Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions; but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose; but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete Intrusion Detection Architecture (IDA). The main contribution of this architecture is its hierarchical structure; i.e. it is designed and applicable, in one, two or three levels, consistent to the application domain and its required security level. Focus of this paper is on the clustering WSNs, designing and deploying Sensor-based Intrusion Detection System (SIDS) on sensor nodes, Cluster-based Intrusion Detection System (CIDS) on cluster-heads and Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the central server. Suppositions of the WSN and Intrusion Detection Architecture (IDA) are: static and heterogeneous network, hierarchical, distributed and clustering structure along with clusters' overlapping. Finally, this paper has been designed a questionnaire to verify the proposed idea; then it analyzed and evaluated the acquired results from the questionnaires.
{"title":"A High-level Architecture for Intrusion Detection on Heterogeneous Wireless Sensor Networks: Hierarchical, Scalable and Dynamic Reconfigurable","authors":"Hossein Jadidoleslamy","doi":"10.4236/wsn.2011.37026","DOIUrl":"https://doi.org/10.4236/wsn.2011.37026","url":null,"abstract":"Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions; but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose; but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete Intrusion Detection Architecture (IDA). The main contribution of this architecture is its hierarchical structure; i.e. it is designed and applicable, in one, two or three levels, consistent to the application domain and its required security level. Focus of this paper is on the clustering WSNs, designing and deploying Sensor-based Intrusion Detection System (SIDS) on sensor nodes, Cluster-based Intrusion Detection System (CIDS) on cluster-heads and Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the central server. Suppositions of the WSN and Intrusion Detection Architecture (IDA) are: static and heterogeneous network, hierarchical, distributed and clustering structure along with clusters' overlapping. Finally, this paper has been designed a questionnaire to verify the proposed idea; then it analyzed and evaluated the acquired results from the questionnaires.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122859544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The objective of this contribution is to present expositive review content on currently available experimental tools/services/concepts used for most emerging field Wireless Sensor Network that has capability to change many of the Information Communication aspects in the upcoming era. Currently due to high cost of large number of sensor nodes most researches in wireless sensor networks area is performed by using these experimental tools in various universities, institutes, and research centers before implementing real one. Also the statistics gathered from these experimental tools can be realistic and convenient. These experimental tools provide the better option for studying the behavior of WSNs before and after implementing the physical one. In this contribution 63 simulators/simulation frameworks, 14 emulators, 19 data visualization tools, 46 testbeds, 26 debugging tools/services/concepts, 10 code-updation/reprogramming tools and 8 network monitors has been presented that are used worldwide for WSN researches.
{"title":"An Exploratory Study of Experimental Tools for Wireless Sensor Networks","authors":"A. Dwivedi, O. Vyas","doi":"10.4236/wsn.2011.37025","DOIUrl":"https://doi.org/10.4236/wsn.2011.37025","url":null,"abstract":"The objective of this contribution is to present expositive review content on currently available experimental tools/services/concepts used for most emerging field Wireless Sensor Network that has capability to change many of the Information Communication aspects in the upcoming era. Currently due to high cost of large number of sensor nodes most researches in wireless sensor networks area is performed by using these experimental tools in various universities, institutes, and research centers before implementing real one. Also the statistics gathered from these experimental tools can be realistic and convenient. These experimental tools provide the better option for studying the behavior of WSNs before and after implementing the physical one. In this contribution 63 simulators/simulation frameworks, 14 emulators, 19 data visualization tools, 46 testbeds, 26 debugging tools/services/concepts, 10 code-updation/reprogramming tools and 8 network monitors has been presented that are used worldwide for WSN researches.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123440134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For the source limitations and vulnerabilities of the sensor nodes of Wireless Sensor Networks, we propose the new kind of dynamic key protocol for wireless sensor network, using the unidirection of hash function and the thinking of Hill to study the dynamic key matrix. Through theoretical analysis of some aspects, our method can promote security, connectivity expansibility; the results show that this protocol reduces storage space and communication energy consumption also.
