In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division multiple access (DS-CDMA) receiver with frequency-selective Rayleigh fading. This receiver consists of three stages. In the first stage, with constrained least mean squared (CLMS) algorithm, the desired users’ signal in an arbitrary path is passed and the inter-path interference (IPI) is reduced in other paths in each RAKE finger. Also in this stage, the multiple access interference (MAI) from other users is reduced. Thus, the matched filter (MF) can use for more reduction of the IPI and MAI in each RAKE finger in the second stage. Also in the third stage, the output signals from the matched filters are combined according to the conventional maximal ratio combining (MRC) principle and then are fed into the decision circuit of the desired user. The simulation results indicate that the SSPC algorithm and the BSA-MTP technique can significantly reduce the network bit error rate (BER) compared to the other methods. Also, we observe that significant savings in total transmit power (TTP) are possible with our methods.
{"title":"Interference Management for DS-CDMA Systems through Closed-Loop Power Control, Base Station Assignment, and Beamforming","authors":"M. D. Moghadam, H. Bakhshi, G. Dadashzadeh","doi":"10.4236/wsn.2010.26059","DOIUrl":"https://doi.org/10.4236/wsn.2010.26059","url":null,"abstract":"In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division multiple access (DS-CDMA) receiver with frequency-selective Rayleigh fading. This receiver consists of three stages. In the first stage, with constrained least mean squared (CLMS) algorithm, the desired users’ signal in an arbitrary path is passed and the inter-path interference (IPI) is reduced in other paths in each RAKE finger. Also in this stage, the multiple access interference (MAI) from other users is reduced. Thus, the matched filter (MF) can use for more reduction of the IPI and MAI in each RAKE finger in the second stage. Also in the third stage, the output signals from the matched filters are combined according to the conventional maximal ratio combining (MRC) principle and then are fed into the decision circuit of the desired user. The simulation results indicate that the SSPC algorithm and the BSA-MTP technique can significantly reduce the network bit error rate (BER) compared to the other methods. Also, we observe that significant savings in total transmit power (TTP) are possible with our methods.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"297 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122156257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper proposed beta trust model based on energy load balancing combines the recent achievements of the trust models in distributed networks, together with the characteristics of wireless sensor networks. The inter-node trust relation is established after an overall evaluation of node trust value based on the monitor results of the node packets forwarding behavior conducted by inter-node collaboration. Due to the node energy limitation in wireless sensor networks, energy load balancing mechanism is applied to prolong the node survival time. And the redundant routing protocol involves the presented trust model to develop the novel trust routing protocol of beta trust model based on energy load balancing. Simulation performance demonstrates that the beta trust model based on energy load balancing outperforms current schemes in energy consumption.
{"title":"Research on Beta Trust Model of Wireless Sensor Networks Based on Energy Load Balancing","authors":"Danwei Chen, X. Yu, Xianghui Dong","doi":"10.4236/wsn.2010.24049","DOIUrl":"https://doi.org/10.4236/wsn.2010.24049","url":null,"abstract":"This paper proposed beta trust model based on energy load balancing combines the recent achievements of the trust models in distributed networks, together with the characteristics of wireless sensor networks. The inter-node trust relation is established after an overall evaluation of node trust value based on the monitor results of the node packets forwarding behavior conducted by inter-node collaboration. Due to the node energy limitation in wireless sensor networks, energy load balancing mechanism is applied to prolong the node survival time. And the redundant routing protocol involves the presented trust model to develop the novel trust routing protocol of beta trust model based on energy load balancing. Simulation performance demonstrates that the beta trust model based on energy load balancing outperforms current schemes in energy consumption.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130678638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper a new method to improve performance of cooperative underwater acoustic (UWA) sensor networks will be introduced. The method is based on controlling and optimizing carrier frequencies which are used in data links between network nods. In UWA channels Pathloss and noise power spectrum density (psd) are related to carrier frequency. Therefore, unlike radio communications, in UWA Communications signal to noise ratio (SNR) is related to frequency besides propagation link length. In such channels an optimum frequency in whole frequency band and link lengths cannot be found. In Cooperative transmission, transmitter sends one copy of transmitted data packets to relay node. Then relay depending on cooperation scheme, amplifies or decodes each data packet and retransmit it to destination. Receiver uses and combines both received signals to estimate transmitted data. This paper wants to propose a new method to decrease network power consumptions by controlling and sub-optimizing transmission frequency based on link length. For this purpose, underwater channel parameters is simulated and analyzed in 1km to 10km lengths (midrange channel). Then link lengths sub categorized and in each category, optimum frequency is computed. With these sub optimum frequencies, sensors and base station can adaptively control their carrier frequencies based on link length and decrease network’s power consumptions. Finally Different Cooperative transmission schemes “Decode and Forward (DF)” and “Amplify and Forward (AF)”, are simulated in UWA wireless Sensor network with and without the new method. In receiver maximum ratio combiner (MRC) is used to combining received signals and making data estimations. Simulations show that the new method, called AFC cooperative UWA communication, can improve performance of underwater acoustic wireless sensor networks up to 40.14%.
