Pub Date : 2023-12-29DOI: 10.1016/j.apcatb.2023.123670
Kaiyi Chen , Rongling Wang , Qiong Mei , Fei Ding , Hui Liu , Guidong Yang , Bo Bai , Qizhao Wang
In order to respond to the call for low emissions and low energy consumption, photoelectrochemical (PEC) ammonia synthesis is used to replace the Haber-Bosch method of nitrogen reduction, and highly efficient photoelectrocatalysts were used to reduce the reaction energy barrier. In this paper, the interlayer MgO and base BiVO4 were successfully compounded by a simple electrodeposition method, and the spinel MCo2O4 (M=Zn, Mn) was compounded on MgO/BiVO4 by a hydrothermal method, forming a sandwich structure of MCo2O4/MgO/BiVO4 (M=Zn, Mn). The research shows that the sandwich structure constructed by MgO as the intermediate layer can reduce the excessive surface defects of photocatalyst, effectively reduce the recombination of photogenerated charge, promote the directional migration and separation of photogenerated charge, and improve the photocurrent density and photoelectric conversion efficiency. MCo2O4 (M=Zn, Mn) is a nitrogen reduction cocatalyst, which forms a heterojunction with n-type BiVO4 and inhibits the recombination of photogenerated electrons. The synergistic effect of MCo2O4(M=Zn, Mn) and MgO accelerates the surface charge transfer efficiency and enhances the photoelectricity ammonia synthesis efficiency. The PEC ammonia synthesis efficiency reached more than 30 µmol h−1 g−1cat, and the Faradaic efficiency(FE) is over 30%.
{"title":"Spinel-covered interlayer MgO enhances the performance of BiVO4 photocatalytic ammonia synthesis","authors":"Kaiyi Chen , Rongling Wang , Qiong Mei , Fei Ding , Hui Liu , Guidong Yang , Bo Bai , Qizhao Wang","doi":"10.1016/j.apcatb.2023.123670","DOIUrl":"10.1016/j.apcatb.2023.123670","url":null,"abstract":"<div><p><span>In order to respond to the call for low emissions and low energy consumption, photoelectrochemical (PEC) ammonia synthesis is used to replace the Haber-Bosch method of nitrogen reduction, and highly efficient photoelectrocatalysts were used to reduce the reaction energy barrier. In this paper, the interlayer MgO and base BiVO</span><sub>4</sub><span> were successfully compounded by a simple electrodeposition method, and the spinel MCo</span><sub>2</sub>O<sub>4</sub> (M=Zn, Mn) was compounded on MgO/BiVO<sub>4</sub> by a hydrothermal method, forming a sandwich structure of MCo<sub>2</sub>O<sub>4</sub>/MgO/BiVO<sub>4</sub> (M=Zn, Mn). The research shows that the sandwich structure constructed by MgO as the intermediate layer can reduce the excessive surface defects of photocatalyst, effectively reduce the recombination of photogenerated charge, promote the directional migration and separation of photogenerated charge, and improve the photocurrent density and photoelectric conversion efficiency. MCo<sub>2</sub>O<sub>4</sub> (M=Zn, Mn) is a nitrogen reduction cocatalyst, which forms a heterojunction with n-type BiVO<sub>4</sub> and inhibits the recombination of photogenerated electrons. The synergistic effect of MCo<sub>2</sub>O<sub>4</sub>(M=Zn, Mn) and MgO accelerates the surface charge transfer efficiency and enhances the photoelectricity ammonia synthesis efficiency. The PEC ammonia synthesis efficiency reached more than 30 µmol h<sup>−1</sup> g<sup>−1</sup><sub>cat</sub>, and the Faradaic efficiency(FE) is over 30%.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"344 ","pages":"Article 123670"},"PeriodicalIF":22.1,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139065055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-29DOI: 10.1016/j.apcatb.2023.123672
Muzammil Hussain , Anam Saddique , Kamakshaiah Charyulu Devarayapalli , Bolam Kim , In Woo Cheong , Dae Sung Lee
The integral part of covalent organic frameworks (COFs) is covalent bonds. Thus, stable and functional links must be developed to expand the potential applications of COFs. Herein, in situ linkage functionalization using a three-component irreversible Doebner reaction was achieved to fabricate chemically stable carboxylic acid-bearing COFs (Tp-Tta-COOH and Tp-Tapb-COOH), which have abundant chelating groups and ordered electron donor–acceptor moieties facilitating charge separation for effective Cr(VI) adsorption and photoreduction, respectively. These functionalized COFs are more effective at Cr(VI) removal via adsorption and photoreduction than their unfunctionalized counterparts (Tp-Tta and Tp-Tapb). The synergy of adsorption and photocatalysis is crucial to effectively remove Cr(VI) from aqueous solutions. This synergy empowers Tp-Tta-COOH to be used continuously for Cr(VI) removal without any elution after each cycle. Furthermore, Tp-Tta-COOH exhibits high chemical stability, durability, and recyclability. This study will promote the development of durable and useful COF materials for real-world applications.