{"title":"A New Kind of Dynamic Key Protocol for Wireless Sensor Network","authors":"Caixia Zhang, Liangyan Cheng, Xiang-Dong Wang","doi":"10.4236/wsn.2011.36021","DOIUrl":"https://doi.org/10.4236/wsn.2011.36021","url":null,"abstract":"For the source limitations and vulnerabilities of the sensor nodes of Wireless Sensor Networks, we propose the new kind of dynamic key protocol for wireless sensor network, using the unidirection of hash function and the thinking of Hill to study the dynamic key matrix. Through theoretical analysis of some aspects, our method can promote security, connectivity expansibility; the results show that this protocol reduces storage space and communication energy consumption also.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129759155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Localization of sensor nodes is crucial in Wireless Sensor Network because of applications like surveillance, tracking, navigation etc. Various optimization techniques for localization have been proposed in literature by different researchers. In this paper, we propose a two phase hybrid approach for localization using Multidi- mensional Scaling and trilateration, namely, MDS with refinement using trilateration. Trilateration refines the estimated locations obtained by the MDS algorithm and hence acts as a post optimizer which improves the accuracy of the estimated positions of sensor nodes. Through extensive simulations, we have shown that the proposed algorithm is more robust to noise than previous approaches and provides higher accuracy for estimating the positions of sensor nodes.
{"title":"MDS and Trilateration Based Localization in Wireless Sensor Network","authors":"S. Patil, M. Zaveri","doi":"10.4236/wsn.2011.36023","DOIUrl":"https://doi.org/10.4236/wsn.2011.36023","url":null,"abstract":"Localization of sensor nodes is crucial in Wireless Sensor Network because of applications like surveillance, tracking, navigation etc. Various optimization techniques for localization have been proposed in literature by different researchers. In this paper, we propose a two phase hybrid approach for localization using Multidi- mensional Scaling and trilateration, namely, MDS with refinement using trilateration. Trilateration refines the estimated locations obtained by the MDS algorithm and hence acts as a post optimizer which improves the accuracy of the estimated positions of sensor nodes. Through extensive simulations, we have shown that the proposed algorithm is more robust to noise than previous approaches and provides higher accuracy for estimating the positions of sensor nodes.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"140 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116725987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deployment of sensors in any irregular terrain with 100% coverage and connectivity is a challenging issue in the field of Wireless Sensor Networks. Traditional deployments often assume homogeneous environments, which ignore the effect of terrain profile as well as the in-network obstacles situated randomly like buildings, trees, roads and so on. Proper deployment of sensors in such irregular region and its corresponding routing is one of the most fundamental challenges of Wireless Sensor Networks. In this work, we have considered that the terrain is irregular in shape and there may be obstacles within the terrain in any random position with any random shape, which is the reality in real world. With this novel framework, we have shown that an opti-mum deployment can be achieved in such irregular terrain without compromising coverage as well as con-nectivity between the sensor nodes for effective routing.
{"title":"LDM (Layered Deployment Model): A Novel Framework to Deploy Sensors in an Irregular Terrain","authors":"C. K. Bhattacharyya, Swapan Bhattacharya","doi":"10.4236/wsn.2011.36022","DOIUrl":"https://doi.org/10.4236/wsn.2011.36022","url":null,"abstract":"Deployment of sensors in any irregular terrain with 100% coverage and connectivity is a challenging issue in the field of Wireless Sensor Networks. Traditional deployments often assume homogeneous environments, which ignore the effect of terrain profile as well as the in-network obstacles situated randomly like buildings, trees, roads and so on. Proper deployment of sensors in such irregular region and its corresponding routing is one of the most fundamental challenges of Wireless Sensor Networks. In this work, we have considered that the terrain is irregular in shape and there may be obstacles within the terrain in any random position with any random shape, which is the reality in real world. With this novel framework, we have shown that an opti-mum deployment can be achieved in such irregular terrain without compromising coverage as well as con-nectivity between the sensor nodes for effective routing.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121345366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wireless sensor networks have been identified as one of the key technologies for the 21st century. In order to overcome their limitations such as fault tolerance and conservation of energy, we propose a middleware solution, In-Motes. In-Motes stands as a fault tolerant platform for deploying and monitoring applications in real time offers a number of possibilities for the end user giving him in parallel the freedom to experiment with various parameters, in an effort the deployed applications to run in an energy efficient manner inside the network. The proposed scheme is evaluated through the In-Motes EYE application, aiming to test its merits under real time conditions. In-Motes EYE application which is an agent based real time In-Motes application developed for sensing acceleration variations in an environment. The application was tested in a prototype area, road alike, for a period of four months.
