Film cooling performances of three film holes have been numerical researched in this paper, including a lateral inclined cylindrical hole, a fan-shaped hole and a y-shaped hole. The simulation is computed by the commercial software Fluent based on Reynolds Averaged Navier-Stokes (RANS) equations and realizable k-ε turbulence model with enhanced wall treatment. The y-shaped hole is a novel film hole developed from the lateral inclined cylindrical hole. With inner crossflow, the jet of the lateral inclined cylindrical hole performs to be two streams as a result of the helical motion in the hole. Accordingly, the hole exit was optimized with two expansions: one is expanded along the lateral inclined direction and the other is expanded along the mainstream flow direction. The lateral inclined cylindrical hole with two expansions at the exit is named the y-shaped hole. Compared to the fundamental lateral inclined cylindrical hole, the y-shaped hole has different counter-rotating vortices and much better film coverage. Experiments have been conducted to test the film cooling performance of the y-shaped hole. Compared to the lateral inclined cylindrical hole, much higher film cooling effectiveness has been measured in the y-shaped hole as a result of the enhanced lateral film coverage and the weakened film dissipation in the streamwise direction. The film performance of the y-shaped hole rises with the increase of the blowing ratio. At M = 2.0, the film of the y-shaped hole keeps close to the wall while the film of the lateral inclined cylindrical hole is completely lifted up, resulting in the increase of the area average film cooling effectiveness up to 128.7%.
{"title":"Advanced Film Cooling Performance of a Y-Shaped Hole With Inner Crossflow","authors":"Jian-xia Luo, Cun-liang Liu, Hui-ren Zhu","doi":"10.1115/GT2018-75992","DOIUrl":"https://doi.org/10.1115/GT2018-75992","url":null,"abstract":"Film cooling performances of three film holes have been numerical researched in this paper, including a lateral inclined cylindrical hole, a fan-shaped hole and a y-shaped hole. The simulation is computed by the commercial software Fluent based on Reynolds Averaged Navier-Stokes (RANS) equations and realizable k-ε turbulence model with enhanced wall treatment.\u0000 The y-shaped hole is a novel film hole developed from the lateral inclined cylindrical hole. With inner crossflow, the jet of the lateral inclined cylindrical hole performs to be two streams as a result of the helical motion in the hole. Accordingly, the hole exit was optimized with two expansions: one is expanded along the lateral inclined direction and the other is expanded along the mainstream flow direction. The lateral inclined cylindrical hole with two expansions at the exit is named the y-shaped hole. Compared to the fundamental lateral inclined cylindrical hole, the y-shaped hole has different counter-rotating vortices and much better film coverage.\u0000 Experiments have been conducted to test the film cooling performance of the y-shaped hole. Compared to the lateral inclined cylindrical hole, much higher film cooling effectiveness has been measured in the y-shaped hole as a result of the enhanced lateral film coverage and the weakened film dissipation in the streamwise direction. The film performance of the y-shaped hole rises with the increase of the blowing ratio. At M = 2.0, the film of the y-shaped hole keeps close to the wall while the film of the lateral inclined cylindrical hole is completely lifted up, resulting in the increase of the area average film cooling effectiveness up to 128.7%.","PeriodicalId":239866,"journal":{"name":"Volume 5C: Heat Transfer","volume":"82 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126250240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper investigates the aerodynamic and film cooling characteristics of a first stage turbine high lift blade. The blade operating conditions are representative of those normally found in a heavy-duty gas turbine. The airfoil incorporates several rows of film cooling holes located at various axial positions along the airfoil chord and the blade tip. Additionally the impact of the platform leading edge rim purge flow has been investigated and its interaction with the airfoil aerodynamic and film cooling characteristics. The film cooling holes are geometrically three-dimensional in shape, and depending on the location on the airfoil, they consist of various fan shapes, which are either compounded or in-line with the external main flow direction. Numerical studies and experimental investigations in a linear cascade have been conducted for a range of exit Mach and Reynolds numbers. The influence and sensitivity of the coolant ejected from the airfoil, tip and the platform rim purges on the overall airfoil film cooling has been investigated for a range of operating conditions. The measured film cooling effectiveness on the airfoil, blade tip and platform surfaces compared well with the predictions. The suction side film cooling effectiveness, which consisted of two pre-throat film rows, proved to be very effective up to the suction side trailing edge. The impact of variations in the airfoil cooling flows showed that the film cooling was relatively in-sensitive on the suction side. However, on the blade tip, it was found that the film cooling characteristics are strongly dependent on the clearances and the tip coolant ejection rate. On the platform surface, the impact of variations in the rim purge flows was evident, but proved not to alter the global film cooling characteristics on neither the airfoil nor the platform surfaces significantly.
