首页 > 最新文献

Applied Catalysis B: Environmental最新文献

英文 中文
Cu-supported nano-ZrZnOx as a highly active inverse catalyst for low temperature methanol synthesis from CO2 hydrogenation 铜支撑纳米氧化锆(Nano-ZrZnOx)作为二氧化碳加氢低温合成甲醇的高活性反相催化剂
IF 22.1 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-12-22 DOI: 10.1016/j.apcatb.2023.123656
Yangzhi Xu , Zirui Gao , Yao Xu , Xuetao Qin , Xin Tang , Zhiwei Xie , Jinrong Zhang , Chuqiao Song , Siyu Yao , Wu Zhou , Ding Ma , Lili Lin

Hydrogenation of CO2 into methanol at low-temperature on Cu-based catalysts is of great significance, but remains challenging to enhance activity. In this paper, we report an inverse catalyst constructed with nano-ZrZnOx supported on Cu particles with outstanding methanol synthesis performance at 220 ℃, two times higher than that of commercial Cu/ZnO/Al2O3 catalysts under the same conditions. Detailed structure characterization and performance evaluation demonstrate that the ZrZnOx mixed oxide serves as the most active oxide-metal interface site for CO2 hydrogenation. The ZrZnOx/Cu inverse catalyst increases the weak and medium CO2 adsorption sites which are further demonstrated responsible to the methanol productivity. In situ DRIFTs studies reveal that the inverse interface accelerates the reduction of asymmetric formate intermediates and prevents the generation of CO. The combination of enhanced CO2 activation capability and accelerated hydrogenation rate of intermediates over the ZrZnOx/Cu inverse catalyst probably contribute to the remarkable methanol synthesis performance from CO2.

在铜基催化剂上低温加氢将 CO2 转化为甲醇具有重要意义,但如何提高其活性仍是一项挑战。本文报告了一种以纳米 ZrZnOx 为载体的反相催化剂,该催化剂在 220 ℃ 下具有优异的甲醇合成性能,是相同条件下商用 Cu/ZnO/Al2O3 催化剂性能的两倍。详细的结构表征和性能评估表明,ZrZnOx 混合氧化物是二氧化碳加氢过程中最活跃的氧化物-金属界面位点。ZrZnOx/Cu 反相催化剂增加了弱和中等 CO2 吸附位点,这进一步证明了其对甲醇生产率的影响。原位 DRIFTs 研究表明,反向界面加速了不对称甲酸酯中间产物的还原,并阻止了 CO 的生成。在 ZrZnOx/Cu 反相催化剂上,二氧化碳活化能力的增强和中间产物氢化速率的加快可能是二氧化碳合成甲醇性能显著提高的原因。
{"title":"Cu-supported nano-ZrZnOx as a highly active inverse catalyst for low temperature methanol synthesis from CO2 hydrogenation","authors":"Yangzhi Xu ,&nbsp;Zirui Gao ,&nbsp;Yao Xu ,&nbsp;Xuetao Qin ,&nbsp;Xin Tang ,&nbsp;Zhiwei Xie ,&nbsp;Jinrong Zhang ,&nbsp;Chuqiao Song ,&nbsp;Siyu Yao ,&nbsp;Wu Zhou ,&nbsp;Ding Ma ,&nbsp;Lili Lin","doi":"10.1016/j.apcatb.2023.123656","DOIUrl":"10.1016/j.apcatb.2023.123656","url":null,"abstract":"<div><p>Hydrogenation of CO<sub>2</sub> into methanol at low-temperature on Cu-based catalysts is of great significance, but remains challenging to enhance activity. In this paper, we report an inverse catalyst constructed with nano-ZrZnO<sub>x</sub><span> supported on Cu particles with outstanding methanol synthesis performance at 220 ℃, two times higher than that of commercial Cu/ZnO/Al</span><sub>2</sub>O<sub>3</sub> catalysts under the same conditions. Detailed structure characterization and performance evaluation demonstrate that the ZrZnO<sub>x</sub> mixed oxide serves as the most active oxide-metal interface site for CO<sub>2</sub> hydrogenation. The ZrZnO<sub>x</sub>/Cu inverse catalyst increases the weak and medium CO<sub>2</sub> adsorption sites which are further demonstrated responsible to the methanol productivity. <em>In situ</em> DRIFTs studies reveal that the inverse interface accelerates the reduction of asymmetric formate intermediates and prevents the generation of CO. The combination of enhanced CO<sub>2</sub> activation capability and accelerated hydrogenation rate of intermediates over the ZrZnO<sub>x</sub>/Cu inverse catalyst probably contribute to the remarkable methanol synthesis performance from CO<sub>2</sub>.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"344 ","pages":"Article 123656"},"PeriodicalIF":22.1,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139030625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Localized surface plasmon resonance effect of bismuth nanoparticles in Bi/TiO2 catalysts for boosting visible light-driven CO2 reduction to CH4 Bi/TiO2 催化剂中铋纳米粒子的局部表面等离子体共振效应可促进可见光驱动的二氧化碳还原为 CH4
IF 22.1 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-12-21 DOI: 10.1016/j.apcatb.2023.123651
Wenjie He , Jing Xiong , Zhiling Tang , Yingli Wang , Xiong Wang , Hui Xu , Zhen Zhao , Jian Liu , Yuechang Wei

Herein, the photocatalysts of metallic Bi-modified TiO2 microsphere (namely BTO) were synthesized by one-pot solvothermal method. The localized surface plasmon resonance (LSPR) effect of introduced metallic Bi nanoparticles is beneficial to improve the absorption efficiency for visible light, and its surface hot electrons can donate to the valence band of TiO2 for boosting the separation efficiency of light generated electron-hole pairs. BTO catalysts exhibit the super catalytic activity for visible light-driven CO2 reduction with H2O to CH4. The formation amount and selectivity of CH4 product over BTO-2 catalyst are 49.12 μmol g−1 and 85.48 % for 4 h, respectively. Based on the results of in-situ DRIFTS and density functional theory calculation, the mechanism for photocatalytic CO2 reduction is proposed: the visible light-driven LSPR effect on BTO catalyst can boost the key step of CO2* -to-HCO* for promoting selective generation of CH4 product. It inspires the design of efficient photocatalysts for CO2 conversion.