{"title":"In-Motes EYE: A Real Time Application for Automobiles in Wireless Sensor Networks","authors":"Dimitrios Georgoulas, K. Blow","doi":"10.4236/wsn.2011.35018","DOIUrl":"https://doi.org/10.4236/wsn.2011.35018","url":null,"abstract":"Wireless sensor networks have been identified as one of the key technologies for the 21st century. In order to overcome their limitations such as fault tolerance and conservation of energy, we propose a middleware solution, In-Motes. In-Motes stands as a fault tolerant platform for deploying and monitoring applications in real time offers a number of possibilities for the end user giving him in parallel the freedom to experiment with various parameters, in an effort the deployed applications to run in an energy efficient manner inside the network. The proposed scheme is evaluated through the In-Motes EYE application, aiming to test its merits under real time conditions. In-Motes EYE application which is an agent based real time In-Motes application developed for sensing acceleration variations in an environment. The application was tested in a prototype area, road alike, for a period of four months.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128983224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wireless sensor networks (WSNs) attract considerable amount of research efforts from both industry and academia. With limited power and computational capability available on a sensor node, robustness and efficiency are the main concerns when designing a routing protocol for WSNs with low complexity. There are various existing design approaches, such as data-centric approach, hierarchical approach and location-based approach, which were designed for a particular application with specific requirements. In this paper, we study the design and implementation of a routing protocol for data acquisition in WSNs. The designed routing protocol is named Centralized Sensor Protocol for Information via Negotiation (CSPIN), which essentially combines the advertise-request-transfer process and a routing distribution mechanism. Implementation is realized and demonstrated with the Crossbow MicaZ hardware using nesC/TinyOS. It was our intention to provide a hand-on study of implementation of centralized routing protocol for WSNs.
无线传感器网络(WSNs)吸引了工业界和学术界大量的研究工作。由于传感器节点的可用功率和计算能力有限,在设计低复杂度wsn路由协议时,鲁棒性和效率是主要考虑的问题。现有的设计方法有多种,例如以数据为中心的方法、分层方法和基于位置的方法,这些方法都是为具有特定需求的特定应用程序设计的。本文研究了无线传感器网络中用于数据采集的路由协议的设计与实现。所设计的路由协议被命名为CSPIN (Centralized Sensor protocol for Information via Negotiation),该协议实质上结合了发布-请求-传输过程和路由分配机制。使用nesC/TinyOS在Crossbow MicaZ硬件上实现并演示了其实现。我们的目的是为wsn提供集中式路由协议实现的实践研究。
{"title":"Implementation Study of a Centralized Routing Protocol for Data Acquisition in Wireless Sensor Networks","authors":"T. Pham, Xue Jun Li, Wai Yee Leong, P. Chong","doi":"10.4236/wsn.2011.35019","DOIUrl":"https://doi.org/10.4236/wsn.2011.35019","url":null,"abstract":"Wireless sensor networks (WSNs) attract considerable amount of research efforts from both industry and academia. With limited power and computational capability available on a sensor node, robustness and efficiency are the main concerns when designing a routing protocol for WSNs with low complexity. There are various existing design approaches, such as data-centric approach, hierarchical approach and location-based approach, which were designed for a particular application with specific requirements. In this paper, we study the design and implementation of a routing protocol for data acquisition in WSNs. The designed routing protocol is named Centralized Sensor Protocol for Information via Negotiation (CSPIN), which essentially combines the advertise-request-transfer process and a routing distribution mechanism. Implementation is realized and demonstrated with the Crossbow MicaZ hardware using nesC/TinyOS. It was our intention to provide a hand-on study of implementation of centralized routing protocol for WSNs.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127787707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asystemfor accurate localization and trackingof remote objects is introduced, which employs a reference frame of four coplanar ultrasound sources as transmitters and miniature microphones that equip the remote objects as receivers. The transmitters are forced to emit pulses in the 17 - 40 kHz band. A central processing unit, knowing the positions of the transmitters and the time of flight of the ultrasound signals until they reach the microphones, computes the positions of the microphones, identifying and discarding possible false signals due to echoes and environmental noise. Once the microphones are localized, the position of the object is computed by finding the placement of the geometrical reconstructed object that fitsbest with the calculated microphones positions. The operating principle of the localization system is based on successive frames. The data are processed in parallel for all the microphones that equip the remote objects, leading to a high repetition rate of localization frames. In the proposed prototype, all the computation, including signal filtering, time of flight detection, localization and results display, is carried out about 25 times per second on a notebook PC.