{"title":"Constructing bifunctional and robust covalent organic frameworks via three-component one-pot Doebner reaction for Cr(VI) removal","authors":"Muzammil Hussain , Anam Saddique , Kamakshaiah Charyulu Devarayapalli , Bolam Kim , In Woo Cheong , Dae Sung Lee","doi":"10.1016/j.apcatb.2023.123672","DOIUrl":"10.1016/j.apcatb.2023.123672","url":null,"abstract":"<div><p>The integral part of covalent organic frameworks (COFs) is covalent bonds. Thus, stable and functional links must be developed to expand the potential applications of COFs. Herein, in situ linkage functionalization using a three-component irreversible Doebner reaction was achieved to fabricate chemically stable carboxylic acid-bearing COFs (Tp-Tta-COOH and Tp-Tapb-COOH), which have abundant chelating groups and ordered electron donor–acceptor moieties facilitating charge separation for effective Cr(VI) adsorption and photoreduction, respectively. These functionalized COFs are more effective at Cr(VI) removal via adsorption and photoreduction than their unfunctionalized counterparts (Tp-Tta and Tp-Tapb). The synergy of adsorption and photocatalysis is crucial to effectively remove Cr(VI) from aqueous solutions. This synergy empowers Tp-Tta-COOH to be used continuously for Cr(VI) removal without any elution after each cycle. Furthermore, Tp-Tta-COOH exhibits high chemical stability, durability, and recyclability. This study will promote the development of durable and useful COF materials for real-world applications.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"344 ","pages":"Article 123672"},"PeriodicalIF":22.1,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139092987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-29DOI: 10.1016/j.apcatb.2023.123671
D. Gallego-García , U. Iriarte-Velasco , M.A. Gutiérrez-Ortiz , J.L. Ayastuy
The correlation between the physico-chemical properties of bare and Mo-doped nickel aluminate derived catalysts and product distribution during hydrogenolysis of glycerol with in situ produced hydrogen in continuous was investigated. Stoichiometric nickel aluminate spinel was synthesized via citrate sol-gel in a one-pot synthesis and subsequently doped it with 1 wt% Mo, using both sol-gel one-pot and impregnation methods. Catalytic runs were performed at 235 ºC/ 45 bar for 4 h TOS. The results indicate that Mo-doping increased the number of both metal and acid sites, leading to more selectivity towards deoxygenated products. 1,2-propylene glycol was the major liquid product, Mo/NiAl catalyst exhibited the highest yield (27%) and selectivity (39%). Post-reaction characterization revealed that leaching and oxidation of metals could potentially cause catalyst deactivation. 1 wt% Mo-doped nickel aluminate-derived catalysts possess potential for the selective production of 1,2-PG in a eco-friendly process through one-pot coupling H2 generation and hydrogenolysis reactions.
研究了裸铝酸镍和掺杂钼的铝酸镍衍生催化剂的物理化学性质与甘油加氢分解过程中连续原位产氢的产物分布之间的相关性。通过柠檬酸盐溶胶-凝胶一锅合成法合成了符合定量的铝酸镍尖晶石,随后采用溶胶-凝胶一锅合成法和浸渍法掺入了 1 wt% 的钼。催化运行在 235 ºC/45 bar 下进行,TOS 为 4 小时。结果表明,钼掺杂增加了金属位点和酸位点的数量,从而提高了对脱氧产物的选择性。1,2-丙二醇是主要的液体产物,Mo/NiAl 催化剂表现出最高的产率(27%)和选择性(39%)。反应后表征显示,金属的浸出和氧化可能会导致催化剂失活。掺杂 1 wt% Mo 的镍铝酸盐衍生催化剂有望通过一锅耦合 H2 生成和氢解反应,以环保工艺选择性地生产 1,2-PG。