{"title":"A New Method to Improve Performance of Cooperative Underwater Acoustic Wireless Sensor Networks via Frequency Controlled Transmission Based on Length of Data Links","authors":"V. Vakili, M. Jannati","doi":"10.4236/wsn.2010.24050","DOIUrl":"https://doi.org/10.4236/wsn.2010.24050","url":null,"abstract":"In this paper a new method to improve performance of cooperative underwater acoustic (UWA) sensor networks will be introduced. The method is based on controlling and optimizing carrier frequencies which are used in data links between network nods. In UWA channels Pathloss and noise power spectrum density (psd) are related to carrier frequency. Therefore, unlike radio communications, in UWA Communications signal to noise ratio (SNR) is related to frequency besides propagation link length. In such channels an optimum frequency in whole frequency band and link lengths cannot be found. In Cooperative transmission, transmitter sends one copy of transmitted data packets to relay node. Then relay depending on cooperation scheme, amplifies or decodes each data packet and retransmit it to destination. Receiver uses and combines both received signals to estimate transmitted data. This paper wants to propose a new method to decrease network power consumptions by controlling and sub-optimizing transmission frequency based on link length. For this purpose, underwater channel parameters is simulated and analyzed in 1km to 10km lengths (midrange channel). Then link lengths sub categorized and in each category, optimum frequency is computed. With these sub optimum frequencies, sensors and base station can adaptively control their carrier frequencies based on link length and decrease network’s power consumptions. Finally Different Cooperative transmission schemes “Decode and Forward (DF)” and “Amplify and Forward (AF)”, are simulated in UWA wireless Sensor network with and without the new method. In receiver maximum ratio combiner (MRC) is used to combining received signals and making data estimations. Simulations show that the new method, called AFC cooperative UWA communication, can improve performance of underwater acoustic wireless sensor networks up to 40.14%.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123636078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As one of the major methods for location positioning, angle-of-arrival (AOA) estimation is a significant technology in radar, sonar, radio astronomy, and mobile communications. AOA measurements can be exploited to locate mobile units, enhance communication efficiency and network capacity, and support location-aided routing, dynamic network management, and many location-based services. In this paper, we propose an algorithm for AOA estimation in colored noise fields and harsh application scenarios. By modeling the unknown noise covariance as a linear combination of known weighting matrices, a maximum likelihood (ML) criterion is established, and a particle swarm optimization (PSO) paradigm is designed to optimize the cost function. Simulation results demonstrate that the paired estimator PSO-ML significantly outperforms other popular techniques and produces superior AOA estimates.
