Pub Date : 2024-08-27DOI: 10.1016/j.bmcl.2024.129933
Violette Richin , Caroline Bouillot , Sandrine Bouvard , Pierre Courault , Sophie Lancelot , Luc Zimmer , Wael Zeinyeh
Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter involved in many physiological and pathological mechanisms through its numerous receptors. Among these, the 5-HT2B receptor is known to play a key role in multiple brain disorders but remains poorly understood. Positron emission tomography (PET) can contribute to a better understanding of pathophysiological mechanisms regulated by the 5-HT2B receptor. To develop the first PET radiotracer for the 5-HT2B receptor, RS-127445, a well-known 5-HT2B receptor antagonist, was labeled with fluorine-18. [18F]RS-127445 was synthesized in a high radiochemical purity and with a good molar activity and radiochemical yield. Preliminary PET scans in rats showed good brain penetration of [18F]RS-127445. However, competition experiments and in vitro autoradiography showed high non-specific binding, especially to brain white matter.
羟色胺(5-羟色胺,5-HT)是一种神经递质,通过其众多受体参与许多生理和病理机制。其中,5-HT2B 受体在多种脑部疾病中起着关键作用,但人们对它的了解仍然很少。正电子发射断层扫描(PET)有助于更好地了解 5-HT2B 受体调节的病理生理机制。为了开发第一种用于 5-HT2B 受体的 PET 放射性示踪剂,我们用氟-18 标记了一种著名的 5-HT2B 受体拮抗剂 RS-127445。[18F]RS-127445的合成具有很高的放射化学纯度、良好的摩尔活性和放射化学收率。初步的大鼠 PET 扫描显示,[18F]RS-127445 的脑穿透性良好。然而,竞争实验和体外自显影显示了较高的非特异性结合,尤其是与脑白质的结合。
{"title":"[18F]RS-127445 radiosynthesis and evaluation as a 5-HT2B receptor PET radiotracer in rat brain","authors":"Violette Richin , Caroline Bouillot , Sandrine Bouvard , Pierre Courault , Sophie Lancelot , Luc Zimmer , Wael Zeinyeh","doi":"10.1016/j.bmcl.2024.129933","DOIUrl":"10.1016/j.bmcl.2024.129933","url":null,"abstract":"<div><p>Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter involved in many physiological and pathological mechanisms through its numerous receptors. Among these, the 5-HT<sub>2B</sub> receptor is known to play a key role in multiple brain disorders but remains poorly understood. Positron emission tomography (PET) can contribute to a better understanding of pathophysiological mechanisms regulated by the 5-HT<sub>2B</sub> receptor. To develop the first PET radiotracer for the 5-HT<sub>2B</sub> receptor, RS-127445, a well-known 5-HT<sub>2B</sub> receptor antagonist, was labeled with fluorine-18. [<sup>18</sup>F]RS-127445 was synthesized in a high radiochemical purity and with a good molar activity and radiochemical yield. Preliminary PET scans in rats showed good brain penetration of [<sup>18</sup>F]RS-127445. However, competition experiments and <em>in vitro</em> autoradiography showed high non-specific binding, especially to brain white matter.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129933"},"PeriodicalIF":2.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142091259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.bmcl.2024.129930
Niklas Heine , Alexander Weber , Alexander Pautsch , Dirk Gottschling , Ingo Uphues , Margit Bauer , Rebecca Ebenhoch , Aniket Magarkar , Bernd Nosse , Jörg Thomas Kley
Fructose metabolism by ketohexokinase (KHK) is implicated in a variety of metabolic disorders. KHK inhibition is a potential therapeutic strategy for the treatment of diseases including diabetes, non-alcoholic fatty liver disease, and non-alcoholic steatohepatitis. The first small-molecule KHK-inhibitors have entered clinical trials, but it remains unclear if systemic inhibition of KHK by small-molecules will eventually benefit patients. Here we report the discovery of BI-9787, a potent, zwitterionic KHK inhibitor characterized by high permeability and favorable oral rat pharmacokinetics. BI-9787 was identified by optimizing chemical starting points generated via a ligand-based virtual screening of Boehringer’s virtual library of synthetically accessible compounds (BICLAIM). It serves as a high-quality in vitro and in vivo tool compound for investigating the role of fructose metabolism in disease.
