Pub Date : 2024-08-30DOI: 10.1016/j.bmcl.2024.129942
Wen Shen , Xinyao Chen , Liping Zhou , Yan Cheng , Yan Zhang , Xiangrui Jiang , Haiguo Sun , Jingshan Shen
COVID-19 has caused severe consequences in terms of public health and economy worldwide since its outbreak in December 2019. SARS-CoV-2 3C-like protease (3CLpro), crucial for the viral replications, is an attractive target for the development of antiviral drugs. In this study, several kinds of Michael acceptor warheads were utilized to hunt for potent covalent inhibitors against 3CLpro. Meanwhile, novel 3CLpro inhibitors with the P3-3,5-dichloro-4-(2-(dimethylamino)ethoxy)phenyl moiety were designed and synthesized which may form salt bridge with residue Glu166. Among them, two compounds 12b and 12c exhibited high inhibitory activities against SARS-CoV-2 3CLpro. Further investigations suggested that 12b with an acrylate warhead displayed potent activity against HCoV-OC43 (EC50 = 97 nM) and SARS-CoV-2 replicon (EC50 = 45 nM) and low cytotoxicity (CC50 > 10 μM) in Huh7 cells. Taken together, this study devised two series of 3CLpro inhibitors and provided the potent SARS-CoV-2 3CLpro inhibitor (12b) which may be used for treating coronavirus infections.
{"title":"Discovery of the potent covalent inhibitor with an acrylate warhead for SARS-CoV-2 3CL protease","authors":"Wen Shen , Xinyao Chen , Liping Zhou , Yan Cheng , Yan Zhang , Xiangrui Jiang , Haiguo Sun , Jingshan Shen","doi":"10.1016/j.bmcl.2024.129942","DOIUrl":"10.1016/j.bmcl.2024.129942","url":null,"abstract":"<div><p>COVID-19 has caused severe consequences in terms of public health and economy worldwide since its outbreak in December 2019. SARS-CoV-2 3C-like protease (3CL<sup>pro</sup>), crucial for the viral replications, is an attractive target for the development of antiviral drugs. In this study, several kinds of Michael acceptor warheads were utilized to hunt for potent covalent inhibitors against 3CL<sup>pro</sup>. Meanwhile, novel 3CL<sup>pro</sup> inhibitors with the P3-3,5-dichloro-4-(2-(dimethylamino)ethoxy)phenyl moiety were designed and synthesized which may form salt bridge with residue Glu166. Among them, two compounds <strong>12b</strong> and <strong>12c</strong> exhibited high inhibitory activities against SARS-CoV-2 3CL<sup>pro</sup>. Further investigations suggested that <strong>12b</strong> with an acrylate warhead displayed potent activity against HCoV-OC43 (EC<sub>50</sub> = 97 nM) and SARS-CoV-2 replicon (EC<sub>50</sub> = 45 nM) and low cytotoxicity (CC<sub>50</sub> > 10 μM) in Huh7 cells. Taken together, this study devised two series of 3CL<sup>pro</sup> inhibitors and provided the potent SARS-CoV-2 3CL<sup>pro</sup> inhibitor (<strong>12b</strong>) which may be used for treating coronavirus infections.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129942"},"PeriodicalIF":2.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960894X24003445/pdfft?md5=19f89b6b0937e4a9b795af4ea6a699dd&pid=1-s2.0-S0960894X24003445-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142102758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1016/j.bmcl.2024.129937
Mariyana Atanasova , Georgi Stavrakov , Irena Philipova , Borislav Georgiev , Jaume Bastida , Irini Doytchinova , Strahil Berkov
Galanthamine derivatives are known for their AChE inhibitory activity. Among them, galanthamine has been approved for treatment of Alzheimer’s disease. N-Acetylnorgalanthamine (narcisine) and N-(2′-methyl)allylnorgalanthamine (the most potent natural AChE inhibitor of galanthamine type) were synthetized using N-norgalanthamine as a precursor. The NMR data described previously for narcisine were revised by two-dimensional 1H–1H and 1H–13C chemical shift correlation experiments. AChE inhibitory assays showed that N-acetylnorgalanthamine and N-formylnorgalanthamine (with previously unknown activity) are 4- and 43-times, respectively, less potent than galanthamine. In vitro (AChE inhibitory) and in silico (docking, ADME) assays and comparison of N-(2′-methyl)allylnorgalanthamine with galanthamine prove that this molecule is a very promising natural AChE inhibitor (33-times more potent than galanthamine) which further in vivo studies would provide better estimation about its applicability as a drug.