{"title":"Accurate Angle-of-Arrival Measurement Using Particle Swarm Optimization","authors":"Minghui Li, K. S. Ho, G. Hayward","doi":"10.4236/wsn.2010.24047","DOIUrl":"https://doi.org/10.4236/wsn.2010.24047","url":null,"abstract":"As one of the major methods for location positioning, angle-of-arrival (AOA) estimation is a significant technology in radar, sonar, radio astronomy, and mobile communications. AOA measurements can be exploited to locate mobile units, enhance communication efficiency and network capacity, and support location-aided routing, dynamic network management, and many location-based services. In this paper, we propose an algorithm for AOA estimation in colored noise fields and harsh application scenarios. By modeling the unknown noise covariance as a linear combination of known weighting matrices, a maximum likelihood (ML) criterion is established, and a particle swarm optimization (PSO) paradigm is designed to optimize the cost function. Simulation results demonstrate that the paired estimator PSO-ML significantly outperforms other popular techniques and produces superior AOA estimates.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128529079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The challenging conditions prevalent in indoor environments have rendered many traditional positioning methods inept to yield satisfactory results. Our work tackles the challenging problem of accurate indoor positioning in hazardous multipath environments through three versatile super resolution techniques: time domain Multiple Signal Classification (TD-MUSIC), frequency domain MUSIC (FD-MUSIC) algorithms, and frequency domain Eigen value (FD-EV) method. The advantage of using these super resolution techniques is twofold. First for Line-of-Sight (LoS) conditions this provides the most accurate means of determining the time delay estimate from transmitter to receiver for any wireless sensor network. The high noise immunity and resolvability of these methods makes them ideal for cost-effective wireless sensor networks operating in indoor channels. Second for non-LoS conditions the resultant pseudo-spectrum generated by these methods provides the means to construct the ideal location based fingerprint. We provide an in depth analysis of limitation as well as advantages inherent in all of these methods through a detailed behavioral analysis under constrained environments. Hence, the bandwidth versatility, higher resolution capability and higher noise immunity of the TD-MUSIC algorithm and the FD-EV method’s ability to resurface submerged signal peaks when the signal subspace dimensions are underestimated are all presented in detail.
{"title":"Robust Techniques for Accurate Indoor Localization in Hazardous Environments","authors":"G. Godaliyadda, H. K. Garg","doi":"10.4236/wsn.2010.24051","DOIUrl":"https://doi.org/10.4236/wsn.2010.24051","url":null,"abstract":"The challenging conditions prevalent in indoor environments have rendered many traditional positioning methods inept to yield satisfactory results. Our work tackles the challenging problem of accurate indoor positioning in hazardous multipath environments through three versatile super resolution techniques: time domain Multiple Signal Classification (TD-MUSIC), frequency domain MUSIC (FD-MUSIC) algorithms, and frequency domain Eigen value (FD-EV) method. The advantage of using these super resolution techniques is twofold. First for Line-of-Sight (LoS) conditions this provides the most accurate means of determining the time delay estimate from transmitter to receiver for any wireless sensor network. The high noise immunity and resolvability of these methods makes them ideal for cost-effective wireless sensor networks operating in indoor channels. Second for non-LoS conditions the resultant pseudo-spectrum generated by these methods provides the means to construct the ideal location based fingerprint. We provide an in depth analysis of limitation as well as advantages inherent in all of these methods through a detailed behavioral analysis under constrained environments. Hence, the bandwidth versatility, higher resolution capability and higher noise immunity of the TD-MUSIC algorithm and the FD-EV method’s ability to resurface submerged signal peaks when the signal subspace dimensions are underestimated are all presented in detail.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"83 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123554579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a probabilistic algorithm to collaborate distributed sensors for mobile robot localization. It uses a sample-based version of Markov localization—Monte Carlo localization (MCL), capable of localizing mobile robot in an any-time fashion. During robot localization given a known environment model, MCL method is employed to update robot’s belief whichever information (positive or negative) attained from environmental sensors. Meanwhile, an implementation is presented that uses color environmental cameras for robot detection. All the parameters of each environmental camera are unknown in advance and need be calibrated independently by robot. Once calibrated, the positive and negative detection models can be built up according to the parameters of environmental cameras. A further experiment, obtained with the real robot in an indoor office environment, illustrates it has drastic improvement in global localization speed and accuracy using our algorithm.