{"title":"Discovery of BI-9787, a potent zwitterionic ketohexokinase inhibitor with oral bioavailability","authors":"Niklas Heine , Alexander Weber , Alexander Pautsch , Dirk Gottschling , Ingo Uphues , Margit Bauer , Rebecca Ebenhoch , Aniket Magarkar , Bernd Nosse , Jörg Thomas Kley","doi":"10.1016/j.bmcl.2024.129930","DOIUrl":"10.1016/j.bmcl.2024.129930","url":null,"abstract":"<div><p>Fructose metabolism by ketohexokinase (KHK) is implicated in a variety of metabolic disorders. KHK inhibition is a potential therapeutic strategy for the treatment of diseases including diabetes, non-alcoholic fatty liver disease, and non-alcoholic steatohepatitis. The first small-molecule KHK-inhibitors have entered clinical trials, but it remains unclear if systemic inhibition of KHK by small-molecules will eventually benefit patients. Here we report the discovery of BI-9787, a potent, zwitterionic KHK inhibitor characterized by high permeability and favorable oral rat pharmacokinetics. BI-9787 was identified by optimizing chemical starting points generated via a ligand-based virtual screening of Boehringer’s virtual library of synthetically accessible compounds (BICLAIM). It serves as a high-quality <em>in vitro</em> and <em>in vivo</em> tool compound for investigating the role of fructose metabolism in disease.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129930"},"PeriodicalIF":2.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960894X24003329/pdfft?md5=7fba8a65eb189e57448872d90b684634&pid=1-s2.0-S0960894X24003329-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142045991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-16DOI: 10.1016/j.bmcl.2024.129931
Ishpriya Sharma, Drashti Daraji, James R. Horn, Timothy J. Hagen
Methionine aminopeptidase (MetAp) enzymes catalyze the post-translational removal of the initiator methionine residue in newly synthesized proteins, a process that is often essential in the maturation of proteins. Consequently, these enzymes serve as important targets for drug development. Rickettsia prowazekii (Rp) is an obligate coccobacillus and the causative agent of the louse-borne epidemic typhus and despite adequate treatment causes a latent infection. This research aimed to identify potential anti-rickettsial agents by screening 400 compounds from the MMV Pandemic Response Box against RpMetAp1. Overall, 19 compounds were identified that possessed IC50 values from 10 µM to 340 nM. The most potent inhibitor was MMV 1580488 (17), which was observed to have an IC50 of 340 nM. The selected hits serve as chemical leads that can be used for the development of potent inhibitors of the RpMetAp1 enzyme.
{"title":"Inhibitors of Rickettsia prowazekii methionine aminopeptidase 1 identified from the Pandemic Response Box","authors":"Ishpriya Sharma, Drashti Daraji, James R. Horn, Timothy J. Hagen","doi":"10.1016/j.bmcl.2024.129931","DOIUrl":"10.1016/j.bmcl.2024.129931","url":null,"abstract":"<div><p>Methionine aminopeptidase (MetAp) enzymes catalyze the post-translational removal of the initiator methionine residue in newly synthesized proteins, a process that is often essential in the maturation of proteins. Consequently, these enzymes serve as important targets for drug development. <em>Rickettsia prowazekii (Rp)</em> is an obligate coccobacillus and the causative agent of the louse-borne epidemic typhus and despite adequate treatment causes a latent infection. This research aimed to identify potential anti-rickettsial agents by screening 400 compounds from the MMV Pandemic Response Box against <em>Rp</em>MetAp1. Overall, 19 compounds were identified that possessed IC<sub>50</sub> values from 10 µM to 340 nM. The most potent inhibitor was MMV 1580488 (<strong>17</strong>), which was observed to have an IC<sub>50</sub> of 340 nM. The selected hits serve as chemical leads that can be used for the development of potent inhibitors of the <em>Rp</em>MetAp1 enzyme.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129931"},"PeriodicalIF":2.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-15DOI: 10.1016/j.bmcl.2024.129927
Riya Khandelwal, Mahesh Vasava, R.B. Abhirami, Manaswini Karsharma
Click chemistry is a flexible method featuring only the most feasible and efficient chemical reactions. The synthesis of 1,2,3-triazole from azides and terminal acetylenes using copper(I) as a catalyst is an extremely powerful reaction due to the extreme dependability, good selectivity, and biocompatibility of the starting materials. Triazole molecules are more than simple passive linkers; through hydrogen bonding and dipole interactions, they rapidly bind with biological targets. Its applications in drug development are expanding, ranging from target-oriented in situ chemistry and combinatorial mechanisms for lead generation to bioconjugation methods to study proteins and DNA. The click chemistry has frequently been used to speed up drug discovery and optimization processes in the past few years. The click chemistry reaction based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) is a biochemical process with applications in medicinal chemistry and chemical biology. Thus, click reactions are an essential component of the toolkit for medicinal chemistry and help medicinal chemists overcome the barriers in chemical reactions, increase throughput, and improve the standards of compound libraries. The review highlights the recent advancements in the copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry approach for synthesizing biologically important triazole moieties with a greater emphasis on synthesis methodologies and pharmacological applications. Additionally, the triazole-based FDA-approved drugs are also discussed with their mode of action to highlight the importance of the click chemistry approach in synthesizing the bioactive triazole compounds.