{"title":"Film Cooling Characteristics of a High Lift Blade Including Tip and Platform Flow Interactions","authors":"S. Naik, A. Lerch","doi":"10.1115/GT2018-76710","DOIUrl":"https://doi.org/10.1115/GT2018-76710","url":null,"abstract":"This paper investigates the aerodynamic and film cooling characteristics of a first stage turbine high lift blade. The blade operating conditions are representative of those normally found in a heavy-duty gas turbine. The airfoil incorporates several rows of film cooling holes located at various axial positions along the airfoil chord and the blade tip. Additionally the impact of the platform leading edge rim purge flow has been investigated and its interaction with the airfoil aerodynamic and film cooling characteristics. The film cooling holes are geometrically three-dimensional in shape, and depending on the location on the airfoil, they consist of various fan shapes, which are either compounded or in-line with the external main flow direction.\u0000 Numerical studies and experimental investigations in a linear cascade have been conducted for a range of exit Mach and Reynolds numbers. The influence and sensitivity of the coolant ejected from the airfoil, tip and the platform rim purges on the overall airfoil film cooling has been investigated for a range of operating conditions.\u0000 The measured film cooling effectiveness on the airfoil, blade tip and platform surfaces compared well with the predictions. The suction side film cooling effectiveness, which consisted of two pre-throat film rows, proved to be very effective up to the suction side trailing edge. The impact of variations in the airfoil cooling flows showed that the film cooling was relatively in-sensitive on the suction side. However, on the blade tip, it was found that the film cooling characteristics are strongly dependent on the clearances and the tip coolant ejection rate. On the platform surface, the impact of variations in the rim purge flows was evident, but proved not to alter the global film cooling characteristics on neither the airfoil nor the platform surfaces significantly.","PeriodicalId":239866,"journal":{"name":"Volume 5C: Heat Transfer","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129296106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lamyaa A. El-Gabry, Hongzhou Xu, Kevin Liu, James Chang, M. Fox
Gas turbine components can withstand gas temperatures exceeding the melting point of the alloys they’re made of due to increasingly effective cooling methods. Increasing the operating temperature of a gas turbine is key to improving its power density and exhaust heat for steam or combined-cycle efficiency. In the turbine, the component that experiences the highest gas temperature is the vane directly downstream of the combustor; the most complex flow field in a vane occurs near the endwall. In this study, an experimental investigation is carried out to determine the effect of coolant injection angle and mass flow ratio on film effectiveness on the endwall using the pressure sensitive paint technique for various configurations of jump cooling hole configurations. Two rows of angled holes are upstream of an uncooled vane in a three-vane linear cascade. Injection angle including compound angle is varied from 20 to 60 and coolant to mainstream massflux ratio is varied from 0.5% to 3%. Contours of endwall surface film effectiveness are presented along with span-averaged film effectiveness. CFD models of the cascade are developed using a commercial solver to predict film effectiveness for some of the test conditions and comparisons are made between the experimental and numerical results. The CFD models provide further insight into the flow field and explain trends observed in the experiment by understanding the interaction of jump coolant flow with the 3D endwall mainstream flows.