{"title":"Cooperative Distributed Sensors for Mobile Robot Localization","authors":"Zhiwei Liang, Songhao Zhu","doi":"10.4236/wsn.2010.24046","DOIUrl":"https://doi.org/10.4236/wsn.2010.24046","url":null,"abstract":"This paper presents a probabilistic algorithm to collaborate distributed sensors for mobile robot localization. It uses a sample-based version of Markov localization—Monte Carlo localization (MCL), capable of localizing mobile robot in an any-time fashion. During robot localization given a known environment model, MCL method is employed to update robot’s belief whichever information (positive or negative) attained from environmental sensors. Meanwhile, an implementation is presented that uses color environmental cameras for robot detection. All the parameters of each environmental camera are unknown in advance and need be calibrated independently by robot. Once calibrated, the positive and negative detection models can be built up according to the parameters of environmental cameras. A further experiment, obtained with the real robot in an indoor office environment, illustrates it has drastic improvement in global localization speed and accuracy using our algorithm.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126902193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We study the problem of scheduling multi sensors to visit and observe a group of sites at discrete time points over a planning horizon of given length. We show that scheduling under a given number of visits for each site and in each period is an NP-complete problem by providing equivalence with a problem in discrete tomography. We also give a polynomial time algorithm to schedule the sensors under a given number of visits in each period.
{"title":"Complexity Results for Wireless Sensor Network Scheduling","authors":"Fethi Jarray","doi":"10.4236/wsn.2010.24045","DOIUrl":"https://doi.org/10.4236/wsn.2010.24045","url":null,"abstract":"We study the problem of scheduling multi sensors to visit and observe a group of sites at discrete time points over a planning horizon of given length. We show that scheduling under a given number of visits for each site and in each period is an NP-complete problem by providing equivalence with a problem in discrete tomography. We also give a polynomial time algorithm to schedule the sensors under a given number of visits in each period.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123922664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The most important components of the cognitive radio concept is its ability to measure, sense and learn. One also should be aware of the parameters related to the radio channel characteristics and the availability of spectrum and power. In cognitive radio technology, primary users can be defined as the users who have the highest priority on the usage of a specific part of the spectrum. Secondary users, have lower priority, and should not cause any interference to the primary users when using the technology. Therefore, the secondary users need to have certain cognitive radio capabilities, such as sensing the spectrum to check whether it is being used by primary user or not, and changing the radio parameters to exploit the unused part of the spectrum. In this paper we proposed a new approach for spectrum sensing, In the first approach the primary signal is known so we use the code value with match filter to detect the primary user, on the other hand, when the primary user signal is unknown we proposed a new strategy for energy detection in both non-cooperation and cooperation schemes. Then we will prove by simulation results that the new approach is better than the conventional energy detection.
{"title":"Detection Proposal Schemes for Spectrum Sensing in Cognitive Radio","authors":"N. Kamil, Xiuhua Yuan","doi":"10.4236/wsn.2010.24048","DOIUrl":"https://doi.org/10.4236/wsn.2010.24048","url":null,"abstract":"The most important components of the cognitive radio concept is its ability to measure, sense and learn. One also should be aware of the parameters related to the radio channel characteristics and the availability of spectrum and power. In cognitive radio technology, primary users can be defined as the users who have the highest priority on the usage of a specific part of the spectrum. Secondary users, have lower priority, and should not cause any interference to the primary users when using the technology. Therefore, the secondary users need to have certain cognitive radio capabilities, such as sensing the spectrum to check whether it is being used by primary user or not, and changing the radio parameters to exploit the unused part of the spectrum. In this paper we proposed a new approach for spectrum sensing, In the first approach the primary signal is known so we use the code value with match filter to detect the primary user, on the other hand, when the primary user signal is unknown we proposed a new strategy for energy detection in both non-cooperation and cooperation schemes. Then we will prove by simulation results that the new approach is better than the conventional energy detection.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127795687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
While sensor networks have been used in various applications because of the automatic sensing capability and ad-hoc organization of sensor nodes, the fault-prone characteristic of sensor networks has challenged the event detection and the anomaly detection which, to some extent, have neglected the importance of discriminating events and errors. Considering data uncertainty, in this article, we present the problem of data discrimination in fault-prone sensor networks, analyze the similarities and the differences between events and errors, and design a multi-level systematic discrimination framework. In each step, the framework filters erroneous data from the raw data and marks potential event samples for the next-step processing. The raw data set D is finally partitioned into three subsets, Devent, Derror and Dordinary. Both the scenario-based simulations and the experiments on real-sensed data are carried out. The statistical results of various discrimination metrics demonstrate high distinction ratio as well as the robustness in different cases of the network.
