IdeS on its durability as a monotherapy, optimization of IdeS with other agents targeting the humoral response is further needed.</p>","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":" ","pages":"e12833"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10999173/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49682956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joachim Denner, Hina Jhelum, Sabrina Hansen, Benedikt B. Kaufer
The porcine cytomegalovirus, a porcine roseolovirus (PCMV/PRV), is widely distributed in pig populations. It has been shown that PCMV/PRV was transmitted by pig xenotransplants to non-human primates, and significantly reduced the survival time of the recipient. PCMV/PRV was also transmitted during the first transplantation of a pig heart into a human patient. PCMV/PRV establishes a lifelong persistent infection (latency) in the host, is difficult to detect in this stage, and consequential poses a threat to future clinical xenotransplantations. Therefore, sensitive and specific methods and goal-oriented strategies how, when, and where to test should be used for screening donor pigs.
{"title":"Comparison of methods for the detection of porcine cytomegalovirus/roseolovirus in relation to biosafety monitoring of xenotransplantation products","authors":"Joachim Denner, Hina Jhelum, Sabrina Hansen, Benedikt B. Kaufer","doi":"10.1111/xen.12835","DOIUrl":"https://doi.org/10.1111/xen.12835","url":null,"abstract":"The porcine cytomegalovirus, a porcine roseolovirus (PCMV/PRV), is widely distributed in pig populations. It has been shown that PCMV/PRV was transmitted by pig xenotransplants to non-human primates, and significantly reduced the survival time of the recipient. PCMV/PRV was also transmitted during the first transplantation of a pig heart into a human patient. PCMV/PRV establishes a lifelong persistent infection (latency) in the host, is difficult to detect in this stage, and consequential poses a threat to future clinical xenotransplantations. Therefore, sensitive and specific methods and goal-oriented strategies how, when, and where to test should be used for screening donor pigs.","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":"21 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138630483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evelyn J Salvaris, Nella Fisicaro, Stephen McIlfatrick, Adwin Thomas, Erin Fuller, Andrew M Lew, Mark B Nottle, Wayne J Hawthorne, Peter J Cowan
<p><strong>Background: </strong>Pig islet xenotransplantation is a potential treatment for type 1 diabetes. We have shown that maintenance immunosuppression is required to protect genetically modified (GM) porcine islet xenografts from T cell-mediated rejection in baboons. Local expression of a depleting anti-CD2 monoclonal antibody (mAb) by the xenograft may provide an alternative solution. We have previously reported the generation of GGTA1 knock-in transgenic pigs expressing the chimeric anti-CD2 mAb diliximab under an MHC class I promoter (MHCIP). In this study, we generated GGTA1 knock-in pigs in which MHCIP was replaced by the β-cell-specific porcine insulin promoter (PIP), and compared the pattern of diliximab expression in the two lines.</p><p><strong>Methods: </strong>A PIP-diliximab knock-in construct was prepared and validated by transfection of NIT-1 mouse insulinoma cells. The construct was knocked into GGTA1 in wild type (WT) porcine fetal fibroblasts using CRISPR, and knock-in cells were used to generate pigs by somatic cell nuclear transfer (SCNT). Expression of the transgene in MHCIP-diliximab and PIP-diliximab knock-in pigs was characterised at the mRNA and protein levels using RT-qPCR, flow cytometry, ELISA and immunohistochemistry. Islets from MHCIP-diliximab and control GGTA1 KO neonatal pigs were transplanted under the kidney capsule of streptozotocin-diabetic SCID mice.