本文采用一锅溶热法合成了金属Bi修饰的TiO2微球(即BTO)光催化剂。引入的金属 Bi 纳米粒子的局域表面等离子体共振(LSPR)效应有利于提高可见光的吸收效率,其表面热电子可捐献给 TiO2 的价带,从而提高光产生的电子-空穴对的分离效率。BTO 催化剂在可见光驱动的 CO2 与 H2O 还原成 CH4 的过程中表现出超催化活性。在 BTO-2 催化剂上催化 4 小时,CH4 产物的生成量和选择性分别为 49.12 μmol g-1 和 85.48%。根据原位 DRIFTS 和密度泛函理论计算的结果,提出了光催化 CO2 还原的机理:可见光驱动的 LSPR 作用在 BTO 催化剂上可促进 CO2⁎到 HCO⁎的关键步骤,从而促进 CH4 产物的选择性生成。这对设计用于 CO2 转化的高效光催化剂具有启发意义。
{"title":"Localized surface plasmon resonance effect of bismuth nanoparticles in Bi/TiO2 catalysts for boosting visible light-driven CO2 reduction to CH4","authors":"Wenjie He ,&nbsp;Jing Xiong ,&nbsp;Zhiling Tang ,&nbsp;Yingli Wang ,&nbsp;Xiong Wang ,&nbsp;Hui Xu ,&nbsp;Zhen Zhao ,&nbsp;Jian Liu ,&nbsp;Yuechang Wei","doi":"10.1016/j.apcatb.2023.123651","DOIUrl":"10.1016/j.apcatb.2023.123651","url":null,"abstract":"<div><p>Herein, the photocatalysts of metallic Bi-modified TiO<sub>2</sub><span> microsphere (namely BTO) were synthesized by one-pot solvothermal method. The localized surface plasmon resonance (LSPR) effect of introduced metallic Bi nanoparticles is beneficial to improve the absorption efficiency for visible light, and its surface hot electrons can donate to the valence band of TiO</span><sub>2</sub> for boosting the separation efficiency of light generated electron-hole pairs. BTO catalysts exhibit the super catalytic activity for visible light-driven CO<sub>2</sub> reduction with H<sub>2</sub>O to CH<sub>4</sub>. The formation amount and selectivity of CH<sub>4</sub> product over BTO-2 catalyst are 49.12 μmol g<sup>−1</sup> and 85.48 % for 4 h, respectively. Based on the results of in-situ DRIFTS and density functional theory calculation, the mechanism for photocatalytic CO<sub>2</sub> reduction is proposed: the visible light-driven LSPR effect on BTO catalyst can boost the key step of CO<sub>2</sub>* -to-HCO* for promoting selective generation of CH<sub>4</sub> product. It inspires the design of efficient photocatalysts for CO<sub>2</sub> conversion.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"344 ","pages":"Article 123651"},"PeriodicalIF":22.1,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139030775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational modulation of Fe single-atom electronic structure in a Fe-N2B4 configuration for preferential 1O2 generation in Fenton-like reactions 合理调节 Fe-N2B4 构型中的 Fe 单原子电子结构,在类似芬顿的反应中优先生成 1O2
IF 22.1 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-12-21 DOI: 10.1016/j.apcatb.2023.123643
Yuhan Long , Zhenhua Cao , Weiran Wu , Wenhao Liu , Peizhen Yang , Xuesong Zhan , Rongzhi Chen , Dongfang Liu , Wenli Huang

The important role of optimizing the coordination environment of single-atom catalysts (SACs) for selective production of singlet oxygen (1O2) in Fenton-like reactions is revealed. Herein, we introduce electron-depletion boron atoms to manipulate the coordination number and atom types of Fe site simultaneously and construct a six-coordination Fe-N2B4 catalyst for peroxymonosulfte (PMS) activation. Particularly, it achieves 98.68% 1O2 generation selectivity superior to unregulated Fe-N4 catalyst (64.57%), exhibiting an exceptional bisphenol A (BPA) degradation performance with a reaction rate constant of 0.249 min−1. Experimental and theoretical results unveil that the tailored electronic structure of Fe not only enhances the adsorption selectivity of terminal oxygen atoms in PMS and alters the reaction pathway preference, but also facilitates the electron donation from PMS and lowers the energy barrier for 1O2 generation. This work provides a universal strategy for rational and precise modulation of SACs for specific reactive species conversion in environment remediation.