{"title":"Data Discrimination in Fault-Prone Sensor Networks","authors":"Xiaoning Cui, Qing Li, Bao-hua Zhao","doi":"10.4236/wsn.2010.24039","DOIUrl":"https://doi.org/10.4236/wsn.2010.24039","url":null,"abstract":"While sensor networks have been used in various applications because of the automatic sensing capability and ad-hoc organization of sensor nodes, the fault-prone characteristic of sensor networks has challenged the event detection and the anomaly detection which, to some extent, have neglected the importance of discriminating events and errors. Considering data uncertainty, in this article, we present the problem of data discrimination in fault-prone sensor networks, analyze the similarities and the differences between events and errors, and design a multi-level systematic discrimination framework. In each step, the framework filters erroneous data from the raw data and marks potential event samples for the next-step processing. The raw data set D is finally partitioned into three subsets, Devent, Derror and Dordinary. Both the scenario-based simulations and the experiments on real-sensed data are carried out. The statistical results of various discrimination metrics demonstrate high distinction ratio as well as the robustness in different cases of the network.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"81 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133969833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Aghagolzadeh, S. Meshgini, M. Nooshyar, M. Aghagolzadeh
In this paper, we propose a new method for very low bit-rate video coding that combines H.264/AVC standard and two-dimensional discrete wavelet transform. In this method, first a two dimensional wavelet transform is applied on each video frame independently to extract the low frequency components for each frame and then the low frequency parts of all frames are coded using H.264/AVC codec. On the other hand, the high frequency parts of the video frames are coded by Run Length Coding algorithm, after applying a threshold to neglect the low value coefficients. Experiments show that our proposed method can achieve better rate-distortion performance at very low bit-rate applications below 16 kbits/s compared to applying H.264/AVC standard directly to all frames. Applications of our proposed video coding technique include video telephony, video-conferencing, transmitting or receiving video over half-rate traffic channels of GSM networks.
{"title":"Very Low Bit-Rate Video Coding by Combining H.264/AVC Standard and 2-D Discrete Wavelet Transform","authors":"A. Aghagolzadeh, S. Meshgini, M. Nooshyar, M. Aghagolzadeh","doi":"10.4236/wsn.2010.24044","DOIUrl":"https://doi.org/10.4236/wsn.2010.24044","url":null,"abstract":"In this paper, we propose a new method for very low bit-rate video coding that combines H.264/AVC standard and two-dimensional discrete wavelet transform. In this method, first a two dimensional wavelet transform is applied on each video frame independently to extract the low frequency components for each frame and then the low frequency parts of all frames are coded using H.264/AVC codec. On the other hand, the high frequency parts of the video frames are coded by Run Length Coding algorithm, after applying a threshold to neglect the low value coefficients. Experiments show that our proposed method can achieve better rate-distortion performance at very low bit-rate applications below 16 kbits/s compared to applying H.264/AVC standard directly to all frames. Applications of our proposed video coding technique include video telephony, video-conferencing, transmitting or receiving video over half-rate traffic channels of GSM networks.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128241933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}