{"title":"Nickel aluminate spinel-derived catalysts for aqueous-phase hydrogenolysis of glycerol with in-situ hydrogen production: Effect of molybdenum doping","authors":"D. Gallego-García , U. Iriarte-Velasco , M.A. Gutiérrez-Ortiz , J.L. Ayastuy","doi":"10.1016/j.apcatb.2023.123671","DOIUrl":"10.1016/j.apcatb.2023.123671","url":null,"abstract":"<div><p>The correlation between the physico-chemical properties of bare and Mo-doped nickel aluminate derived catalysts and product distribution during hydrogenolysis of glycerol with in situ produced hydrogen in continuous was investigated. Stoichiometric nickel aluminate spinel was synthesized via citrate sol-gel in a one-pot synthesis and subsequently doped it with 1 wt% Mo, using both sol-gel one-pot and impregnation methods. Catalytic runs were performed at 235 ºC/ 45 bar for 4 h TOS. The results indicate that Mo-doping increased the number of both metal and acid sites, leading to more selectivity towards deoxygenated products. 1,2-propylene glycol was the major liquid product, Mo/NiAl catalyst exhibited the highest yield (27%) and selectivity (39%). Post-reaction characterization revealed that leaching and oxidation of metals could potentially cause catalyst deactivation. 1 wt% Mo-doped nickel aluminate-derived catalysts possess potential for the selective production of 1,2-PG in a eco-friendly process through one-pot coupling H<sub>2</sub> generation and hydrogenolysis reactions.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"344 ","pages":"Article 123671"},"PeriodicalIF":22.1,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926337323013140/pdfft?md5=2d37b22057229b50148b75f1ab0aaece&pid=1-s2.0-S0926337323013140-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139092494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-28DOI: 10.1016/j.apcatb.2023.123669
Qi Wang , Shuzhen Zheng , Wanggang Ma , Jianying Qian , Lingye Huang , Hao Deng , Qi Zhou , Sirui Zheng , Shuangjun Li , Hao Du , Qiang Li , Derek Hao , Guoxiang Yang
Z-scheme heterojunction photocatalysts generally have excellent redox ability and robust removal efficiency for contaminants in water. Herein, we combined p-type PPy and n-type NH2-UiO-66 by ball milling to prepare a direct Z-scheme PPy/NH2-UiO-66 photocatalyst with ultra-high redox potential. Notably, the optimized efficiency of PPy/NH2-UiO-66 (the mass ratio of PPy to NH2-UiO-66 is 1 wt%, named PPy/NU-1) rapidly reduced Cr(VI) (>95%, 60 min) and TC degradation (>90%, 180 min) at 100 W LED light. Moreover, the PPy/NU-1 has high stability and good anti-interference ability, which can effectively remove Cr(VI) from industrial electroplating wastewater, and the Cr(VI) removal rate is 99%, which meets the industrial wastewater standard and has the potential attraction of actual wastewater treatment. In addition, the techniques of UV-Vis diffuse reflection, electron spin resonance (ESR), photoluminescence (PL), and photoelectrochemical measurement showed that PPy/NH2-UiO-66 composites improved the light capture ability, thereby improving the photocatalytic efficiency. The PPy/NU-1 has a very high redox potential by constructing a Z-scheme heterojunction, enhances the interfacial charge transfer ability, and improves the separation efficiency of photogenerated carriers. Finally, the mechanism of the Z-scheme was systematically by nitroblue tetrazolium (NBT) and p-phthalic acid (TA) transformation, ESR experiments, and density functional theory (DFT) calculations. This work provides a strategy for the preparation of visible photocatalysts with excellent photocatalytic activity and provides new insights for interfacial charge transfer and molecular oxygen activation.
Z 型异质结光催化剂通常具有优异的氧化还原能力和强大的去除水中污染物的效率。在此,我们通过球磨将 p 型 PPy 和 n 型 NH2-UiO-66 结合在一起,直接制备出了具有超高氧化还原电位的 Z 型 PPy/NH2-UiO-66 光催化剂。值得注意的是,PPy/NH2-UiO-66(PPy与NH2-UiO-66的质量比为1 wt%,命名为PPy/NU-1)的效率得到了优化,在100 W LED光照下可快速还原Cr(VI)(95%,60分钟)和降解TC(90%,180分钟)。此外,PPy/NU-1稳定性高,抗干扰能力强,能有效去除工业电镀废水中的六价铬,六价铬去除率达99%,符合工业废水标准,具有实际废水处理的潜在吸引力。此外,紫外可见光漫反射、电子自旋共振(ESR)、光致发光(PL)和光电化学测量等技术表明,PPy/NH2-UiO-66 复合材料提高了光捕获能力,从而提高了光催化效率。PPy/NU-1 通过构建 Z 型异质结具有很高的氧化还原电位,增强了界面电荷转移能力,提高了光生载流子的分离效率。最后,通过硝基蓝四氮唑(NBT)和对邻苯二甲酸(TA)转化、ESR 实验和密度泛函理论(DFT)计算,系统地研究了 Z 型结构的机理。这项工作为制备具有优异光催化活性的可见光光催化剂提供了一种策略,并为界面电荷转移和分子氧活化提供了新的见解。