{"title":"Effect of Coolant Injection Angle on Nozzle Endwall Film Cooling: Experimental and Numerical Analysis in Linear Cascade","authors":"Lamyaa A. El-Gabry, Hongzhou Xu, Kevin Liu, James Chang, M. Fox","doi":"10.1115/GT2018-75877","DOIUrl":"https://doi.org/10.1115/GT2018-75877","url":null,"abstract":"Gas turbine components can withstand gas temperatures exceeding the melting point of the alloys they’re made of due to increasingly effective cooling methods. Increasing the operating temperature of a gas turbine is key to improving its power density and exhaust heat for steam or combined-cycle efficiency. In the turbine, the component that experiences the highest gas temperature is the vane directly downstream of the combustor; the most complex flow field in a vane occurs near the endwall. In this study, an experimental investigation is carried out to determine the effect of coolant injection angle and mass flow ratio on film effectiveness on the endwall using the pressure sensitive paint technique for various configurations of jump cooling hole configurations. Two rows of angled holes are upstream of an uncooled vane in a three-vane linear cascade. Injection angle including compound angle is varied from 20 to 60 and coolant to mainstream massflux ratio is varied from 0.5% to 3%. Contours of endwall surface film effectiveness are presented along with span-averaged film effectiveness. CFD models of the cascade are developed using a commercial solver to predict film effectiveness for some of the test conditions and comparisons are made between the experimental and numerical results. The CFD models provide further insight into the flow field and explain trends observed in the experiment by understanding the interaction of jump coolant flow with the 3D endwall mainstream flows.","PeriodicalId":239866,"journal":{"name":"Volume 5C: Heat Transfer","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124593691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The regenerative cooling technology has become the most effective method to reduce the high-temperature of the scramjet engine. With physical and chemical heat sink, the endothermic hydrocarbon fuel has excellent performance in the regenerative cooling system of the scramjet engine which operates under extremely high temperature. The pyrolytic reactions not only absorb a large amount of heat, but also produce some kinds of coking precursors, mainly alkenes and aromatics. Because of the coking precursors and the coking reactions, a lot of coke would be generated on the wall and exert strong impact on the heat transfer, as the conductivity of the coke is much lower than that of the metal wall. Meanwhile, the surface coking changes the geometric parameters of the cooling tube, which leads to the flow field variations with the thickening coking layer. So, it is needed to find out the interaction between these variations. In this paper, a one-dimensional (1D) model has been developed to calculate the flow and heat transfer parameters distributions of the pyrolytically reacted RP-3 along the regenerative cooling tube with the pyrolytic coking. The 24-step pyrolytic reaction model and the coking kinetic model are applied to predict the pyrolysis and pyrolytic coking process of RP-3, with accurate computations of the physical properties of fluid mixture which undergo drastic variations during the transcritical process. Comparisons between the current predictions and the open published experimental data are carried out and good agreement is achieved. Calculations on the coupling relationships between the flow, heat transfer, pyrolysis and pyrolytic coking within 20 min in the circular tube have been conducted. With the heat flux increased, the coke mass is rising sharply and the temperature of the outer tube wall rises rapidly owing to the increasing thermal resistance of the coke layer. Moreover, the flow velocity becomes faster during the narrowing process of the tube caused by surface coking. In order to better understand the coking characteristics, further investigations on distributions of the surface coking under heat fluxes of 1.2–2.0MW/m2, pressures of 2.6–7.4 MPa and with inlet velocities of 0–5m/s have been performed. Results reveal that all these factors play an important role in the pyrolytic reactions and the coking rate distributions. The results in this paper have significant reference value in the design of the regenerative cooling system.