点击化学是一种灵活的方法,只进行最可行、最有效的化学反应。以铜(I)为催化剂,从叠氮化物和末端乙炔基合成 1,2,3-三氮唑是一种极其有效的反应,因为起始材料极其可靠,具有良好的选择性和生物相容性。三唑分子不仅仅是简单的被动连接剂,通过氢键和偶极相互作用,它们还能迅速与生物靶标结合。它在药物开发中的应用正在不断扩大,从以靶点为导向的原位化学和用于先导物生成的组合机制,到用于蛋白质和 DNA 研究的生物结合方法,不一而足。在过去几年中,点击化学被频繁用于加速药物发现和优化过程。基于铜催化叠氮-炔环加成(CuAAC)的点击化学反应是一种生物化学过程,可应用于药物化学和化学生物学。因此,点击反应是药物化学工具包的重要组成部分,有助于药物化学家克服化学反应中的障碍,提高通量,并改善化合物库的标准。这篇综述重点介绍了铜催化叠氮-炔环加成(CuAAC)点击化学方法在合成具有重要生物意义的三唑分子方面的最新进展,并更加强调了合成方法和药理应用。此外,还讨论了美国 FDA 批准的基于三唑的药物及其作用模式,以突出点击化学方法在合成具有生物活性的三唑化合物方面的重要性。
{"title":"Recent advances in triazole synthesis via click chemistry and their pharmacological applications: A review","authors":"Riya Khandelwal, Mahesh Vasava, R.B. Abhirami, Manaswini Karsharma","doi":"10.1016/j.bmcl.2024.129927","DOIUrl":"10.1016/j.bmcl.2024.129927","url":null,"abstract":"<div><p>Click chemistry is a flexible method featuring only the most feasible and efficient chemical reactions. The synthesis of 1,2,3-triazole from azides and terminal acetylenes using copper(I) as a catalyst is an extremely powerful reaction due to the extreme dependability, good selectivity, and biocompatibility of the starting materials. Triazole molecules are more than simple passive linkers; through hydrogen bonding and dipole interactions, they rapidly bind with biological targets. Its applications in drug development are expanding, ranging from target-oriented in situ chemistry and combinatorial mechanisms for lead generation to bioconjugation methods to study proteins and DNA. The click chemistry has frequently been used to speed up drug discovery and optimization processes in the past few years. The click chemistry reaction based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) is a biochemical process with applications in medicinal chemistry and chemical biology. Thus, click reactions are an essential component of the toolkit for medicinal chemistry and help medicinal chemists overcome the barriers in chemical reactions, increase throughput, and improve the standards of compound libraries. The review highlights the recent advancements in the copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry approach for synthesizing biologically important triazole moieties with a greater emphasis on synthesis methodologies and pharmacological applications. Additionally, the triazole-based FDA-approved drugs are also discussed with their mode of action to highlight the importance of the click chemistry approach in synthesizing the bioactive triazole compounds.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129927"},"PeriodicalIF":2.5,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amyloid plaque formation in the brain is mainly responsible for the onset of Alzheimer’s disease (AD). Structure-based peptides have gained importance in recent years, and rational design of the peptide sequences for the prevention of Aβ-aggregation and related toxicity is imperative. In this study, we investigate the structural modification of tetrapeptides derived from the hydrophobic C-terminal region of Aβ42 “VVIA-NH2” and its retro-sequence “AIVV-NH2.” A preliminary screening of synthesized peptides through an MTT cell viability assay followed by a ThT fluorescence assay revealed a peptide 13 (Ala-Ile-Aib-Val-NH2) that showed protection against Aβ-aggregation and associated neurotoxicity. The presence of the α-helix inducer “Aib” in peptide 13 manifested the conformational transition from cross-β-sheets to α-helical content in Aβ42. The absence of fibrils in electron microscopic analysis suggested the inhibitory potential of peptide 13. The HRMS, DLS, and ANS studies further confirmed the inhibitory activity of 13, and no cytotoxicity was observed. The structure-based peptide described herein is a promising amyloid-β inhibitor and provides a new lead for the development of AD therapeutics.