{"title":"Facile synthesis of direct Z-scheme PPy/NH2-UiO-66 heterojunction for enhanced photocatalytic Cr(VI) reduction, industrial electroplating wastewater treatment, and tetracycline degradation","authors":"Qi Wang , Shuzhen Zheng , Wanggang Ma , Jianying Qian , Lingye Huang , Hao Deng , Qi Zhou , Sirui Zheng , Shuangjun Li , Hao Du , Qiang Li , Derek Hao , Guoxiang Yang","doi":"10.1016/j.apcatb.2023.123669","DOIUrl":"10.1016/j.apcatb.2023.123669","url":null,"abstract":"<div><p>Z-scheme heterojunction photocatalysts generally have excellent redox ability and robust removal efficiency for contaminants in water. Herein, we combined p-type PPy and n-type NH<sub>2</sub>-UiO-66 by ball milling to prepare a direct Z-scheme PPy/NH<sub>2</sub>-UiO-66 photocatalyst with ultra-high redox potential. Notably, the optimized efficiency of PPy/NH<sub>2</sub>-UiO-66 (the mass ratio of PPy to NH<sub>2</sub><span>-UiO-66 is 1 wt%, named PPy/NU-1) rapidly reduced Cr(VI) (>95%, 60 min) and TC degradation (>90%, 180 min) at 100 W LED light. Moreover, the PPy/NU-1 has high stability and good anti-interference ability, which can effectively remove Cr(VI) from industrial electroplating wastewater, and the Cr(VI) removal rate is 99%, which meets the industrial wastewater standard and has the potential attraction of actual wastewater treatment. In addition, the techniques of UV-Vis diffuse reflection, electron spin resonance (ESR), photoluminescence (PL), and photoelectrochemical measurement showed that PPy/NH</span><sub>2</sub><span>-UiO-66 composites improved the light capture ability, thereby improving the photocatalytic efficiency. The PPy/NU-1 has a very high redox potential by constructing a Z-scheme heterojunction, enhances the interfacial charge transfer ability, and improves the separation efficiency of photogenerated carriers. Finally, the mechanism of the Z-scheme was systematically by nitroblue tetrazolium (NBT) and p-phthalic acid (TA) transformation, ESR experiments, and density functional theory (DFT) calculations. This work provides a strategy for the preparation of visible photocatalysts with excellent photocatalytic activity and provides new insights for interfacial charge transfer and molecular oxygen activation.</span></p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"344 ","pages":"Article 123669"},"PeriodicalIF":22.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139065049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-27DOI: 10.1016/j.apcatb.2023.123668
Zijin Xu , Zhengyan Du , Runlin Zhang , Fanda Zeng , Zeshuo Meng , Xiaoying Hu , Hongwei Tian
Perovskite oxides show great promise in the field of water electrolysis due to their low cost and tailorable properties. However, their performance is seriously constrained by crystal agglomeration. Herein, a high-entropy strategy is reported to regulate the lattice strain field, endowing the crystal with a high energy barrier and optimizing its surface properties to achieve conformal growth of highly reactive perovskite oxides. A range of characterization methods and theoretical calculations are used to investigate the lattice distortion-induced complex lattice strain field and the effective activation strategy of the cocktail effect. Based on this, the produced rod-like La(CoFeNiCrAl)O3 (La5B–Al) exhibits a low overpotential of 285 mV at 10 mA cm−2 in 1 M KOH. This work provides a novel strategy to use the lattice strain field for regulating the growth of catalysts and clarifies the relationship between high-entropy effects and material properties.