在类似芬顿的反应中,优化单原子催化剂(SACs)的配位环境对选择性产生单线态氧(1O2)的重要作用得到了揭示。在此,我们引入了耗电子硼原子,同时操纵铁位点的配位数和原子类型,构建了一种用于过一硫酸盐(PMS)活化的六配位 Fe-N2B4 催化剂。与未配位的 Fe-N4 催化剂(64.57%)相比,该催化剂的 1O2 生成选择性高达 98.68%,并以 0.249 min-1 的反应速率常数表现出优异的双酚 A(BPA)降解性能。实验和理论结果表明,量身定制的 Fe 电子结构不仅提高了 PMS 中末端氧原子的吸附选择性,改变了反应途径的偏好,而且有利于 PMS 的电子捐赠,降低了生成 1O2 的能垒。这项工作为合理、精确地调节 SACs 以实现环境修复中特定活性物种的转换提供了一种通用策略。
{"title":"Rational modulation of Fe single-atom electronic structure in a Fe-N2B4 configuration for preferential 1O2 generation in Fenton-like reactions","authors":"Yuhan Long ,&nbsp;Zhenhua Cao ,&nbsp;Weiran Wu ,&nbsp;Wenhao Liu ,&nbsp;Peizhen Yang ,&nbsp;Xuesong Zhan ,&nbsp;Rongzhi Chen ,&nbsp;Dongfang Liu ,&nbsp;Wenli Huang","doi":"10.1016/j.apcatb.2023.123643","DOIUrl":"10.1016/j.apcatb.2023.123643","url":null,"abstract":"<div><p>The important role of optimizing the coordination environment of single-atom catalysts (SACs) for selective production of singlet oxygen (<sup>1</sup>O<sub>2</sub>) in Fenton-like reactions is revealed. Herein, we introduce electron-depletion boron atoms to manipulate the coordination number and atom types of Fe site simultaneously and construct a six-coordination Fe-N<sub>2</sub>B<sub>4</sub> catalyst for peroxymonosulfte (PMS) activation. Particularly, it achieves 98.68% <sup>1</sup>O<sub>2</sub> generation selectivity superior to unregulated Fe-N<sub>4</sub><span> catalyst (64.57%), exhibiting an exceptional bisphenol A (BPA) degradation performance with a reaction rate constant of 0.249 min</span><sup>−1</sup>. Experimental and theoretical results unveil that the tailored electronic structure of Fe not only enhances the adsorption selectivity of terminal oxygen atoms in PMS and alters the reaction pathway preference, but also facilitates the electron donation from PMS and lowers the energy barrier for <sup>1</sup>O<sub>2</sub> generation. This work provides a universal strategy for rational and precise modulation of SACs for specific reactive species conversion in environment remediation.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"344 ","pages":"Article 123643"},"PeriodicalIF":22.1,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138991171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Steering single-site metallaphotocatalytic pathway by accumulated electron on carbon nitride support 通过氮化碳支持物上的累积电子引导单点金属光催化途径
IF 22.1 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-12-21 DOI: 10.1016/j.apcatb.2023.123653
Bangrong Ming , Tongtong Jia , Yufan Zhang , Jikun Li , Chuncheng Chen , Wenjing Song , Jincai Zhao

Organic halide transformation is of high importance for fine chemical synthesis and environmental remediation. Integrated photocatalytic platforms open up distinctive reaction pathway for carbon-halogen bond activation/reconstruction. Herein we reveal carbon nitride (CN)-ligated single atom nickel (Ni1/CN), with accumulated electron on the CN, paves Ni-mediated electron-proton transfer, enabling hydrodehalogenation, along with the catalytic carbon–oxygen (C–O) coupling. The preference for hydrodehalogenation positively correlates with density of electron on CN. EPR measurements suggest photo-generated NiI interacts with aryl halides, followed by electron transfer or reductive elimination to give different products. Further kinetic studies on hydrodehalogenation/C–O coupling show the reaction orders of 0.1/0.5 in aryl halide and 1.5/0.03 in (CN) electron, unveiling rate-determining step as oxidative addition to NiI and (CN) electron transfer for the two conversions. Our work advances in modulating aryl halide conversion by carrier accumulation on the photoactive support and guides metallaphotocatalytic platform design/operation toward target transformations.

有机卤化物转化对精细化学品合成和环境修复具有重要意义。集成光催化平台为碳-卤键的活化/重构开辟了独特的反应途径。在此,我们揭示了氮化碳(CN)与单原子镍(Ni1/CN)的配位,在 CN 上积累的电子促进了镍介导的电子-质子转移,实现了氢脱卤以及催化碳-氧(C-O)耦合。氢化脱卤的偏好与 CN 上的电子密度成正相关。EPR 测量表明,光生成的 NiI 与芳基卤化物相互作用,然后通过电子转移或还原消除生成不同的产物。对氢脱卤/C-O 耦合的进一步动力学研究表明,芳基卤化物的反应阶数为 0.1/0.5,(CN)电子的反应阶数为 1.5/0.03,从而揭示了两种转化的决定速率步骤分别是 NiI 的氧化加成和(CN)电子的转移。我们的工作推动了通过载流子在光活性支持物上的积累来调节芳基卤化物的转化,并指导了金属萘催化平台的设计/操作,以实现目标转化。
{"title":"Steering single-site metallaphotocatalytic pathway by accumulated electron on carbon nitride support","authors":"Bangrong Ming ,&nbsp;Tongtong Jia ,&nbsp;Yufan Zhang ,&nbsp;Jikun Li ,&nbsp;Chuncheng Chen ,&nbsp;Wenjing Song ,&nbsp;Jincai Zhao","doi":"10.1016/j.apcatb.2023.123653","DOIUrl":"10.1016/j.apcatb.2023.123653","url":null,"abstract":"<div><p><span>Organic halide transformation is of high importance for fine chemical synthesis and environmental remediation. Integrated photocatalytic platforms open up distinctive reaction pathway for carbon-halogen bond activation/reconstruction. Herein we reveal carbon nitride (CN)-ligated single atom nickel (Ni</span><sub>1</sub>/CN), with accumulated electron on the CN, paves Ni-mediated electron-proton transfer, enabling hydrodehalogenation, along with the catalytic carbon–oxygen (C–O) coupling. The preference for hydrodehalogenation positively correlates with density of electron on CN. EPR measurements suggest photo-generated Ni<sup>I</sup><span><span> interacts with aryl halides, followed by electron transfer or reductive elimination<span> to give different products. Further kinetic studies on hydrodehalogenation/C–O coupling show the reaction orders of 0.1/0.5 in aryl halide and 1.5/0.03 in (CN) electron, unveiling rate-determining step as </span></span>oxidative addition to Ni</span><sup>I</sup> and (CN) electron transfer for the two conversions. Our work advances in modulating aryl halide conversion by carrier accumulation on the photoactive support and guides metallaphotocatalytic platform design/operation toward target transformations.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"344 ","pages":"Article 123653"},"PeriodicalIF":22.1,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139020309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Steering Single-Site Metallaphotocatalytic Pathway by Accumulated Electron on Carbon Nitride Support 通过氮化碳支持物上的累积电子引导单点金属光催化途径
IF 22.1 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-12-21 DOI: 10.1016/j.apcatb.2023.123653
Bangrong Ming, Tongtong Jia, Yufan Zhang, Jikun Li, Chuncheng Chen, Wenjing Song, Jincai Zhao