</p><p><strong>Results: </strong>NIT-1 cells stably transfected with the PIP-diliximab knock-in construct secreted diliximab into the culture supernatant, confirming correct expression and processing of the mAb in β cells. PIP-diliximab knock-in pigs showed a precise integration of the transgene within GGTA1. Diliximab mRNA was detected in all tissues tested (spleen, kidney, heart, liver, lung, pancreas) in MHCIP-diliximab pigs, but was not detectable in PIP-diliximab pigs. Likewise, diliximab was present in the serum of MHCIP-diliximab pigs, at a mean concentration of 1.8 μg/mL, but was not detected in PIP-diliximab pig serum. An immunohistochemical survey revealed staining for diliximab in all organs of MHCIP-diliximab pigs but not of PIP-diliximab pigs. Whole genome sequencing (WGS) of a PIP-diliximab pig identified a missense mutation in the coding region for the dixilimab light chain. This mutation was also found to be present in the fibroblast knock-in clone used to generate the PIP-diliximab pigs. Islet xenografts from neonatal MHCIP-diliximab pigs restored normoglycemia in diabetic immunodeficient mice, indicating no overt effect of the transgene on islet function, and demonstrated expression of diliximab in situ.</p><p><strong>Conclusion: </strong>Diliximab was widely expressed in MHCIP-diliximab pigs, including in islets, consistent with the endogenous expression pattern of MHC class I. Further investigation is required to determine whether the level of expression in islets from the MHCIP-diliximab pigs is sufficient to prevent T cell-mediated islet
{"title":"Characterisation of transgenic pigs expressing a human T cell-depleting anti-CD2 monoclonal antibody.","authors":"Evelyn J Salvaris, Nella Fisicaro, Stephen McIlfatrick, Adwin Thomas, Erin Fuller, Andrew M Lew, Mark B Nottle, Wayne J Hawthorne, Peter J Cowan","doi":"10.1111/xen.12836","DOIUrl":"10.1111/xen.12836","url":null,"abstract":"<p><strong>Background: </strong>Pig islet xenotransplantation is a potential treatment for type 1 diabetes. We have shown that maintenance immunosuppression is required to protect genetically modified (GM) porcine islet xenografts from T cell-mediated rejection in baboons. Local expression of a depleting anti-CD2 monoclonal antibody (mAb) by the xenograft may provide an alternative solution. We have previously reported the generation of GGTA1 knock-in transgenic pigs expressing the chimeric anti-CD2 mAb diliximab under an MHC class I promoter (MHCIP). In this study, we generated GGTA1 knock-in pigs in which MHCIP was replaced by the β-cell-specific porcine insulin promoter (PIP), and compared the pattern of diliximab expression in the two lines.</p><p><strong>Methods: </strong>A PIP-diliximab knock-in construct was prepared and validated by transfection of NIT-1 mouse insulinoma cells. The construct was knocked into GGTA1 in wild type (WT) porcine fetal fibroblasts using CRISPR, and knock-in cells were used to generate pigs by somatic cell nuclear transfer (SCNT). Expression of the transgene in MHCIP-diliximab and PIP-diliximab knock-in pigs was characterised at the mRNA and protein levels using RT-qPCR, flow cytometry, ELISA and immunohistochemistry. Islets from MHCIP-diliximab and control GGTA1 KO neonatal pigs were transplanted under the kidney capsule of streptozotocin-diabetic SCID mice.</p><p><strong>Results: </strong>NIT-1 cells stably transfected with the PIP-diliximab knock-in construct secreted diliximab into the culture supernatant, confirming correct expression and processing of the mAb in β cells. PIP-diliximab knock-in pigs showed a precise integration of the transgene within GGTA1. Diliximab mRNA was detected in all tissues tested (spleen, kidney, heart, liver, lung, pancreas) in MHCIP-diliximab pigs, but was not detectable in PIP-diliximab pigs. Likewise, diliximab was present in the serum of MHCIP-diliximab pigs, at a mean concentration of 1.8 μg/mL, but was not detected in PIP-diliximab pig serum. An immunohistochemical survey revealed staining for diliximab in all organs of MHCIP-diliximab pigs but not of PIP-diliximab pigs. Whole genome sequencing (WGS) of a PIP-diliximab pig identified a missense mutation in the coding region for the dixilimab light chain. This mutation was also found to be present in the fibroblast knock-in clone used to generate the PIP-diliximab pigs. Islet xenografts from neonatal MHCIP-diliximab pigs restored normoglycemia in diabetic immunodeficient mice, indicating no overt effect of the transgene on islet function, and demonstrated expression of diliximab in situ.</p><p><strong>Conclusion: </strong>Diliximab was widely expressed in MHCIP-diliximab pigs, including in islets, consistent with the endogenous expression pattern of MHC class I. Further investigation is required to determine whether the level of expression in islets from the MHCIP-diliximab pigs is sufficient to prevent T cell-mediated islet","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":" ","pages":"e12836"},"PeriodicalIF":3.9,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92156865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-11-16DOI: 10.1111/xen.12834