透镜氧化物因其低成本和可定制的特性,在水电解领域大有可为。然而,它们的性能受到晶体团聚的严重制约。本文报告了一种调节晶格应变场的高熵策略,赋予晶体高能垒并优化其表面特性,以实现高活性过氧化物的保形生长。通过一系列表征方法和理论计算,研究了晶格畸变引起的复杂晶格应变场和鸡尾酒效应的有效激活策略。在此基础上,制得的棒状 La(CoFeNiCrAl)O3 (La5B-Al) 在 1 M KOH 中 10 mA cm-2 的过电位仅为 285 mV。这项工作提供了一种利用晶格应变场调节催化剂生长的新策略,并阐明了高熵效应与材料特性之间的关系。
{"title":"Regulating the lattice strain field by high-entropy strategy to realize the conformal growth of perovskites for efficient oxygen evolution","authors":"Zijin Xu , Zhengyan Du , Runlin Zhang , Fanda Zeng , Zeshuo Meng , Xiaoying Hu , Hongwei Tian","doi":"10.1016/j.apcatb.2023.123668","DOIUrl":"10.1016/j.apcatb.2023.123668","url":null,"abstract":"<div><p><span>Perovskite oxides show great promise in the field of water electrolysis due to their low cost and tailorable properties. However, their performance is seriously constrained by crystal agglomeration. Herein, a high-entropy strategy is reported to regulate the lattice strain field, endowing the crystal with a high energy barrier and optimizing its surface properties to achieve conformal growth of highly reactive perovskite oxides. A range of characterization methods and theoretical calculations are used to investigate the lattice distortion-induced complex lattice strain field and the effective activation strategy of the cocktail effect. Based on this, the produced rod-like La(CoFeNiCrAl)O</span><sub>3</sub> (La5B–Al) exhibits a low overpotential of 285 mV at 10 mA cm<sup>−2</sup> in 1 M KOH. This work provides a novel strategy to use the lattice strain field for regulating the growth of catalysts and clarifies the relationship between high-entropy effects and material properties.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"344 ","pages":"Article 123668"},"PeriodicalIF":22.1,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139065504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-27DOI: 10.1016/j.apcatb.2023.123667
Can Feng , Heng Zhang , Yang Liu , Yi Ren , Peng Zhou , Chuan-Shu He , Zhaokun Xiong , Weihua Liu , Xiaoqiang Dai , Bo Lai
Sulfidated zero-valent iron (SZVI) has been widely used in controlling organic pollutants. However, the significant decrease in catalytic activity of SZVI-based Fenton-like systems under neutral and alkaline conditions remains a large problem. Herein, it was found that surface structure regulation of SZVI with H2O2 (HT-SZVI) greatly enhanced its reactivity and efficiently activated H2O2 to oxidize various organics in a wide pH range. The HT-SZVI/H2O2 system exhibited a pH self-regulation capability that stabilized the eventual solution pH at ∼3.5 at the initial pH of 3.0–9.0. The excellent oxidation performance was primarily attributed to surface-bound •OH produced from H2O2 activation by surface Fe(II) sites on HT-SZVI. Additionally, dissolved Fe(II) converted from surface Fe(II) induced proton generation to self-regulate pH. Newly formed high proton-conductive FeS and Fe3O4 shells accelerated the transfer of accumulated protons in solution to iron core to produce Fe(II), enabling efficient proton consumption-regeneration cycle and enhancing •OH production.
{"title":"Surface structure regulation of sulfidated zero-valent iron by H2O2 for efficient pH self-regulation and proton cycle to boost heterogeneous Fenton-like reaction for pollutant control","authors":"Can Feng , Heng Zhang , Yang Liu , Yi Ren , Peng Zhou , Chuan-Shu He , Zhaokun Xiong , Weihua Liu , Xiaoqiang Dai , Bo Lai","doi":"10.1016/j.apcatb.2023.123667","DOIUrl":"10.1016/j.apcatb.2023.123667","url":null,"abstract":"<div><p><span>Sulfidated zero-valent iron (SZVI) has been widely used in controlling organic pollutants. However, the significant decrease in catalytic activity of SZVI-based Fenton-like systems under neutral and alkaline conditions remains a large problem. Herein, it was found that surface structure regulation of SZVI with H</span><sub>2</sub>O<sub>2</sub> (HT-SZVI) greatly enhanced its reactivity and efficiently activated H<sub>2</sub>O<sub>2</sub> to oxidize various organics in a wide pH range. The HT-SZVI/H<sub>2</sub>O<sub>2</sub><span> system exhibited a pH self-regulation capability that stabilized the eventual solution pH at ∼3.5 at the initial pH of 3.0–9.0. The excellent oxidation performance was primarily attributed to surface-bound </span><sup>•</sup>OH produced from H<sub>2</sub>O<sub>2</sub> activation by surface Fe(II) sites on HT-SZVI. Additionally, dissolved Fe(II) converted from surface Fe(II) induced proton generation to self-regulate pH. Newly formed high proton-conductive FeS and Fe<sub>3</sub>O<sub>4</sub> shells accelerated the transfer of accumulated protons in solution to iron core to produce Fe(II), enabling efficient proton consumption-regeneration cycle and enhancing <sup>•</sup>OH production.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"345 ","pages":"Article 123667"},"PeriodicalIF":22.1,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139193387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-26DOI: 10.1016/j.apcatb.2023.123657
Daniel Hodonj , Michael Borchers , Lukas Zeh , Gia Trung Hoang , Steffen Tischer , Patrick Lott , Olaf Deutschmann
A synthetic exhaust gas bench was dynamically operated to investigate the impact of temperature, amplitude, split cycle, mean lambda, gas hourly space velocity, and oxygen storage capacity on average pollutant conversion and product selectivity of three-way catalysts in periodic operation. As temperature and amplitude increase and oxygen storage capacity decreases, the optimal frequency for maximum pollutant conversion increases. This is consistent with faster desorption of CO and O2 from the catalyst, yielding free surface sites. Regarding the formation of secondary products, the optimal frequency for maximum pollutant conversion does not always correspond to minimal N2O and NH3 emissions. The split cycle variation reveals the enhancement of C3H8 and NO conversion after both lean-rich and rich-lean switches and C3H6 and CO conversion after rich-lean switches at the optimal frequency. As periodic operation does not affect existing engine settings or operating conditions, it is a cost-effective control strategy for meeting future emission limits.