Organic halide transformation is of high importance for fine chemical synthesis and environmental remediation. Integrated photocatalytic platforms open up distinctive reaction pathway for carbon-halogen bond activation/reconstruction. Herein we reveal carbon nitride (CN)-ligated single atom nickel (Ni1/CN), with accumulated electron on the CN, paves Ni-mediated electron-proton transfer, enabling hydrodehalogenation, along with the catalytic carbon–oxygen (C–O) coupling. The preference for hydrodehalogenation positively correlates with density of electron on CN. EPR measurements suggest photo-generated NiI interacts with aryl halides, followed by electron transfer or reductive elimination to give different products. Further kinetic studies on hydrodehalogenation/ C–O coupling show the reaction orders of 0.1/0.5 in aryl halide and 1.5/0.03 in (CN) electron, unveiling rate-determining step as oxidative addition to NiI and (CN) electron transfer for the two conversions. Our work advances in modulating aryl halide conversion by carrier accumulation on the photoactive support and guides metallaphotocatalytic platform design/operation toward target transformations.

有机卤化物转化对精细化学品合成和环境修复具有重要意义。集成光催化平台为碳-卤键的活化/重构开辟了独特的反应途径。在此,我们揭示了氮化碳(CN)与单原子镍(Ni1/CN)的配位,在 CN 上积累的电子促进了镍介导的电子-质子转移,实现了氢脱卤以及催化碳-氧(C-O)耦合。氢化脱卤的偏好与 CN 上的电子密度成正相关。EPR 测量表明,光生成的 NiI 与芳基卤化物相互作用,然后通过电子转移或还原消除生成不同的产物。对氢脱卤/C-O 偶联的进一步动力学研究表明,芳基卤化物的反应阶数为 0.1/0.5,(CN)电子的反应阶数为 1.5/0.03,从而揭示了两种转化的决定速率步骤分别是 NiI 的氧化加成和(CN)电子的转移。我们的工作推动了通过载流子在光活性支持物上的积累来调节芳基卤化物的转化,并指导了金属萘催化平台的设计/操作,以实现目标转化。
{"title":"Steering Single-Site Metallaphotocatalytic Pathway by Accumulated Electron on Carbon Nitride Support","authors":"Bangrong Ming, Tongtong Jia, Yufan Zhang, Jikun Li, Chuncheng Chen, Wenjing Song, Jincai Zhao","doi":"10.1016/j.apcatb.2023.123653","DOIUrl":"https://doi.org/10.1016/j.apcatb.2023.123653","url":null,"abstract":"<p>Organic halide transformation is of high importance for fine chemical synthesis and environmental remediation. Integrated photocatalytic platforms open up distinctive reaction pathway for carbon-halogen bond activation/reconstruction. Herein we reveal carbon nitride (CN)-ligated single atom nickel (Ni<sub>1</sub>/CN), with accumulated electron on the CN, paves Ni-mediated electron-proton transfer, enabling hydrodehalogenation, along with the catalytic carbon–oxygen (C–O) coupling. The preference for hydrodehalogenation positively correlates with density of electron on CN. EPR measurements suggest photo-generated Ni<sup>I</sup> interacts with aryl halides, followed by electron transfer or reductive elimination to give different products. Further kinetic studies on hydrodehalogenation/ C–O coupling show the reaction orders of 0.1/0.5 in aryl halide and 1.5/0.03 in (CN) electron, unveiling rate-determining step as oxidative addition to Ni<sup>I</sup> and (CN) electron transfer for the two conversions. Our work advances in modulating aryl halide conversion by carrier accumulation on the photoactive support and guides metallaphotocatalytic platform design/operation toward target transformations.</p>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"61 1","pages":""},"PeriodicalIF":22.1,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139030659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A robust asymmetric diatomic electrocatalyst for oxygen reduction reaction in both acidic and alkaline media 用于酸性和碱性介质中氧还原反应的强效不对称二原子电催化剂
IF 22.1 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-12-20 DOI: 10.1016/j.apcatb.2023.123645
Pianpian Zhang , Tingting Sun , Rong Jiang , Tianyu Zheng , Qingmei Xu , Ruanbo Hu , Xinxin Wang , Kang Wang , Lianbin Xu , Dingsheng Wang , Jianzhuang Jiang

Herein, an asymmetric diatomic site oxygen reduction reaction (ORR) electrocatalyst with atomically dispersed Fe and Cu species co-anchored on porous nitrogen-doped polyhedra carbon was successfully prepared through a facile cooperation of post-adsorption and two-step pyrolysis method. Density functional theory (DFT) calculations reveal that the asymmetric FeCu dual atomic site experiences a symmetry destruction of electron transfer due to the existing Cu-N4 sites and thus results in the electron redistribution in FeSACuSA/NC, contributing significantly to the optimization of intermediates adsorption and acceleration of kinetics during ORR process. Attributed to the structural advantages of FeSA-N4&CuSA-N4 sites and highly porous carbon matrix, the FeSACuSA/NC catalyst exhibits excellent electrocatalytic ORR performance with half-wave potentials (E1/2) of 0.86 and 0.88 V versus reversible hydrogen electrode in 0.1 M HClO4 and 0.1 M KOH solutions as well as high durability. Moreover, FeSACuSA/NC-based H2/O2 fuel cell and zinc-air battery present superior performance with high peak power density.