Christopher Burlak, Zheng Yu Wang, Greg Martens, Jose Estrada, Luz Reyes, Victor Manuel Novara Gennuso, Rodrigo Vianna, Matt Tector, Alfred Joseph Tector
Pig liver xenotransplantation is limited by a thrombocytopenic coagulopathy that occurs immediately following graft reperfusion. In vitro and ex vivo studies from our lab suggested that the thrombocytopenia may be the result of a species incompatibility in platelet glycosylation. Realization that platelet α-granules contain antibodies caused us to reevaluate whether the thrombocytopenia in liver xenotransplantation could occur because IgM and IgG from inside platelet α-granules bound to pig liver sinusoidal endothelial cells (LSECs). Our in vitro analysis of IgM and IgG from inside α-granules showed that platelets do carry xenoreactive antibodies that can bind to known xenoantigens. This study suggests that thrombocytopenia occurring following liver xenotransplantation could occur because of xenoreactive antibodies tethering human platelets to the pig LSEC enabling the platelet to be phagocytosed. These results suggest genetic engineering strategies aimed at reducing xenoantigens on the surface of pig LSEC will be effective in eliminating the thrombocytopenia that limits survival in liver xenotransplantation.
{"title":"Xenoreactive antibodies in α-granules of human platelets bind pig liver endothelial cells.","authors":"Christopher Burlak, Zheng Yu Wang, Greg Martens, Jose Estrada, Luz Reyes, Victor Manuel Novara Gennuso, Rodrigo Vianna, Matt Tector, Alfred Joseph Tector","doi":"10.1111/xen.12834","DOIUrl":"10.1111/xen.12834","url":null,"abstract":"<p><p>Pig liver xenotransplantation is limited by a thrombocytopenic coagulopathy that occurs immediately following graft reperfusion. In vitro and ex vivo studies from our lab suggested that the thrombocytopenia may be the result of a species incompatibility in platelet glycosylation. Realization that platelet α-granules contain antibodies caused us to reevaluate whether the thrombocytopenia in liver xenotransplantation could occur because IgM and IgG from inside platelet α-granules bound to pig liver sinusoidal endothelial cells (LSECs). Our in vitro analysis of IgM and IgG from inside α-granules showed that platelets do carry xenoreactive antibodies that can bind to known xenoantigens. This study suggests that thrombocytopenia occurring following liver xenotransplantation could occur because of xenoreactive antibodies tethering human platelets to the pig LSEC enabling the platelet to be phagocytosed. These results suggest genetic engineering strategies aimed at reducing xenoantigens on the surface of pig LSEC will be effective in eliminating the thrombocytopenia that limits survival in liver xenotransplantation.</p>","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":" ","pages":"e12834"},"PeriodicalIF":3.9,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136399507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-09-15DOI: 10.1111/xen.12827
Kim Solez, Elisa Gordon, Alton Brad Farris, Lynn Cornell
{"title":"Open invitation to contribute ideas to a multifaceted approach to ethics in xenotransplantation.","authors":"Kim Solez, Elisa Gordon, Alton Brad Farris, Lynn Cornell","doi":"10.1111/xen.12827","DOIUrl":"10.1111/xen.12827","url":null,"abstract":"","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":" ","pages":"e12827"},"PeriodicalIF":3.9,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10591749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-12-13DOI: 10.1111/xen.12839
David Bennett
{"title":"A message from Mr. David Bennett Jr., the son of the first patient to receive a gene-edited pig heart transplant.","authors":"David Bennett","doi":"10.1111/xen.12839","DOIUrl":"10.1111/xen.12839","url":null,"abstract":"","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":"30 6","pages":"e12839"},"PeriodicalIF":3.9,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138804428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-09-15DOI: 10.1111/xen.12826
Marinko Sremac, Hao Luo, Hongping Deng, Madeline F E Parr, Jessica Hutcheson, Pushkar S Verde, David A Alagpulinsa, Jenna Miner Kitzmann, Klearchos K Papas, Timothy Brauns, James F Markmann, Ji Lei, Mark C Poznansky