{"title":"Coupling Process Analysis on the Flow and Heat Transfer of Hydrocarbon Fuel With Pyrolysis and Pyrolytic Coking Under Supercritical Pressures","authors":"Chaofan Zhao, Xizhuo Hu, Jianqin Zhu, Z. Tao","doi":"10.1115/GT2018-75591","DOIUrl":"https://doi.org/10.1115/GT2018-75591","url":null,"abstract":"The regenerative cooling technology has become the most effective method to reduce the high-temperature of the scramjet engine. With physical and chemical heat sink, the endothermic hydrocarbon fuel has excellent performance in the regenerative cooling system of the scramjet engine which operates under extremely high temperature. The pyrolytic reactions not only absorb a large amount of heat, but also produce some kinds of coking precursors, mainly alkenes and aromatics. Because of the coking precursors and the coking reactions, a lot of coke would be generated on the wall and exert strong impact on the heat transfer, as the conductivity of the coke is much lower than that of the metal wall. Meanwhile, the surface coking changes the geometric parameters of the cooling tube, which leads to the flow field variations with the thickening coking layer. So, it is needed to find out the interaction between these variations. In this paper, a one-dimensional (1D) model has been developed to calculate the flow and heat transfer parameters distributions of the pyrolytically reacted RP-3 along the regenerative cooling tube with the pyrolytic coking. The 24-step pyrolytic reaction model and the coking kinetic model are applied to predict the pyrolysis and pyrolytic coking process of RP-3, with accurate computations of the physical properties of fluid mixture which undergo drastic variations during the transcritical process. Comparisons between the current predictions and the open published experimental data are carried out and good agreement is achieved. Calculations on the coupling relationships between the flow, heat transfer, pyrolysis and pyrolytic coking within 20 min in the circular tube have been conducted. With the heat flux increased, the coke mass is rising sharply and the temperature of the outer tube wall rises rapidly owing to the increasing thermal resistance of the coke layer. Moreover, the flow velocity becomes faster during the narrowing process of the tube caused by surface coking. In order to better understand the coking characteristics, further investigations on distributions of the surface coking under heat fluxes of 1.2–2.0MW/m2, pressures of 2.6–7.4 MPa and with inlet velocities of 0–5m/s have been performed. Results reveal that all these factors play an important role in the pyrolytic reactions and the coking rate distributions. The results in this paper have significant reference value in the design of the regenerative cooling system.","PeriodicalId":239866,"journal":{"name":"Volume 5C: Heat Transfer","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129906041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cooling of the turbine nozzle endwall is challenging due to its complex flow field involving strong secondary flows. Increasingly-effective cooling schemes are required to meet the higher turbine inlet temperatures required by today’s gas turbine applications. Therefore, in order to cool the endwall surface near the pressure side of the airfoil and the trailing edge extended area, the spent cooling air from the airfoil film cooling and pressure side discharge slots, referred to as “phantom cooling” is utilized. This paper studies the effect of compound angled pressure side injection on nozzle endwall surface. The measurements were conducted in a high speed linear cascade, which consists of three nozzle vanes and four flow passages. Two nozzle test models with a similar film cooling design were investigated, one with an axial pressure side film cooling row and trailing edge slots; the other with the same cooling features but with compound angled injection, aiming at the test endwall. Phantom cooling effectiveness on the endwall was measured using a Pressure Sensitive Paint (PSP) technique through the mass transfer analogy. Two-dimensional phantom cooling effectiveness distributions on the endwall surface are presented for four MFR (Mass Flow Ratio) values in each test case. Then the phantom cooling effectiveness distributions are pitchwise-averaged along the axial direction and comparisons were made to show the effect of the compound angled injection. The results indicated that the endwall phantom cooling effectiveness increases with the MFR significantly. A compound angle of the pressure side slots also enhanced the endwall phantom cooling significantly. For combined injections, the phantom cooling effectiveness is much higher than the pressure side slots injection only in the endwall downstream extended area.