本文通过后吸附法和两步热解法的简便合作,成功制备了一种非对称双原子位点氧还原反应(ORR)电催化剂,其原子分散的铁和铜物种共锚在多孔掺氮多面体碳上。密度泛函理论(DFT)计算表明,由于存在 Cu-N4 位点,不对称的 FeCu 双原子位点在电子传递过程中发生了对称性破坏,从而导致了 FeSACuSA/NC 中电子的重新分布,这极大地促进了 ORR 过程中中间产物吸附的优化和动力学的加速。得益于 FeSA-N4&CuSA-N4 位点和高多孔碳基质的结构优势,FeSACuSA/NC 催化剂表现出优异的电催化 ORR 性能,在 0.1 M HClO4 和 0.1 M KOH 溶液中与可逆氢电极相比,半波电位(E1/2)分别为 0.86 V 和 0.88 V,并且具有很高的耐久性。此外,基于 FeSACuSA/NC 的 H2/O2 燃料电池和锌-空气电池性能优越,峰值功率密度高。
{"title":"A robust asymmetric diatomic electrocatalyst for oxygen reduction reaction in both acidic and alkaline media","authors":"Pianpian Zhang ,&nbsp;Tingting Sun ,&nbsp;Rong Jiang ,&nbsp;Tianyu Zheng ,&nbsp;Qingmei Xu ,&nbsp;Ruanbo Hu ,&nbsp;Xinxin Wang ,&nbsp;Kang Wang ,&nbsp;Lianbin Xu ,&nbsp;Dingsheng Wang ,&nbsp;Jianzhuang Jiang","doi":"10.1016/j.apcatb.2023.123645","DOIUrl":"10.1016/j.apcatb.2023.123645","url":null,"abstract":"<div><p><span>Herein, an asymmetric diatomic site oxygen reduction reaction (ORR) electrocatalyst with atomically dispersed Fe and Cu species co-anchored on porous nitrogen-doped polyhedra carbon was successfully prepared through a facile cooperation of post-adsorption and two-step pyrolysis method. Density functional theory (DFT) calculations reveal that the asymmetric FeCu dual atomic site experiences a symmetry destruction of electron transfer due to the existing Cu-N</span><sub>4</sub> sites and thus results in the electron redistribution in Fe<sub>SA</sub>Cu<sub>SA</sub>/NC, contributing significantly to the optimization of intermediates adsorption and acceleration of kinetics during ORR process. Attributed to the structural advantages of Fe<sub>SA</sub>-N<sub>4</sub>&amp;Cu<sub>SA</sub>-N<sub>4</sub> sites and highly porous carbon matrix, the Fe<sub>SA</sub>Cu<sub>SA</sub>/NC catalyst exhibits excellent electrocatalytic ORR performance with half-wave potentials (<em>E</em><sub><em>1/2</em></sub>) of 0.86 and 0.88 V versus reversible hydrogen electrode in 0.1 M HClO<sub>4</sub> and 0.1 M KOH solutions as well as high durability. Moreover, Fe<sub>SA</sub>Cu<sub>SA</sub>/NC-based H<sub>2</sub>/O<sub>2</sub> fuel cell and zinc-air battery present superior performance with high peak power density.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"344 ","pages":"Article 123645"},"PeriodicalIF":22.1,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138821334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A S-type 2D/2D heterojunction via intercalating ultrathin g-C3N4 into NH4V4O10 nanosheets and the boosted removal of ciprofloxacin 通过在 NH4V4O10 纳米片中插层超薄 g-C3N4 实现 S 型二维/二维异质结并提高环丙沙星的去除率
IF 22.1 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-12-20 DOI: 10.1016/j.apcatb.2023.123642
Yuxuan Ma , Dan He , Quansheng Liu , Shukun Le , Xiaojing Wang

Exploring cheap, eco-friendliness, and highly efficiency photocatalysts for improving the degradation performance of ciprofloxacin (CIP) is a challenge in the environmental remediation field. Herein, 2D/2D ultrathin g-C3N4/NH4V4O10 (CNNS/NH4V4O10) heterojunction is successfully prepared by intercalating g-C3N4 nanosheets into the ultrathin NH4V4O10 nanobelts. For the optimized 50-CNNS/NH4V4O10, the removal rate is 92% for 10 mg·L−1 CIP under simulated solar light, far better than the separated components CNNS and NH4V4O10. Moreover, the wide degraded concentration of CIP ranges from 5 to 40 mg·L−1 devotes a prospect of practical application. The mechanism investigation confirms the intercalating action can break the interlaminar bonding linkage of NH4, which increases the surface NH4+ content and promotes the steered adsorption capacity toward ciprofloxacin through binding to F- in CIP via H-bonding. This work provides a novel design idea for constructing 2D/2D intercalated nanocomposite for the application in the removal of the deleterious fluoric-containing organic pollutants in water environment.

