首页 > 最新文献

Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)最新文献

英文 中文
Divide-and-Conquer Text Simplification by Scalable Data Enhancement 分而治之的文本简化可扩展的数据增强
Sanqiang Zhao, Rui Meng, Hui Su, Daqing He
Text simplification is a task to reduce the complexity of a text while retain its original meaning. It can facilitate people with low-literacy skills or language impairments, such as children and individuals with dyslexia and aphasia, to read and understand complicated materials. Normally, substitution, deletion, reordering, and splitting are considered as four core operations for performing text simplification. Thus an ideal model should be capable of executing these operations appropriately to simplify a text. However, by examining the degree that each operation is exerted in different datasets, we observe that there is a salient discrepancy between the human annotation and existing training data that is widely used for training simplification models. To alleviate this discrepancy, we propose an unsupervised data construction method that distills each simplifying operation into data via different automatic data enhancement measures. The empirical results demonstrate that the resulting dataset SimSim can support models to achieve better performance by performing all operations properly.
文本简化是指在保留文本原意的同时降低文本的复杂性。它可以帮助读写能力低下或有语言障碍的人,如儿童和患有阅读障碍和失语症的人,阅读和理解复杂的材料。通常,替换、删除、重新排序和分割被认为是执行文本简化的四个核心操作。因此,理想的模型应该能够适当地执行这些操作以简化文本。然而,通过检查每个操作在不同数据集中施加的程度,我们观察到人工注释与广泛用于训练简化模型的现有训练数据之间存在显着差异。为了缓解这种差异,我们提出了一种无监督的数据构建方法,该方法通过不同的自动数据增强措施将每个简化操作提炼成数据。实证结果表明,生成的数据集SimSim可以支持模型通过正确执行所有操作来获得更好的性能。
{"title":"Divide-and-Conquer Text Simplification by Scalable Data Enhancement","authors":"Sanqiang Zhao, Rui Meng, Hui Su, Daqing He","doi":"10.18653/v1/2022.tsar-1.15","DOIUrl":"https://doi.org/10.18653/v1/2022.tsar-1.15","url":null,"abstract":"Text simplification is a task to reduce the complexity of a text while retain its original meaning. It can facilitate people with low-literacy skills or language impairments, such as children and individuals with dyslexia and aphasia, to read and understand complicated materials. Normally, substitution, deletion, reordering, and splitting are considered as four core operations for performing text simplification. Thus an ideal model should be capable of executing these operations appropriately to simplify a text. However, by examining the degree that each operation is exerted in different datasets, we observe that there is a salient discrepancy between the human annotation and existing training data that is widely used for training simplification models. To alleviate this discrepancy, we propose an unsupervised data construction method that distills each simplifying operation into data via different automatic data enhancement measures. The empirical results demonstrate that the resulting dataset SimSim can support models to achieve better performance by performing all operations properly.","PeriodicalId":247582,"journal":{"name":"Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126900264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1