对合成废气台进行了动态操作,以研究温度、振幅、分割周期、平均λ、气体小时空间速度和储氧能力对周期性运行的三元催化器的平均污染物转化率和产物选择性的影响。随着温度和振幅的增加以及储氧能力的降低,获得最大污染物转化率的最佳频率也随之增加。这与催化剂更快地解吸 CO 和 O2,产生自由表面位点是一致的。关于二次产物的形成,最大污染物转化率的最佳频率并不总是与最小 N2O 和 NH3 排放量相对应。分裂循环变化显示,在最佳频率下,贫-富和-贫切换后 C3H8 和 NO 的转化率均有所提高,而富-贫切换后 C3H6 和 CO 的转化率则有所提高。由于周期性运行不会影响现有的发动机设置或运行条件,因此是一种符合未来排放限制的经济有效的控制策略。
{"title":"Impact of operation parameters and lambda input signal during lambda-dithering of three-way catalysts for low-temperature performance enhancement","authors":"Daniel Hodonj , Michael Borchers , Lukas Zeh , Gia Trung Hoang , Steffen Tischer , Patrick Lott , Olaf Deutschmann","doi":"10.1016/j.apcatb.2023.123657","DOIUrl":"https://doi.org/10.1016/j.apcatb.2023.123657","url":null,"abstract":"<div><p>A synthetic exhaust gas bench was dynamically operated to investigate the impact of temperature, amplitude, split cycle, mean lambda, gas hourly space velocity, and oxygen storage capacity on average pollutant conversion and product selectivity of three-way catalysts in periodic operation. As temperature and amplitude increase and oxygen storage capacity decreases, the optimal frequency for maximum pollutant conversion increases. This is consistent with faster desorption of CO and O<sub>2</sub> from the catalyst, yielding free surface sites. Regarding the formation of secondary products, the optimal frequency for maximum pollutant conversion does not always correspond to minimal N<sub>2</sub>O and NH<sub>3</sub> emissions. The split cycle variation reveals the enhancement of C<sub>3</sub>H<sub>8</sub> and NO conversion after both lean-rich and rich-lean switches and C<sub>3</sub>H<sub>6</sub> and CO conversion after rich-lean switches at the optimal frequency. As periodic operation does not affect existing engine settings or operating conditions, it is a cost-effective control strategy for meeting future emission limits.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"345 ","pages":"Article 123657"},"PeriodicalIF":22.1,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926337323013000/pdfft?md5=c930958d619ceebbc481496dd61280b2&pid=1-s2.0-S0926337323013000-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139108996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-25DOI: 10.1016/j.apcatb.2023.123660
Xiaoyun Dong, Fulin Zhang, Yuexin Wang, Fengwei Huang, Xianjun Lang
Covalent organic frameworks (COFs) can be precisely modulated through the covalent linkage of organic building blocks. Therefore, developing COFs to high-performance photocatalysts is highly applicable. Herein, with trifluoroacetic acid as the catalyst, Py-Azine-COF is constructed by aldimine condensation between 1,3,6,8-tetrakis(4-formylphenyl)pyrene and hydrazine hydrate. The highly crystalline Py-Azine-COF possesses a remarkable specific surface area of 1428 m2 g−1. Intriguingly, selective aerobic conversion is achieved over Py-Azine-COF photocatalyst with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). Significantly, TEMPO accelerates the hole transfer and cooperates with superoxide formed from oxygen for selective oxidation of organic sulfides. With the assistance of 2 mol% TEMPO, the performance of Py-Azine-COF photocatalyst is increased markedly. Gratifyingly, TEMPO, a hole mediator, enables expeditious conversions of various sulfides into sulfoxides over Py-Azine-COF photocatalyst in methanol. Generally, COFs can be customized by modulating the covalent connection of organic building blocks to meet the requirements of selective aerobic oxidations.