Replacement of insulin-producing pancreatic beta-cells by islet transplantation offers a functional cure for type-1 diabetes (T1D). We recently demonstrated that a clinical grade alginate micro-encapsulant incorporating the immune-repellent chemokine and pro-survival factor CXCL12 could protect and sustain the integrity and function of autologous islets in healthy non-human primates (NHPs) without systemic immune suppression. In this pilot study, we examined the impact of the CXCL12 micro encapsulant on the function and inflammatory and immune responses of xenogeneic islets transplanted into the omental tissue bilayer sac (OB; n = 4) and diabetic (n = 1) NHPs. Changes in the expression of cytokines after implantation were limited to 2-6-fold changes in blood, most of which did not persist over the first 4 weeks after implantation. Flow cytometry of PBMCs following transplantation showed minimal changes in IFNγ or TNFα expression on xenoantigen-specific CD4+ or CD8+ T cells compared to unstimulated cells, and these occurred mainly in the first 4 weeks. Microbeads were readily retrievable for assessment at day 90 and day 180 and at retrieval were without microscopic signs of degradation or foreign body responses (FBR). In vitro and immunohistochemistry studies of explanted microbeads indicated the presence of functional xenogeneic islets at day 30 post transplantation in all biopsied NHPs. These results from a small pilot study revealed that CXCL12-microencapsulated xenogeneic islets abrogate inflammatory and adaptive immune responses to the xenograft. This work paves the way toward future larger scale studies of the transplantation of alginate microbeads with CXCL12 and porcine or human stem cell-derived beta cells or allogeneic islets into diabetic NHPs without systemic immunosuppression.
{"title":"Short-term function and immune-protection of microencapsulated adult porcine islets with alginate incorporating CXCL12 in healthy and diabetic non-human primates without systemic immune suppression: A pilot study.","authors":"Marinko Sremac, Hao Luo, Hongping Deng, Madeline F E Parr, Jessica Hutcheson, Pushkar S Verde, David A Alagpulinsa, Jenna Miner Kitzmann, Klearchos K Papas, Timothy Brauns, James F Markmann, Ji Lei, Mark C Poznansky","doi":"10.1111/xen.12826","DOIUrl":"10.1111/xen.12826","url":null,"abstract":"<p><p>Replacement of insulin-producing pancreatic beta-cells by islet transplantation offers a functional cure for type-1 diabetes (T1D). We recently demonstrated that a clinical grade alginate micro-encapsulant incorporating the immune-repellent chemokine and pro-survival factor CXCL12 could protect and sustain the integrity and function of autologous islets in healthy non-human primates (NHPs) without systemic immune suppression. In this pilot study, we examined the impact of the CXCL12 micro encapsulant on the function and inflammatory and immune responses of xenogeneic islets transplanted into the omental tissue bilayer sac (OB; n = 4) and diabetic (n = 1) NHPs. Changes in the expression of cytokines after implantation were limited to 2-6-fold changes in blood, most of which did not persist over the first 4 weeks after implantation. Flow cytometry of PBMCs following transplantation showed minimal changes in IFNγ or TNFα expression on xenoantigen-specific CD4<sup>+</sup> or CD8<sup>+</sup> T cells compared to unstimulated cells, and these occurred mainly in the first 4 weeks. Microbeads were readily retrievable for assessment at day 90 and day 180 and at retrieval were without microscopic signs of degradation or foreign body responses (FBR). In vitro and immunohistochemistry studies of explanted microbeads indicated the presence of functional xenogeneic islets at day 30 post transplantation in all biopsied NHPs. These results from a small pilot study revealed that CXCL12-microencapsulated xenogeneic islets abrogate inflammatory and adaptive immune responses to the xenograft. This work paves the way toward future larger scale studies of the transplantation of alginate microbeads with CXCL12 and porcine or human stem cell-derived beta cells or allogeneic islets into diabetic NHPs without systemic immunosuppression.</p>","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":" ","pages":"e12826"},"PeriodicalIF":3.9,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10242269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}