{"title":"Turbine Nozzle Endwall Phantom Cooling With Compound Angled Pressure Side Injection","authors":"Kevin Liu, Hongzhou Xu, M. Fox","doi":"10.1115/GT2018-75881","DOIUrl":"https://doi.org/10.1115/GT2018-75881","url":null,"abstract":"Cooling of the turbine nozzle endwall is challenging due to its complex flow field involving strong secondary flows. Increasingly-effective cooling schemes are required to meet the higher turbine inlet temperatures required by today’s gas turbine applications. Therefore, in order to cool the endwall surface near the pressure side of the airfoil and the trailing edge extended area, the spent cooling air from the airfoil film cooling and pressure side discharge slots, referred to as “phantom cooling” is utilized. This paper studies the effect of compound angled pressure side injection on nozzle endwall surface. The measurements were conducted in a high speed linear cascade, which consists of three nozzle vanes and four flow passages. Two nozzle test models with a similar film cooling design were investigated, one with an axial pressure side film cooling row and trailing edge slots; the other with the same cooling features but with compound angled injection, aiming at the test endwall. Phantom cooling effectiveness on the endwall was measured using a Pressure Sensitive Paint (PSP) technique through the mass transfer analogy. Two-dimensional phantom cooling effectiveness distributions on the endwall surface are presented for four MFR (Mass Flow Ratio) values in each test case. Then the phantom cooling effectiveness distributions are pitchwise-averaged along the axial direction and comparisons were made to show the effect of the compound angled injection. The results indicated that the endwall phantom cooling effectiveness increases with the MFR significantly. A compound angle of the pressure side slots also enhanced the endwall phantom cooling significantly. For combined injections, the phantom cooling effectiveness is much higher than the pressure side slots injection only in the endwall downstream extended area.","PeriodicalId":239866,"journal":{"name":"Volume 5C: Heat Transfer","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126140170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The EU Horizon 2020 ULTIMATE project aims to mitigate one of the greatest loss sources in modern turbofans: the heat in core exhaust gases. The introduction of a closed-circuit recuperated bottoming cycle, using supercritical CO2 (S-CO2) as a working fluid that is heated by the exhaust gases, has been shown to be a feasible option. Involute spiral heat exchangers have been studied for intercoolers and cooled cooling air systems. However, placing them in the core exhaust and using S-CO2 implies significant mechanical design challenges from the elevated temperatures and high internal pressures. The studied scenario considers a heat exchanger of 60% effectiveness, with an internal fluid pressure of 32 MPa. The primary objective is to minimise the total mass of the heat exchanger tubes. The work is focused on studying elliptical tubes and an alternative multi-arc cross-section design with internal webs that is more structurally efficient. A parametric analysis of the proposed geometry has been conducted to capture the influence of each of the geometric variables on the resulting stresses. The alloy Ti-6Al-4V is selected as the tube material and the results show that for a 400 MPa maximum allowable stress, a chord of 10 mm, a chord to thickness ratio of eight and a mi nimum wall thickness of 0.2 mm, the minimum tube weight is 20.5 g/m.
{"title":"Structural Analysis of Profiled Tubes for a Turbofan Engine Supercritical-CO2 Bottoming Cycle Heat Exchanger","authors":"J. Rengel, Florian Jacob, A. Rolt, V. Sethi","doi":"10.1115/GT2018-76208","DOIUrl":"https://doi.org/10.1115/GT2018-76208","url":null,"abstract":"The EU Horizon 2020 ULTIMATE project aims to mitigate one of the greatest loss sources in modern turbofans: the heat in core exhaust gases. The introduction of a closed-circuit recuperated bottoming cycle, using supercritical CO2 (S-CO2) as a working fluid that is heated by the exhaust gases, has been shown to be a feasible option.\u0000 Involute spiral heat exchangers have been studied for intercoolers and cooled cooling air systems. However, placing them in the core exhaust and using S-CO2 implies significant mechanical design challenges from the elevated temperatures and high internal pressures. The studied scenario considers a heat exchanger of 60% effectiveness, with an internal fluid pressure of 32 MPa. The primary objective is to minimise the total mass of the heat exchanger tubes.\u0000 The work is focused on studying elliptical tubes and an alternative multi-arc cross-section design with internal webs that is more structurally efficient. A parametric analysis of the proposed geometry has been conducted to capture the influence of each of the geometric variables on the resulting stresses.\u0000 The alloy Ti-6Al-4V is selected as the tube material and the results show that for a 400 MPa maximum allowable stress, a chord of 10 mm, a chord to thickness ratio of eight and a mi nimum wall thickness of 0.2 mm, the minimum tube weight is 20.5 g/m.","PeriodicalId":239866,"journal":{"name":"Volume 5C: Heat Transfer","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128057538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Film cooling technique is widely used in a modern gas turbine. Many applications in hot sections require multiple film cooling rows to get better cooled. In most situation, the additive effect is computed using Sellers superposition method, but it is not accurate when the hole rows are close to each other. In this paper, row spacing between two rows of cooling hole was investigated by numerical method, which was validated by PSP results. The validation experiments are performed on flat test bench and the freestream is maintained at 25m/s. The inlet boundary conditions of numerical simulations were same with the experiment. Both round hole and shaped hole were investigated at blowing ratio M = 0.5, density ratios DR = 1.5 and row spacing S/D = 6, 10, 15, 20. It is found that the round hole results by Sellers method are similar to experiment results only at large row spacing, and the results of Sellers are always higher than experimental results. The boundary layer has a big effect on cooling effectiveness for round hole, but very little effect on shaped hole. When the row spacing increase, the difference between experiment and prediction become smaller. The vortex is the major factor to effect the accuracy of superposition method.