探索廉价、环保、高效的光催化剂以提高环丙沙星(CIP)的降解性能是环境修复领域的一项挑战。本文通过将 g-C3N4 纳米片插层到超薄 NH4V4O10 纳米颗粒中,成功制备了 2D/2D 超薄 g-C3N4/NH4V4O10 (CNNS/NH4V4O10)异质结。优化后的 50-CNNS/NH4V4O10 在模拟太阳光下对 10 mg-L-1 CIP 的去除率为 92%,远远优于分离后的 CNNS 和 NH4V4O10。此外,CIP 的降解浓度范围从 5 到 40 mg-L-1 不等,这为实际应用提供了前景。机理研究证实,插层作用可打破 NH4 的层间键联,增加表面 NH4+ 含量,并通过 H 键与 CIP 中的 F- 结合,提高对环丙沙星的定向吸附能力。这项工作为构建二维/二维插层纳米复合材料提供了一种新的设计思路,可用于去除水环境中有害的含氟有机污染物。
{"title":"A S-type 2D/2D heterojunction via intercalating ultrathin g-C3N4 into NH4V4O10 nanosheets and the boosted removal of ciprofloxacin","authors":"Yuxuan Ma ,&nbsp;Dan He ,&nbsp;Quansheng Liu ,&nbsp;Shukun Le ,&nbsp;Xiaojing Wang","doi":"10.1016/j.apcatb.2023.123642","DOIUrl":"10.1016/j.apcatb.2023.123642","url":null,"abstract":"<div><p>Exploring cheap, eco-friendliness, and highly efficiency photocatalysts for improving the degradation performance of ciprofloxacin (CIP) is a challenge in the environmental remediation field. Herein, 2D/2D ultrathin g-C<sub>3</sub>N<sub>4</sub>/NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> (CNNS/NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub>) heterojunction is successfully prepared by intercalating g-C<sub>3</sub>N<sub>4</sub> nanosheets into the ultrathin NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub><span> nanobelts. For the optimized 50-CNNS/NH</span><sub>4</sub>V<sub>4</sub>O<sub>10</sub>, the removal rate is 92% for 10 mg·L<sup>−1</sup><span> CIP under simulated solar light, far better than the separated components CNNS and NH</span><sub>4</sub>V<sub>4</sub>O<sub>10</sub>. Moreover, the wide degraded concentration of CIP ranges from 5 to 40 mg·L<sup>−1</sup> devotes a prospect of practical application. The mechanism investigation confirms the intercalating action can break the interlaminar bonding linkage of NH<sub>4</sub>, which increases the surface NH<sub>4</sub><sup>+</sup> content and promotes the steered adsorption capacity toward ciprofloxacin through binding to F<sup>-</sup><span> in CIP via H-bonding. This work provides a novel design idea for constructing 2D/2D intercalated nanocomposite<span> for the application in the removal of the deleterious fluoric-containing organic pollutants in water environment.</span></span></p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"344 ","pages":"Article 123642"},"PeriodicalIF":22.1,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139017277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring olefin distribution via tuning rare earth metals in bifunctional Cu-RE/beta-zeolite catalysts for ethanol upgrading 通过调节双功能铜-RE/β-沸石催化剂中的稀土金属来调整烯烃分布,从而实现乙醇提纯
IF 22.1 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-12-20 DOI: 10.1016/j.apcatb.2023.123648
Meijun Li , Junyan Zhang , Stephen C. Purdy , Fan Lin , Kinga A. Unocic , Michael Cordon , Zili Wu , Huamin Wang , Jacklyn Hall , A. Jeremy Kropf , Theodore R. Krause , Brian Davison , Zhenglong Li , Andrew D. Sutton

Bioethanol to middle distillate technologies have offered a unique solution to produce renewable aviation fuel for decarbonizing the hard-to-electrify sectors. Here, we have developed the series of bimetallic Cu- and rare earth-containing (RE) Beta zeolite catalysts that yield high C3+ alkene selectivity from ethanol upgrading (>80% selectivity at ∼100% conversion, 623 K). The formation rates of butene isomers to C5+ alkenes are linearly correlated with the strength of Lewis acidic RE identity, which follows the sequence of Yb12/Beta >Y7/Beta > Gd12/Beta > Ce10/Beta > La12/Beta. Rate measurements indicate that the RE selection plays the vital role in altering the rate of the key competitive reactions within the ethanol-to-alkenes reaction network, namely C4 alcohol dehydration and C-C chain growth, which dictate alkene product distributions. These findings indicate a feasible and promising method for tailoring alkene product distributions from ethanol upgrading, which is of notable significance to the generation of renewable middle distillates.