{"title":"Selective oxidation of sulfides with oxygen over a pyrene covalent organic framework photocatalyst with TEMPO","authors":"Xiaoyun Dong, Fulin Zhang, Yuexin Wang, Fengwei Huang, Xianjun Lang","doi":"10.1016/j.apcatb.2023.123660","DOIUrl":"10.1016/j.apcatb.2023.123660","url":null,"abstract":"<div><p><span>Covalent organic frameworks (COFs) can be precisely modulated through the covalent linkage of organic building blocks. Therefore, developing COFs to high-performance photocatalysts is highly applicable. Herein, with trifluoroacetic acid as the catalyst, Py-Azine-COF is constructed by aldimine condensation between 1,3,6,8-tetrakis(4-formylphenyl)pyrene and hydrazine hydrate. The highly crystalline Py-Azine-COF possesses a remarkable specific surface area of 1428 m</span><sup>2</sup> g<sup>−1</sup><span><span>. Intriguingly, selective aerobic conversion is achieved over Py-Azine-COF photocatalyst with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). Significantly, TEMPO accelerates the hole transfer and cooperates with superoxide formed from oxygen for selective oxidation of organic sulfides. With the assistance of 2 mol% TEMPO, the performance of Py-Azine-COF photocatalyst is increased markedly. Gratifyingly, TEMPO, a hole mediator, enables expeditious conversions of various sulfides into sulfoxides over Py-Azine-COF photocatalyst in methanol. Generally, COFs can be customized by modulating the covalent connection of organic building blocks to meet the requirements of selective aerobic </span>oxidations.</span></p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"345 ","pages":"Article 123660"},"PeriodicalIF":22.1,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139034940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-25DOI: 10.1016/j.apcatb.2023.123664
Xinyu Meng , Qirui Wang , Wei Wang , Tiantian Zhang , Yan Sun , Yuliang Shi , Shuiliang Yao , Zuliang Wu , Jing Li , Erhao Gao , Jiali Zhu , Qiguang Dai
Ru-modified monolayer-dispersed WOx/CeO2 hybrid composites were prepared by co-impregnation (CI) and step impregnation (SI) methods, and the effects of active site distribution on the catalytic oxidation of 1,2-dichloroethane (DCE) were investigated. Ru species tends to be deposited on the monolayer-dispersed WOx (m-WOx) by SI method, which can increase the oxygen vacancies (OV,m-WOx) at m-WOx/CeO2 interfaces. Abundant OV,m-WOx can promote the formation of more active W–OH and accelerate the dechloridation and oxydehydrogenation of DCE. Oppositely, for CI method, Ru species exists mainly in the form of Ru−O−Ce bonds, increasing the oxygen vacancies (OV,RuCe) into CeO2 surface lattices and promoting the deep oxidation of intermediate products. The closer contact between the two hetero-interfacial oxygen vacancies (OV,RuCe and OV,m-WOx) on Ru-modified m-WOx/CeO2 produces a stronger synergistic effect on DCE activation and oxidation, and meanwhile advantageously inhibits the adsorption of chlorine species as well as the formation of polychlorinated by-products.
{"title":"Synergistic mechanism of hetero-interfacial oxygen vacancies on catalytic oxidation of 1,2-dichloroethane over Ru-modified monolayer-dispersed WOx/CeO2 catalysts: Differences in distribution of active sites","authors":"Xinyu Meng , Qirui Wang , Wei Wang , Tiantian Zhang , Yan Sun , Yuliang Shi , Shuiliang Yao , Zuliang Wu , Jing Li , Erhao Gao , Jiali Zhu , Qiguang Dai","doi":"10.1016/j.apcatb.2023.123664","DOIUrl":"10.1016/j.apcatb.2023.123664","url":null,"abstract":"<div><p>Ru-modified monolayer-dispersed WO<sub>x</sub>/CeO<sub>2</sub><span> hybrid composites were prepared by co-impregnation (CI) and step impregnation (SI) methods, and the effects of active site distribution on the catalytic oxidation of 1,2-dichloroethane (DCE) were investigated. Ru species tends to be deposited on the monolayer-dispersed WO</span><sub>x</sub> (m-WO<sub>x</sub>) by SI method, which can increase the oxygen vacancies (O<sub>V,m-WOx</sub>) at m-WO<sub>x</sub>/CeO<sub>2</sub> interfaces. Abundant O<sub>V,m-WOx</sub> can promote the formation of more active W–OH and accelerate the dechloridation and oxydehydrogenation of DCE. Oppositely, for CI method, Ru species exists mainly in the form of Ru−O−Ce bonds, increasing the oxygen vacancies (O<sub>V,RuCe</sub>) into CeO<sub>2</sub> surface lattices and promoting the deep oxidation of intermediate products. The closer contact between the two hetero-interfacial oxygen vacancies (O<sub>V,RuCe</sub> and O<sub>V,m-WOx</sub>) on Ru-modified m-WO<sub>x</sub>/CeO<sub>2</sub> produces a stronger synergistic effect on DCE activation and oxidation, and meanwhile advantageously inhibits the adsorption of chlorine species as well as the formation of polychlorinated by-products.