{"title":"Effect of Row Spacing on the Accuracy of Film Cooling Superposition Method","authors":"Lang Wang, Xueying Li, Jing Ren, Hongde Jiang","doi":"10.1115/GT2018-76421","DOIUrl":"https://doi.org/10.1115/GT2018-76421","url":null,"abstract":"Film cooling technique is widely used in a modern gas turbine. Many applications in hot sections require multiple film cooling rows to get better cooled. In most situation, the additive effect is computed using Sellers superposition method, but it is not accurate when the hole rows are close to each other. In this paper, row spacing between two rows of cooling hole was investigated by numerical method, which was validated by PSP results. The validation experiments are performed on flat test bench and the freestream is maintained at 25m/s. The inlet boundary conditions of numerical simulations were same with the experiment. Both round hole and shaped hole were investigated at blowing ratio M = 0.5, density ratios DR = 1.5 and row spacing S/D = 6, 10, 15, 20. It is found that the round hole results by Sellers method are similar to experiment results only at large row spacing, and the results of Sellers are always higher than experimental results. The boundary layer has a big effect on cooling effectiveness for round hole, but very little effect on shaped hole. When the row spacing increase, the difference between experiment and prediction become smaller. The vortex is the major factor to effect the accuracy of superposition method.","PeriodicalId":239866,"journal":{"name":"Volume 5C: Heat Transfer","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130377742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Turbine inlet conditions in modern aero-engines employing lean-burn combustors are characterised by highly swirled flow and non-uniform temperature distributions. As a consequence of the lack of confidence in numerical predictions and the uncertainty of measurement campaigns, the use of wide safety margins is of common practice in the design of turbine cooling systems, thus affecting the engine performance and efficiency. Previous experiences showed how only scale-resolving approaches such as Large-eddy and Scale-adapting simulations are capable of overcoming the limitations of RANS, significantly improving the accuracy in the prediction of flow and temperature fields at the combustor outlet. However it is worth investigating the impact of such differences on the aerothermal performance of the NGVs, as to understand the limitations entailed in the current approach for their thermal design. Industrial applications in fact usually rely on 1D, circumferentially-averaged profiles of pressure, velocity and temperature at the combustor-turbine interface in conjunction with Reynolds-averaged Navier-Stokes (RANS) models. This paper describes the investigation performed on an experimental test case consisting of a combustor simulator equipped with NGVs. Three numerical modelling strategies were compared in terms of flow field and thermal loads on the film-cooled vanes: i) RANS model of the NGVs with inlet conditions obtained from a RANS simulation of the combustor; ii) RANS model of the NGVs with inlet conditions obtained from a Scale-Adaptive Simulation (SAS) of the combustor; iii) SAS model inclusive of both combustor and NGVs. The results of this study show that estimating the aerodynamics at the NGV exit does not demand particularly complex approaches, whereas the limitations of standard RANS models are highlighted again when the turbulent mixing is key. High-fidelity predictions of the conditions at the turbine entrance proved to be very beneficial to reduce discrepancies in the estimation of local adiabatic wall temperature of even 100 K. However, a further leap forward can be achieved with an integrated simulation, capable of reproducing the transport of the unsteady fluctuations generated in the combustor up into the turbine, which plays a key role in presence of film cooling. This work therefore points out how keeping the analysis of combustor and NGVs separate can lead to a significantly misleading estimation of the thermal loads and ultimately to a wrong thermal design of the cooling system.