生物乙醇制中间馏分油技术为生产可再生航空燃料提供了独特的解决方案,从而使难以电气化的行业实现脱碳。在此,我们开发了一系列双金属含铜和稀土(RE)的 Beta 沸石催化剂,可从乙醇升级中获得较高的 C3+ 烯烃选择性(>80% 的选择性,转化率为 100%,623 K)。从丁烯异构体到 C5+ 烯烃的形成率与路易斯酸性 RE 特性的强度成线性关系,其顺序为 Yb12/Beta >Y7/Beta >Gd12/Beta >Ce10/Beta >La12/Beta 。速率测量结果表明,RE 选择在改变乙醇制烯烃反应网络中关键竞争反应(即 C4 醇脱水和 C-C 链增长)的速率方面起着至关重要的作用,而这两个反应决定了烯烃产物的分布。这些研究结果表明,从乙醇升级中定制烯烃产物分布是一种可行且有前景的方法,这对生成可再生中间馏分油具有显著意义。
{"title":"Tailoring olefin distribution via tuning rare earth metals in bifunctional Cu-RE/beta-zeolite catalysts for ethanol upgrading","authors":"Meijun Li ,&nbsp;Junyan Zhang ,&nbsp;Stephen C. Purdy ,&nbsp;Fan Lin ,&nbsp;Kinga A. Unocic ,&nbsp;Michael Cordon ,&nbsp;Zili Wu ,&nbsp;Huamin Wang ,&nbsp;Jacklyn Hall ,&nbsp;A. Jeremy Kropf ,&nbsp;Theodore R. Krause ,&nbsp;Brian Davison ,&nbsp;Zhenglong Li ,&nbsp;Andrew D. Sutton","doi":"10.1016/j.apcatb.2023.123648","DOIUrl":"10.1016/j.apcatb.2023.123648","url":null,"abstract":"<div><p>Bioethanol to middle distillate technologies have offered a unique solution to produce renewable aviation fuel for decarbonizing the hard-to-electrify sectors. Here, we have developed the series of bimetallic Cu- and rare earth-containing (RE) Beta zeolite catalysts that yield high C<sub>3+</sub><span> alkene<span> selectivity from ethanol upgrading (&gt;80% selectivity at ∼100% conversion, 623 K). The formation rates of butene isomers to C</span></span><sub>5+</sub> alkenes are linearly correlated with the strength of Lewis acidic RE identity, which follows the sequence of Yb<sub>12</sub>/Beta &gt;Y<sub>7</sub>/Beta &gt; Gd<sub>12</sub>/Beta &gt; Ce<sub>10</sub>/Beta &gt; La<sub>12</sub>/Beta. Rate measurements indicate that the RE selection plays the vital role in altering the rate of the key competitive reactions within the ethanol-to-alkenes reaction network, namely C<sub>4</sub> alcohol dehydration and C-C chain growth, which dictate alkene product distributions. These findings indicate a feasible and promising method for tailoring alkene product distributions from ethanol upgrading, which is of notable significance to the generation of renewable middle distillates.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"344 ","pages":"Article 123648"},"PeriodicalIF":22.1,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138816704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel durable and recyclable Cu@MoS2/polyacrylamide/copper alginate hydrogel photo-Fenton-like catalyst with enhanced and self-regenerable adsorption and degradation of high concentration tetracycline 新型耐久且可回收的 Cu@MoS2/ 聚丙烯酰胺/海藻酸铜水凝胶类光-芬顿催化剂,可增强高浓度四环素的吸附和降解能力并可自我再生
IF 22.1 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-12-20 DOI: 10.1016/j.apcatb.2023.123640
Gang Qin , Xiaoyu Song , Qiang Chen , Wenjie He , Jia Yang , Yue Li , Yongcai Zhang , Jun Wang , Dionysios D. Dionysiou

A durable and recyclable Cu@MoS2/polyacrylamide/copper alginate nanocomposite double network (Cu@MoS2/PAAm/CA NCDN) hydrogel photo-Fenton-like catalyst was prepared for efficient removal of high concentration tetracycline (TC) in pharmaceutical wastewater. This hydrogel catalyst exhibits a remarkable synergistic effect between adsorption and catalytic degradation of TC. Consequently, this hydrogel catalyst shows a larger TC adsorption capacity of 122.2 mg g−1 and a higher TC degradation efficiency of 90% (degradation amount = 70.2 mg g−1) at the TC concentration of 200 mg L−1, while the TC degradation efficiency by Cu@MoS2 catalyst is only 19% (degradation amount = 38.2 mg g−1). This hydrogel catalyst can effectively remove high concentration TC under both light and dark conditions. Moreover, the tensile strength of Cu@MoS2/PAAm/CA NCDN hydrogel catalyst reaches an extraordinary 1.46 MPa and maintains 0.68 MPa after 15-day immersion in water, indicating high durability. In addition, the flexible hydrogel catalyst can keep good integrity after being deformed by stretching, bending, and knotting, etc., enabling its easy recovery. This investigation provides an innovative and versatile strategy to develop high-performance hydrogel catalysts for treating antibiotics-polluted water.