{"title":"3D Localization and Tracking of Objects Using Miniature Microphones","authors":"R. Ionescu, R. Carotenuto, F. Urbani","doi":"10.4236/wsn.2011.35017","DOIUrl":"https://doi.org/10.4236/wsn.2011.35017","url":null,"abstract":"Asystemfor accurate localization and trackingof remote objects is introduced, which employs a reference frame of four coplanar ultrasound sources as transmitters and miniature microphones that equip the remote objects as receivers. The transmitters are forced to emit pulses in the 17 - 40 kHz band. A central processing unit, knowing the positions of the transmitters and the time of flight of the ultrasound signals until they reach the microphones, computes the positions of the microphones, identifying and discarding possible false signals due to echoes and environmental noise. Once the microphones are localized, the position of the object is computed by finding the placement of the geometrical reconstructed object that fitsbest with the calculated microphones positions. The operating principle of the localization system is based on successive frames. The data are processed in parallel for all the microphones that equip the remote objects, leading to a high repetition rate of localization frames. In the proposed prototype, all the computation, including signal filtering, time of flight detection, localization and results display, is carried out about 25 times per second on a notebook PC.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125769316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
City administrators need to guarantee bus priority in urban public transportation. Building large-scale dedicated bus lanes is a cost-effective solution but it suffers from illegal utilization of dedicated bus lines by other non-permitted vehicles. In general, two systems can be utilized for bus lane monitoring: road-side system and bus mounted system. Although the former one has the advantage in terms of larger surveillance coverage, the investment cost makes it less feasible because of scalability issue. In this paper, we focus on bus mounted system to improve surveillance coverage without additional infrastructure cost. We introduce DoubleChecking, a cooperative violator identification scheme that can accurately pick out those non-permitted vehicles or violators. DoubleChecking is designed to improve the surveillance coverage of bus mounted system by using communications/cooperation between mounted camera sensors and existing camera sensors around intersections. Through theoretical analysis and simulation results, we show that DoubleChecking yields good performance for violator identification.
{"title":"Towards Effective Bus Lane Monitoring Using Camera Sensors","authors":"Xu Li, Xuegang Yu, Ke He","doi":"10.4236/wsn.2011.35020","DOIUrl":"https://doi.org/10.4236/wsn.2011.35020","url":null,"abstract":"City administrators need to guarantee bus priority in urban public transportation. Building large-scale dedicated bus lanes is a cost-effective solution but it suffers from illegal utilization of dedicated bus lines by other non-permitted vehicles. In general, two systems can be utilized for bus lane monitoring: road-side system and bus mounted system. Although the former one has the advantage in terms of larger surveillance coverage, the investment cost makes it less feasible because of scalability issue. In this paper, we focus on bus mounted system to improve surveillance coverage without additional infrastructure cost. We introduce DoubleChecking, a cooperative violator identification scheme that can accurately pick out those non-permitted vehicles or violators. DoubleChecking is designed to improve the surveillance coverage of bus mounted system by using communications/cooperation between mounted camera sensors and existing camera sensors around intersections. Through theoretical analysis and simulation results, we show that DoubleChecking yields good performance for violator identification.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127868414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper addresses the existing research and adds another aspect of functionality by incorporating pertinent sensor nodes to provide a dynamic location discovery and estimation. The software used provides an easy graphical user interface to visualize a particular location in accordance with geographical latitude and longitude. A simple real time location estimation technique is worked out for wireless sensor networks based on manual deployment of sensors. The proposed scheme finds more efficient solutions with less quantity of sensors as compared to existing deployment schemes. The set up is evaluated exclusively in real environments using IRIS sensor nodes supported by a global positioning system module to provide visualization of an outdoor location. The results are offered by Google Earth application.
{"title":"A Practical Solution for Location Estimation in Manually Deployed Wireless Sensor Networks","authors":"O. P. Sahu, Tarun Dubey","doi":"10.4236/wsn.2011.34013","DOIUrl":"https://doi.org/10.4236/wsn.2011.34013","url":null,"abstract":"This paper addresses the existing research and adds another aspect of functionality by incorporating pertinent sensor nodes to provide a dynamic location discovery and estimation. The software used provides an easy graphical user interface to visualize a particular location in accordance with geographical latitude and longitude. A simple real time location estimation technique is worked out for wireless sensor networks based on manual deployment of sensors. The proposed scheme finds more efficient solutions with less quantity of sensors as compared to existing deployment schemes. The set up is evaluated exclusively in real environments using IRIS sensor nodes supported by a global positioning system module to provide visualization of an outdoor location. The results are offered by Google Earth application.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117196416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}