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"344 ","pages":"Article 123664"},"PeriodicalIF":22.1,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139035252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-25DOI: 10.1016/j.apcatb.2023.123666
Yong Zhang , FeiFei Chen , Xiaoya Hao , Yingda Liu , Wentao Wu , Xinghua Zhang , Zehao Zang , Hong Dong , Weihua Wang , Feng Lu , Zunming Lu , Hui Liu , Hui Liu , Feng Luo , Yahui Cheng
Electroreduction of CO2 to C2H4 is a promising strategy for carbon neutralization. However, the kinetic challenge of *CO dimerization, particularly at high current-density, limits its suitability for industrial production. Here, we report that Cu/Ag bimetallic catalyst (Cu52Ag48) with strong interfacial effect can promote high C2H4 selectivity at high current-density. We find that the elaborately designed Cu/Ag interface not only inhibits HER and ethanol formation by weakening H adsorption, but also promotes the formation of *CHO intermediates, achieving an unusual asymmetric *CO-*CHO coupling instead of the common symmertic *CO-*CO coupling. Subsequently, the Faradaic efficiency of C2H4 over Cu52Ag48 is significantly increased to 69.2% at a high current-density of up to 450 mA cm−2. The interfacial effect-induced *CO-*CHO coupling can be extended to other metals with weak H and O adsorption such as Cu/Zn and Cu/Au, thereby boosting the production of C2H4 in CO2RR.
将 CO2 电还原为 C2H4 是一种很有前景的碳中和策略。然而,*CO 二聚化的动力学难题,尤其是在高电流密度下,限制了其在工业生产中的适用性。在此,我们报告了具有强界面效应的铜/银双金属催化剂(Cu52Ag48)可在高电流密度下促进高 C2H4 选择性。我们发现,精心设计的 Cu/Ag 界面不仅能通过削弱 H 的吸附来抑制 HER 和乙醇的形成,还能促进 *CHO 中间体的形成,实现不寻常的不对称 *CO-*CHO 偶联,而不是常见的对称 *CO-*CO 偶联。随后,在 450 mA cm-2 的高电流密度下,C2H4 在 Cu52Ag48 上的法拉第效率显著提高到 69.2%。界面效应诱导的 *CO-*CHO 偶联可扩展到其他具有弱 H 和 O 吸附性的金属,如 Cu/Zn 和 Cu/Au,从而促进 CO2RR 中 C2H4 的产生。
{"title":"Enhanced interfacial effect-induced asymmetric coupling boost electroreduction of CO2 to ethylene","authors":"Yong Zhang , FeiFei Chen , Xiaoya Hao , Yingda Liu , Wentao Wu , Xinghua Zhang , Zehao Zang , Hong Dong , Weihua Wang , Feng Lu , Zunming Lu , Hui Liu , Hui Liu , Feng Luo , Yahui Cheng","doi":"10.1016/j.apcatb.2023.123666","DOIUrl":"10.1016/j.apcatb.2023.123666","url":null,"abstract":"<div><p>Electroreduction of CO<sub>2</sub> to C<sub>2</sub>H<sub>4</sub><span> is a promising strategy for carbon neutralization. However, the kinetic challenge of *CO dimerization, particularly at high current-density, limits its suitability for industrial production. Here, we report that Cu/Ag bimetallic catalyst (Cu</span><sub>52</sub>Ag<sub>48</sub>) with strong interfacial effect can promote high C<sub>2</sub>H<sub>4</sub> selectivity at high current-density. We find that the elaborately designed Cu/Ag interface not only inhibits HER and ethanol formation by weakening H adsorption, but also promotes the formation of *CHO intermediates, achieving an unusual asymmetric *CO-*CHO coupling instead of the common symmertic *CO-*CO coupling. Subsequently, the Faradaic efficiency of C<sub>2</sub>H<sub>4</sub> over Cu<sub>52</sub>Ag<sub>48</sub> is significantly increased to 69.2% at a high current-density of up to 450 mA cm<sup>−2</sup>. The interfacial effect-induced *CO-*CHO coupling can be extended to other metals with weak H and O adsorption such as Cu/Zn and Cu/Au, thereby boosting the production of C<sub>2</sub>H<sub>4</sub> in CO<sub>2</sub>RR.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"344 ","pages":"Article 123666"},"PeriodicalIF":22.1,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139035344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}