{"title":"Impact of Predicted Combustor Outlet Conditions on the Aerothermal Performance of Film-Cooled HPT Vanes","authors":"S. Cubeda, L. Mazzei, T. Bacci, A. Andreini","doi":"10.1115/gt2018-75921","DOIUrl":"https://doi.org/10.1115/gt2018-75921","url":null,"abstract":"Turbine inlet conditions in modern aero-engines employing lean-burn combustors are characterised by highly swirled flow and non-uniform temperature distributions. As a consequence of the lack of confidence in numerical predictions and the uncertainty of measurement campaigns, the use of wide safety margins is of common practice in the design of turbine cooling systems, thus affecting the engine performance and efficiency.\u0000 Previous experiences showed how only scale-resolving approaches such as Large-eddy and Scale-adapting simulations are capable of overcoming the limitations of RANS, significantly improving the accuracy in the prediction of flow and temperature fields at the combustor outlet. However it is worth investigating the impact of such differences on the aerothermal performance of the NGVs, as to understand the limitations entailed in the current approach for their thermal design. Industrial applications in fact usually rely on 1D, circumferentially-averaged profiles of pressure, velocity and temperature at the combustor-turbine interface in conjunction with Reynolds-averaged Navier-Stokes (RANS) models.\u0000 This paper describes the investigation performed on an experimental test case consisting of a combustor simulator equipped with NGVs. Three numerical modelling strategies were compared in terms of flow field and thermal loads on the film-cooled vanes: i) RANS model of the NGVs with inlet conditions obtained from a RANS simulation of the combustor; ii) RANS model of the NGVs with inlet conditions obtained from a Scale-Adaptive Simulation (SAS) of the combustor; iii) SAS model inclusive of both combustor and NGVs.\u0000 The results of this study show that estimating the aerodynamics at the NGV exit does not demand particularly complex approaches, whereas the limitations of standard RANS models are highlighted again when the turbulent mixing is key. High-fidelity predictions of the conditions at the turbine entrance proved to be very beneficial to reduce discrepancies in the estimation of local adiabatic wall temperature of even 100 K. However, a further leap forward can be achieved with an integrated simulation, capable of reproducing the transport of the unsteady fluctuations generated in the combustor up into the turbine, which plays a key role in presence of film cooling. This work therefore points out how keeping the analysis of combustor and NGVs separate can lead to a significantly misleading estimation of the thermal loads and ultimately to a wrong thermal design of the cooling system.","PeriodicalId":239866,"journal":{"name":"Volume 5C: Heat Transfer","volume":"104 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128010994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The complex flowfield inside a gas turbine combustor creates a difficult challenge in cooling the combustor walls. Many modern combustors are designed with a double-wall that contain both impingement cooling on the backside of the wall and effusion cooling on the external side of the wall. Complicating matters is the fact that these double-walls also contain large dilution holes whereby the cooling film from the effusion holes is interrupted by the high-momentum dilution jets. Given the importance of cooling the entire panel, including the metal surrounding the dilution holes, the focus of this paper is understanding the flow in the region near the dilution holes. Near-wall flowfield measurements are presented for three different effusion cooling hole patterns near the dilution hole. The effusion cooling hole patterns were varied in the region near the dilution hole and include: no effusion holes; effusion holes pointed radially outward from the dilution hole; and effusion holes pointed radially inward toward the dilution hole. Particle image velocimetry (PIV) was used to capture the time-averaged flowfield at approaching freestream turbulence intensities of 0.5% and 13%. Results showed evidence of downward motion at the leading edge of the dilution hole for all three effusion hole patterns. In comparing the three geometries, the outward effusion holes showed significantly higher velocities toward the leading edge of the dilution jet relative to the other two geometries. Although the flowfield generated by the dilution jet dominated the flow downstream, each cooling hole pattern interacted with the flowfield uniquely. Approaching freestream turbulence did not have a significant effect on the flowfield.
