首页 > 最新文献

Southeast Europe Journal of Soft Computing最新文献

英文 中文
Computational Geometry Applications 计算几何应用
Pub Date : 2018-11-28 DOI: 10.21533/SCJOURNAL.V7I2.159
A. Selimi, M. Saračević
Computational geometry is an integral part of mathematics and computer science deals with the algorithmic solution of geometry problems. From the beginning to today, computer geometry links different areas of science and techniques, such as the theory of algorithms, combinatorial and Euclidean geometry, but including data structures and optimization. Today, computational geometry has a great deal of application in computer graphics, geometric modeling, computer vision, and geodesic path, motion planning and parallel computing. The complex calculations and theories in the field of geometry are long time studied and developed, but from the aspect of application in modern information technologies they still are in the beginning. In this research is given the applications of computational geometry in polygon triangulation, manufacturing of objects with molds, point location, and robot motion planning.
计算几何是数学的一个组成部分,计算机科学处理几何问题的算法解。从一开始到今天,计算机几何连接了不同的科学和技术领域,如算法理论、组合几何和欧几里得几何,但包括数据结构和优化。如今,计算几何在计算机图形学、几何建模、计算机视觉、测地线路径、运动规划和并行计算等领域有着广泛的应用。几何领域的复杂计算和理论研究和发展已经很长时间了,但从在现代信息技术中的应用来看,它们还处于起步阶段。本文研究了计算几何在多边形三角剖分、模具制造、点定位和机器人运动规划等方面的应用。
{"title":"Computational Geometry Applications","authors":"A. Selimi, M. Saračević","doi":"10.21533/SCJOURNAL.V7I2.159","DOIUrl":"https://doi.org/10.21533/SCJOURNAL.V7I2.159","url":null,"abstract":"Computational geometry is an integral part of mathematics and computer science deals with the algorithmic solution of geometry problems. From the beginning to today, computer geometry links different areas of science and techniques, such as the theory of algorithms, combinatorial and Euclidean geometry, but including data structures and optimization. Today, computational geometry has a great deal of application in computer graphics, geometric modeling, computer vision, and geodesic path, motion planning and parallel computing. The complex calculations and theories in the field of geometry are long time studied and developed, but from the aspect of application in modern information technologies they still are in the beginning. In this research is given the applications of computational geometry in polygon triangulation, manufacturing of objects with molds, point location, and robot motion planning.","PeriodicalId":243185,"journal":{"name":"Southeast Europe Journal of Soft Computing","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133864138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Recurrent Neural Network Linear B-Epitope Predictor: BIRUNI 递归神经网络线性b表位预测器:BIRUNI
Pub Date : 2018-11-28 DOI: 10.21533/SCJOURNAL.V7I2.165
A. Abidi
Experimental methods used for characterizing epitopes that play a vital role in the development of peptide vaccines, in diagnosis of diseases, and also for allergy research are time consuming and need huge resources. There are many online epitope prediction tools are available that can help scientists in short listing the candidate peptides. To predict B-cell epitopes in an antigenic sequence, Jordan recurrent neural network (BIRUNI) is found to besuccessful. To train and test neural networks, 262.583 B epitopes are retrieved from IEDB database. 99.9% of these epitopes have lengths in the interval 6-25 amino acids. For each of these lengths, committees of 11 expert recurrent neural networks are trained. To train these experts alongside epitopes, non-epitopes are needed. Non-epitopes are created as random sequences of amino acids of the same length followed by a filtering process. To distinguish epitopes and non-epitopes, the votes of eleven experts are aggregated by majority vote. An overall accuracy of 97.23% is achieved. Then these experts are used to predict the Linear Bepitopes of five antigens, Plasmodium Falciparum, Human Polio Virus Sabin Strain, Meningitis, Plasmodium Vivax and Mycobacterium Tuberculosis. The success of BIRUNU is compared with the five online prediction tools ABCPRED, BCPRED, K&T, BEPIPRED, and AAP.It is seen that BIRUNI outperforms all of them in the average.
抗原表位在多肽疫苗的开发、疾病的诊断和过敏研究中起着至关重要的作用,用于表征抗原表位的实验方法耗时且需要大量资源。有许多在线表位预测工具可用,可以帮助科学家在候选肽短列表。为了预测抗原序列中的b细胞表位,Jordan递归神经网络(BIRUNI)被发现是成功的。为了训练和测试神经网络,从IEDB数据库中检索了262.583个B表位。99.9%的表位长度在6-25个氨基酸之间。对于每一个长度,由11个专家组成的循环神经网络委员会都要接受训练。为了训练这些专家,除了表位之外,还需要非表位。非表位是由相同长度的氨基酸随机序列通过过滤过程产生的。为了区分表位和非表位,11位专家的投票以多数投票的方式汇总。总体准确率达到97.23%。然后利用这些专家来预测恶性疟原虫、人类脊髓灰质炎病毒沙宾株、脑膜炎、间日疟原虫和结核分枝杆菌这五种抗原的线性倍人猿。BIRUNU的成功与5种在线预测工具ABCPRED、BCPRED、K&T、BEPIPRED和AAP进行了比较。可以看出,BIRUNI的平均表现优于所有这些。
{"title":"A Recurrent Neural Network Linear B-Epitope Predictor: BIRUNI","authors":"A. Abidi","doi":"10.21533/SCJOURNAL.V7I2.165","DOIUrl":"https://doi.org/10.21533/SCJOURNAL.V7I2.165","url":null,"abstract":"Experimental methods used for characterizing epitopes that play a vital role in the development of peptide vaccines, in diagnosis of diseases, and also for allergy research are time consuming and need huge resources. There are many online epitope prediction tools are available that can help scientists in short listing the candidate peptides. To predict B-cell epitopes in an antigenic sequence, Jordan recurrent neural network (BIRUNI) is found to besuccessful. To train and test neural networks, 262.583 B epitopes are retrieved from IEDB database. 99.9% of these epitopes have lengths in the interval 6-25 amino acids. For each of these lengths, committees of 11 expert recurrent neural networks are trained. To train these experts alongside epitopes, non-epitopes are needed. Non-epitopes are created as random sequences of amino acids of the same length followed by a filtering process. To distinguish epitopes and non-epitopes, the votes of eleven experts are aggregated by majority vote. An overall accuracy of 97.23% is achieved. Then these experts are used to predict the Linear Bepitopes of five antigens, Plasmodium Falciparum, Human Polio Virus Sabin Strain, Meningitis, Plasmodium Vivax and Mycobacterium Tuberculosis. The success of BIRUNU is compared with the five online prediction tools ABCPRED, BCPRED, K&T, BEPIPRED, and AAP.It is seen that BIRUNI outperforms all of them in the average.","PeriodicalId":243185,"journal":{"name":"Southeast Europe Journal of Soft Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126882441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Southeast Europe Journal of Soft Computing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1