{"title":"Synthesis and mechanistic study of Aβ42 C-terminus domain derived tetrapeptides that inhibit Alzheimer’s Aβ-aggregation-induced neurotoxicity","authors":"Naina Sehra , Rajesh Parmar , Indresh K. Maurya , Vinod Kumar , Kulbhushan Tikoo , Rahul Jain","doi":"10.1016/j.bmcl.2024.129929","DOIUrl":"10.1016/j.bmcl.2024.129929","url":null,"abstract":"<div><p>Amyloid plaque formation in the brain is mainly responsible for the onset of Alzheimer’s disease (AD). Structure-based peptides have gained importance in recent years, and rational design of the peptide sequences for the prevention of Aβ-aggregation and related toxicity is imperative. In this study, we investigate the structural modification of tetrapeptides derived from the hydrophobic C-terminal region of Aβ<sub>42</sub> “VVIA-NH<sub>2</sub>” and its <em>retro</em>-sequence “AIVV-NH<sub>2</sub>.” A preliminary screening of synthesized peptides through an MTT cell viability assay followed by a ThT fluorescence assay revealed a peptide <strong>13</strong> (Ala-Ile-Aib-Val-NH<sub>2</sub>) that showed protection against Aβ-aggregation and associated neurotoxicity. The presence of the α-helix inducer “Aib” in peptide <strong>13</strong> manifested the conformational transition from cross-β-sheets to α-helical content in Aβ<sub>42</sub>. The absence of fibrils in electron microscopic analysis suggested the inhibitory potential of peptide <strong>13</strong>. The HRMS, DLS, and ANS studies further confirmed the inhibitory activity of <strong>13</strong>, and no cytotoxicity was observed. The structure-based peptide described herein is a promising amyloid-β inhibitor and provides a new lead for the development of AD therapeutics.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129929"},"PeriodicalIF":2.5,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1016/j.bmcl.2024.129928
Ana Matošević , Marija Bartolić , Nikola Maraković , Antonio Zandona , Rajo Petrić , Dejan Opsenica , Anita Bosak
Alzheimer’s disease is age-related multifactorial neurodegenerative disease manifested by gradual loss of memory, cognitive decline and changes in personality. Due to rapid and continuous growth of its prevalence, the treatment of Alzheimer’s disease calls for development of new and efficacies drugs, especially those that could be able to simultaneously act on more than one of possible targets of action. Aminoquinolines have proven to be a highly promising structural scaffold in the design of such a drug as cholinesterases and β-secretase 1 inhibitors. In this study, we synthesised twenty-two new 4-aminoquinolines with different halogen atom and its position in the terminal N-benzyl group or with a trifluoromethyl or a chlorine as C(7)-substituents on the quinoline moiety. All compounds were evaluated as multi-target-directedligands by determining their inhibition potency towards human acetylcholinesterase, butyrylcholinesterase and β-secretase 1. All of the tested derivatives were very potent inhibitors of human acetylcholinesterase and butyrylcholinesterase with inhibition constants (Ki) in the nM to low μM range. Most were estimated to be able to cross the blood–brain barrier by passive transport and were nontoxic toward cells that represented the main models of individual organs.