制备了一种耐用且可回收的 Cu@MoS2/ 聚丙烯酰胺/海藻酸铜纳米复合双网络(Cu@MoS2/PAAm/CA NCDN)水凝胶光芬顿类催化剂,用于高效去除制药废水中的高浓度四环素(TC)。这种水凝胶催化剂在吸附和催化降解 TC 之间表现出显著的协同效应。因此,在 TC 浓度为 200 mg L-1 时,该水凝胶催化剂对 TC 的吸附容量高达 122.2 mg g-1,降解效率高达 90%(降解量 = 70.2 mg g-1),而 Cu@MoS2 催化剂对 TC 的降解效率仅为 19%(降解量 = 38.2 mg g-1)。这种水凝胶催化剂在光照和黑暗条件下都能有效去除高浓度 TC。此外,Cu@MoS2/PAAm/CA NCDN 水凝胶催化剂的拉伸强度高达 1.46 兆帕,在水中浸泡 15 天后仍能保持 0.68 兆帕,表明其具有很高的耐久性。此外,柔性水凝胶催化剂在拉伸、弯曲和打结等变形后仍能保持良好的完整性,使其易于恢复。这项研究为开发用于处理抗生素污染水的高性能水凝胶催化剂提供了一种创新的多功能策略。
{"title":"Novel durable and recyclable Cu@MoS2/polyacrylamide/copper alginate hydrogel photo-Fenton-like catalyst with enhanced and self-regenerable adsorption and degradation of high concentration tetracycline","authors":"Gang Qin ,&nbsp;Xiaoyu Song ,&nbsp;Qiang Chen ,&nbsp;Wenjie He ,&nbsp;Jia Yang ,&nbsp;Yue Li ,&nbsp;Yongcai Zhang ,&nbsp;Jun Wang ,&nbsp;Dionysios D. Dionysiou","doi":"10.1016/j.apcatb.2023.123640","DOIUrl":"10.1016/j.apcatb.2023.123640","url":null,"abstract":"<div><p>A durable and recyclable Cu@MoS<sub>2</sub><span><span>/polyacrylamide/copper alginate </span>nanocomposite double network (Cu@MoS</span><sub>2</sub>/PAAm/CA NCDN) hydrogel photo-Fenton-like catalyst was prepared for efficient removal of high concentration tetracycline (TC) in pharmaceutical wastewater. This hydrogel catalyst exhibits a remarkable synergistic effect between adsorption and catalytic degradation of TC. Consequently, this hydrogel catalyst shows a larger TC adsorption capacity of 122.2 mg g<sup>−1</sup> and a higher TC degradation efficiency of 90% (degradation amount = 70.2 mg g<sup>−1</sup>) at the TC concentration of 200 mg L<sup>−1</sup>, while the TC degradation efficiency by Cu@MoS<sub>2</sub> catalyst is only 19% (degradation amount = 38.2 mg g<sup>−1</sup>). This hydrogel catalyst can effectively remove high concentration TC under both light and dark conditions. Moreover, the tensile strength of Cu@MoS<sub>2</sub>/PAAm/CA NCDN hydrogel catalyst reaches an extraordinary 1.46 MPa and maintains 0.68 MPa after 15-day immersion in water, indicating high durability. In addition, the flexible hydrogel catalyst can keep good integrity after being deformed by stretching, bending, and knotting, etc., enabling its easy recovery. This investigation provides an innovative and versatile strategy to develop high-performance hydrogel catalysts for treating antibiotics-polluted water.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"344 ","pages":"Article 123640"},"PeriodicalIF":22.1,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138988221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the reversible and irreversible deactivation of methane oxidation catalysts 了解甲烷氧化催化剂的可逆和不可逆失活现象
IF 22.1 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-12-20 DOI: 10.1016/j.apcatb.2023.123646
Rasmus Lykke Mortensen , Hendrik-David Noack , Kim Pedersen , Maja A. Dunstan , Fabrice Wilhelm , Andrei Rogalev , Kasper S. Pedersen , Jerrik Mielby , Susanne Mossin

Catalytic oxidation is a promising technology for controlling methane emissions from natural gas engines, but fast and severe deactivation prevents implementation. We investigated a commercial Pd on alumina oxidation catalyst under realistic conditions and identified two deactivation phenomena: fast, reversible inhibition and slow, irreversible loss of active sites. The loss of active sites occurs only during methane conversion, fortunately a brief oxygen cut-off is enough to regenerate the catalyst. Both types of deactivation increase the reduction temperature of PdO. From 36 kinetic experiments we propose a simple kinetic model encompassing both types of deactivation. The inhibition is confirmed to be due to water coverage of the active sites whereas dispersion of Pd on the surface is the cause of the irreversible loss of active sites. The new insight shows a pathway toward designing more durable catalysts for complete methane oxidation.

催化氧化是一种很有前途的控制天然气发动机甲烷排放的技术,但快速而严重的失活现象阻碍了该技术的实施。我们在现实条件下研究了一种商用氧化铝钯氧化催化剂,发现了两种失活现象:快速、可逆的抑制和缓慢、不可逆的活性位点丧失。活性位点的丧失仅发生在甲烷转化过程中,幸运的是,短暂的氧气切断足以使催化剂再生。这两种失活方式都会提高氧化钯的还原温度。根据 36 项动力学实验,我们提出了一个包含两种失活类型的简单动力学模型。经证实,抑制是由于活性位点被水覆盖,而钯在表面的分散则是活性位点不可逆损失的原因。这一新见解为设计更耐用的催化剂实现甲烷完全氧化指明了道路。
{"title":"Understanding the reversible and irreversible deactivation of methane oxidation catalysts","authors":"Rasmus Lykke Mortensen ,&nbsp;Hendrik-David Noack ,&nbsp;Kim Pedersen ,&nbsp;Maja A. Dunstan ,&nbsp;Fabrice Wilhelm ,&nbsp;Andrei Rogalev ,&nbsp;Kasper S. Pedersen ,&nbsp;Jerrik Mielby ,&nbsp;Susanne Mossin","doi":"10.1016/j.apcatb.2023.123646","DOIUrl":"10.1016/j.apcatb.2023.123646","url":null,"abstract":"<div><p>Catalytic oxidation is a promising technology for controlling methane emissions from natural gas engines, but fast and severe deactivation prevents implementation. We investigated a commercial Pd on alumina oxidation catalyst under realistic conditions and identified two deactivation phenomena: fast, reversible inhibition and slow, irreversible loss of active sites. The loss of active sites occurs only during methane conversion, fortunately a brief oxygen cut-off is enough to regenerate the catalyst. Both types of deactivation increase the reduction temperature of PdO. From 36 kinetic experiments we propose a simple kinetic model encompassing both types of deactivation. The inhibition is confirmed to be due to water coverage of the active sites whereas dispersion of Pd on the surface is the cause of the irreversible loss of active sites. The new insight shows a pathway toward designing more durable catalysts for complete methane oxidation.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"344 ","pages":"Article 123646"},"PeriodicalIF":22.1,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926337323012894/pdfft?md5=2754592b6a23989d6b5f6846c27fdf0c&pid=1-s2.0-S0926337323012894-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138816643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied Catalysis B: Environmental
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1