{"title":"Effects of Effusion Cooling Pattern Near the Dilution Hole for a Double-Walled Combustor Liner: Part 2 — Flowfield Measurements","authors":"Adam C. Shrager, K. Thole, Dominic Mongillo","doi":"10.1115/gt2018-77290","DOIUrl":"https://doi.org/10.1115/gt2018-77290","url":null,"abstract":"The complex flowfield inside a gas turbine combustor creates a difficult challenge in cooling the combustor walls. Many modern combustors are designed with a double-wall that contain both impingement cooling on the backside of the wall and effusion cooling on the external side of the wall. Complicating matters is the fact that these double-walls also contain large dilution holes whereby the cooling film from the effusion holes is interrupted by the high-momentum dilution jets. Given the importance of cooling the entire panel, including the metal surrounding the dilution holes, the focus of this paper is understanding the flow in the region near the dilution holes. Near-wall flowfield measurements are presented for three different effusion cooling hole patterns near the dilution hole. The effusion cooling hole patterns were varied in the region near the dilution hole and include: no effusion holes; effusion holes pointed radially outward from the dilution hole; and effusion holes pointed radially inward toward the dilution hole. Particle image velocimetry (PIV) was used to capture the time-averaged flowfield at approaching freestream turbulence intensities of 0.5% and 13%.\u0000 Results showed evidence of downward motion at the leading edge of the dilution hole for all three effusion hole patterns. In comparing the three geometries, the outward effusion holes showed significantly higher velocities toward the leading edge of the dilution jet relative to the other two geometries. Although the flowfield generated by the dilution jet dominated the flow downstream, each cooling hole pattern interacted with the flowfield uniquely. Approaching freestream turbulence did not have a significant effect on the flowfield.","PeriodicalId":239866,"journal":{"name":"Volume 5C: Heat Transfer","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132831671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High performance film cooling holes with complicated geometries have been regarded as impractical up to now because of manufacturability issues. However, recent advances in additive manufacturing (AM) technology have opened up new doors. Investigating characteristics of film holes built with AM, and finding the optimum shape considering these characteristics are now required to confirm their practical utility. In this paper, the performance of a high-efficiency film hole is numerically investigated. In-hole roughness and blade surface roughness are examined assuming an AM process, and contorted hole shape caused by partial blockage is also considered. A robust hole shape is obtained considering these uncertainties, utilizing a reference hole shape made by combining three cylindrical holes. Hole diameter, injection angle, and two angles for defining the two auxiliary holes are used as design variables to be optimized. For flow field and thermal analysis with roughness, compressible steady Reynolds averaged Navier-Stokes equations with a sand-grain roughness model are used. For the probabilistic assessment of each hole shape, Monte Carlo Simulations with the Kriging surrogate model is used, along with efficient global optimization (EGO) and a genetic algorithm. As a result, a high performance yet robust film cooling hole shape is obtained.
{"title":"Robust Film Cooling Hole Shape Optimization Considering Surface Roughness and Partial Hole Blockage","authors":"Sanga Lee, W. Hwang, K. Yee","doi":"10.1115/GT2018-76424","DOIUrl":"https://doi.org/10.1115/GT2018-76424","url":null,"abstract":"High performance film cooling holes with complicated geometries have been regarded as impractical up to now because of manufacturability issues. However, recent advances in additive manufacturing (AM) technology have opened up new doors. Investigating characteristics of film holes built with AM, and finding the optimum shape considering these characteristics are now required to confirm their practical utility.\u0000 In this paper, the performance of a high-efficiency film hole is numerically investigated. In-hole roughness and blade surface roughness are examined assuming an AM process, and contorted hole shape caused by partial blockage is also considered. A robust hole shape is obtained considering these uncertainties, utilizing a reference hole shape made by combining three cylindrical holes. Hole diameter, injection angle, and two angles for defining the two auxiliary holes are used as design variables to be optimized. For flow field and thermal analysis with roughness, compressible steady Reynolds averaged Navier-Stokes equations with a sand-grain roughness model are used. For the probabilistic assessment of each hole shape, Monte Carlo Simulations with the Kriging surrogate model is used, along with efficient global optimization (EGO) and a genetic algorithm. As a result, a high performance yet robust film cooling hole shape is obtained.","PeriodicalId":239866,"journal":{"name":"Volume 5C: Heat Transfer","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128396752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}