{"title":"Synthesis and biological evaluation of novel aminoquinolines with an n-octyl linker: Impact of halogen substituents on C(7) or a terminal amino group on anticholinesterase and BACE1 activity","authors":"Ana Matošević , Marija Bartolić , Nikola Maraković , Antonio Zandona , Rajo Petrić , Dejan Opsenica , Anita Bosak","doi":"10.1016/j.bmcl.2024.129928","DOIUrl":"10.1016/j.bmcl.2024.129928","url":null,"abstract":"<div><p>Alzheimer’s disease is age-related multifactorial neurodegenerative disease manifested by gradual loss of memory, cognitive decline and changes in personality. Due to rapid and continuous growth of its prevalence, the treatment of Alzheimer’s disease calls for development of new and efficacies drugs, especially those that could be able to simultaneously act on more than one of possible targets of action. Aminoquinolines have proven to be a highly promising structural scaffold in the design of such a drug as cholinesterases and β-secretase 1 inhibitors. In this study, we synthesised twenty-two new 4-aminoquinolines with different halogen atom and its position in the terminal <em>N</em>-benzyl group or with a trifluoromethyl or a chlorine as C(7)-substituents on the quinoline moiety. All compounds were evaluated as multi-target-directedligands by determining their inhibition potency towards human acetylcholinesterase, butyrylcholinesterase and β-secretase 1. All of the tested derivatives were very potent inhibitors of human acetylcholinesterase and butyrylcholinesterase with inhibition constants (<em>K</em><sub>i</sub>) in the nM to low μM range. Most were estimated to be able to cross the blood–brain barrier by passive transport and were nontoxic toward cells that represented the main models of individual organs.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129928"},"PeriodicalIF":2.5,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1016/j.bmcl.2024.129923
Yilei Huang , Xinyan Peng , Han Zhang , Min Pan , Xiaojing Su , Gang Li , Qingwei Zhang
Mitochondrial pyruvate carrier (MPC) inhibitors promote the development of hair follicle stem cells without affecting normal cells, which is promising for the treatment of hair loss. Herein, a series of cyano-cinnamate derivatives of UK-5099 were designed and synthesized. All these new compounds have been tested for their ability to promote cellular lactate production in vitro. Compound 4i (LA content:0.322 μmol/106cell) showed better cellular lactate production activity than UK-5099 (LA content:0.185 μmol/106cell). Further compound 4i was also tested on shaved mice by topical treatment and promoted obvious hair growth on mice.
{"title":"Design, synthesis and biological evaluation of novel cyano-cinnamate derivatives as mitochondrial pyruvate carrier inhibitors","authors":"Yilei Huang , Xinyan Peng , Han Zhang , Min Pan , Xiaojing Su , Gang Li , Qingwei Zhang","doi":"10.1016/j.bmcl.2024.129923","DOIUrl":"10.1016/j.bmcl.2024.129923","url":null,"abstract":"<div><p>Mitochondrial pyruvate carrier (MPC) inhibitors promote the development of hair follicle stem cells without affecting normal cells, which is promising for the treatment of hair loss. Herein, a series of cyano-cinnamate derivatives of UK-5099 were designed and synthesized. All these new compounds have been tested for their ability to promote cellular lactate production <em>in vitro</em>. Compound <strong>4i</strong> (LA content:0.322 μmol/10<sup>6</sup>cell) showed better cellular lactate production activity than UK-5099 (LA content:0.185 μmol/10<sup>6</sup>cell). Further compound <strong>4i</strong> was also tested on shaved mice by topical treatment and promoted obvious hair growth on mice.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129923"},"PeriodicalIF":2.5,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Many reports have shown that stabilization of secondary structure by stapling functional peptides enhances the intracellular bioactivity. However, no report has discussed the correlation between stabilization and biological activity based on the configuration of amino acid residues used as anchors for stapling. To clarify this, we investigated the helix content and apoptotic efficiency of an apoptosis-inducing peptide, Bim, and four stapled Bim peptides containing stapling-related Cys residues introduced with different configurations within the sequence. The results demonstrated that the configuration of Cys residues in stapled Bim peptides affected the secondary structure and intracellular activity of the peptides, and furthermore, there was a correlation between these latter two variables.
{"title":"Configuration of two cysteine residues in a ring within a stapled Bim peptide affects the secondary structure and apoptotic activity","authors":"Shengli Zhou , Fuka Nishimura , Kazuhaya Wada , Kaho Fujii , Takeshi Kondo , Kazunori Watanabe , Yoshitane Imai , Takashi Ohtsuki , Mizuki Kitamatsu","doi":"10.1016/j.bmcl.2024.129915","DOIUrl":"10.1016/j.bmcl.2024.129915","url":null,"abstract":"<div><p>Many reports have shown that stabilization of secondary structure by stapling functional peptides enhances the intracellular bioactivity. However, no report has discussed the correlation between stabilization and biological activity based on the configuration of amino acid residues used as anchors for stapling. To clarify this, we investigated the helix content and apoptotic efficiency of an apoptosis-inducing peptide, Bim, and four stapled Bim peptides containing stapling-related Cys residues introduced with different configurations within the sequence. The results demonstrated that the configuration of Cys residues in stapled Bim peptides affected the secondary structure and intracellular activity of the peptides, and furthermore, there was a correlation between these latter two variables.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129915"},"PeriodicalIF":2.5,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The delivery of functional molecules to the cell nucleus enables the visualization of nuclear function and the development of effective medical treatments. In this study, we successfully modified the Hoechst molecule, which is a well-documented nuclear-staining agent, using the strain-promoted azide-alkyne cycloaddition (SPAAC) reaction. We prepared Hoechst derivatives bearing an azide group (Hoe-N3) and characterized their SPAAC reactions in the presence of corresponding molecules with a dibenzylcyclooctyne unit (DBCO). The SPAAC reaction of Hoe-N3 with alkylamine bearing DBCO, fluorescent TAMRA, or Cy5 molecules bearing DBCO led to the formation of the coupling products Hoe-Amine, Hoe-TAMRA, and Hoe-Cy5, respectively. These Hoechst derivatives retained their DNA-binding properties. In addition, Hoe-TAMRA and Hoe-Cy5 exhibited properties of dual accumulation in the cell nucleus and mitochondria. Initial incubation of these molecules in living cells resulted in its accumulation in mitochondria, while after mitochondrial depolarization, it was smoothly released from mitochondria and translocated into the cell nucleus. Thus, mitochondrial depolarization could be monitored by measuring the emission of Hoe-TAMRA and Hoe-Cy5 at the cell nucleus.
{"title":"Hoechst modification by strain-promoted azide-alkyne cycloaddition for transport of functional molecules into the cell nucleus","authors":"Hiroki Makanai, Daisuke Mochizuki, Tatsuya Nishihara, Kazuhito Tanabe","doi":"10.1016/j.bmcl.2024.129916","DOIUrl":"10.1016/j.bmcl.2024.129916","url":null,"abstract":"<div><p>The delivery of functional molecules to the cell nucleus enables the visualization of nuclear function and the development of effective medical treatments. In this study, we successfully modified the Hoechst molecule, which is a well-documented nuclear-staining agent, using the strain-promoted azide-alkyne cycloaddition (SPAAC) reaction. We prepared Hoechst derivatives bearing an azide group (Hoe-N3) and characterized their SPAAC reactions in the presence of corresponding molecules with a dibenzylcyclooctyne unit (DBCO). The SPAAC reaction of Hoe-N3 with alkylamine bearing DBCO, fluorescent TAMRA, or Cy5 molecules bearing DBCO led to the formation of the coupling products Hoe-Amine, Hoe-TAMRA, and Hoe-Cy5, respectively. These Hoechst derivatives retained their DNA-binding properties. In addition, Hoe-TAMRA and Hoe-Cy5 exhibited properties of dual accumulation in the cell nucleus and mitochondria. Initial incubation of these molecules in living cells resulted in its accumulation in mitochondria, while after mitochondrial depolarization, it was smoothly released from mitochondria and translocated into the cell nucleus. Thus, mitochondrial depolarization could be monitored by measuring the emission of Hoe-TAMRA and Hoe-Cy5 at the cell nucleus.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129916"},"PeriodicalIF":2.5,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mitogen-activated protein kinase kinases (MAP2Ks) 1, 4, and 7 are potential targets for treating various diseases. Here, we solved the crystal structures of MAP2K1 and MAP2K4 complexed with covalent inhibitor 5Z-7-oxozeaenol (5Z7O). The elucidated structures showed that 5Z7O was non-covalently bound to the ATP binding site of MAP2K4, while it covalently attached to cysteine at the DFG-1 position of the deep ATP site of MAP2K1. In contrast, we previously showed that 5Z7O covalently binds to MAP2K7 via another cysteine on the solvent-accessible edge of the ATP site. Structural analyses and molecular dynamics calculations indicated that the configuration and mobility of conserved gatekeeper methionine located at the central ATP site regulated the binding and access of 5Z7O to the ATP site of MAP2Ks. These structural features provide clues for developing highly potent and selective inhibitors against MAP2Ks.
Abbreviations: ATP, adenosine triphosphate; FDA, Food and Drug Administration; MAP2Ks, mitogen-activated protein kinase kinases; MD, molecular dynamics; NSCLC, non-small cell lung cancer; 5Z7O, 5Z-7-oxozeaenol; PDB, protein data bank; RMSD, root-mean-square deviation.
丝裂原活化蛋白激酶激酶(MAP2K)1、4 和 7 是治疗各种疾病的潜在靶点。在这里,我们解析了 MAP2K1 和 MAP2K4 与共价抑制剂 5Z-7-oxozeaenol (5Z7O) 复合物的晶体结构。阐明的结构显示,5Z7O 与 MAP2K4 的 ATP 结合位点非共价结合,而与 MAP2K1 深部 ATP 位点 DFG-1 位置的半胱氨酸共价结合。与此相反,我们以前曾发现 5Z7O 通过 ATP 位点可溶解边缘的另一个半胱氨酸与 MAP2K7 共价结合。结构分析和分子动力学计算表明,位于 ATP 位点中央的保守守门蛋氨酸的构型和流动性调节着 5Z7O 与 MAP2Ks ATP 位点的结合和进入。这些结构特征为开发针对 MAP2Ks 的高效选择性抑制剂提供了线索。缩写:缩写:ATP,三磷酸腺苷;FDA,食品药品管理局;MAP2Ks,丝裂原活化蛋白激酶激酶;MD,分子动力学;NSCLC,非小细胞肺癌;5Z7O,5Z-7-氧代玉米烯醇;PDB,蛋白质数据库;RMSD,均方根偏差。
{"title":"Conserved gatekeeper methionine regulates the binding and access of kinase inhibitors to ATP sites of MAP2K1, 4, and 7: Clues for developing selective inhibitors","authors":"Seigo Yumura , Daisuke Kitagawa , Kei Moritsugu , Atsushi Nakayama , Tetsuro Shinada , Masaaki Sawa , Takayoshi Kinoshita","doi":"10.1016/j.bmcl.2024.129914","DOIUrl":"10.1016/j.bmcl.2024.129914","url":null,"abstract":"<div><p>Mitogen-activated protein kinase kinases (MAP2Ks) 1, 4, and 7 are potential targets for treating various diseases. Here, we solved the crystal structures of MAP2K1 and MAP2K4 complexed with covalent inhibitor 5Z-7-oxozeaenol (5Z7O). The elucidated structures showed that 5Z7O was non-covalently bound to the ATP binding site of MAP2K4, while it covalently attached to cysteine at the DFG-1 position of the deep ATP site of MAP2K1. In contrast, we previously showed that 5Z7O covalently binds to MAP2K7 via another cysteine on the solvent-accessible edge of the ATP site. Structural analyses and molecular dynamics calculations indicated that the configuration and mobility of conserved gatekeeper methionine located at the central ATP site regulated the binding and access of 5Z7O to the ATP site of MAP2Ks. These structural features provide clues for developing highly potent and selective inhibitors against MAP2Ks.</p><p>Abbreviations: ATP, adenosine triphosphate; FDA, Food and Drug Administration; MAP2Ks, mitogen-activated protein kinase kinases; MD, molecular dynamics; NSCLC, non-small cell lung cancer; 5Z7O, 5Z-7-oxozeaenol; PDB, protein data bank; RMSD, root-mean-square deviation.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129914"},"PeriodicalIF":2.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}