{"title":"AChE inhibitory activity of N-substituted natural galanthamine derivatives","authors":"Mariyana Atanasova , Georgi Stavrakov , Irena Philipova , Borislav Georgiev , Jaume Bastida , Irini Doytchinova , Strahil Berkov","doi":"10.1016/j.bmcl.2024.129937","DOIUrl":"10.1016/j.bmcl.2024.129937","url":null,"abstract":"<div><p>Galanthamine derivatives are known for their AChE inhibitory activity. Among them, galanthamine has been approved for treatment of Alzheimer’s disease. <em>N</em>-Acetylnorgalanthamine (narcisine) and <em>N</em>-(2′-methyl)allylnorgalanthamine (the most potent natural AChE inhibitor of galanthamine type) were synthetized using <em>N</em>-norgalanthamine as a precursor. The NMR data described previously for narcisine were revised by two-dimensional <sup>1</sup>H–<sup>1</sup>H and <sup>1</sup>H–<sup>13</sup>C chemical shift correlation experiments. AChE inhibitory assays showed that <em>N</em>-acetylnorgalanthamine and <em>N</em>-formylnorgalanthamine (with previously unknown activity) are 4- and 43-times, respectively, less potent than galanthamine. <em>In vitro</em> (AChE inhibitory) and <em>in silico</em> (docking, ADME) assays and comparison of <em>N</em>-(2′-methyl)allylnorgalanthamine with galanthamine prove that this molecule is a very promising natural AChE inhibitor (33-times more potent than galanthamine) which further <em>in vivo</em> studies would provide better estimation about its applicability as a drug.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129937"},"PeriodicalIF":2.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142102757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1016/j.bmcl.2024.129936
Eduardo Hernández-Vázquez , Ángel Ramírez-Trinidad , César E. Tovar-Román , José A. Rivera Chávez , Elizabeth Huerta-Salazar
We report a concise synthesis of N-acylated piperidines through a Knoevenagel-Doebner condensation/amide construction/ amination sequence. The design of the piperidines considered the pharmacophoric features found in previously reported inhibitors of FabI, an enzyme implicated in bacterial fatty acid biosynthesis. After the microbiological evaluation at 50 μM, the analogs displayed moderate activity against some pathogens from the ESKAPE group, reaching up to 42 % of growth inhibition for MRSA, 54 % for K. pneumoniae, and 37 % for P. aeruginosa (multiresistant strains). Docking studies demonstrate that almost all of them docked satisfactorily into the catalytic domain of S. aureus FabI, maintaining a similar pose as other reported inhibitors. The results shown herein propose the N-acyl-4-arylaminopiperidines as the basis for the development of more active candidates.
{"title":"N-acyl-4-arylaminopiperidines: Design and synthesis of a potential antimicrobial scaffold","authors":"Eduardo Hernández-Vázquez , Ángel Ramírez-Trinidad , César E. Tovar-Román , José A. Rivera Chávez , Elizabeth Huerta-Salazar","doi":"10.1016/j.bmcl.2024.129936","DOIUrl":"10.1016/j.bmcl.2024.129936","url":null,"abstract":"<div><p>We report a concise synthesis of <em>N</em>-acylated piperidines through a Knoevenagel-Doebner condensation/amide construction/ amination sequence. The design of the piperidines considered the pharmacophoric features found in previously reported inhibitors of FabI, an enzyme implicated in bacterial fatty acid biosynthesis. After the microbiological evaluation at 50 μM, the analogs displayed moderate activity against some pathogens from the ESKAPE group, reaching up to 42 % of growth inhibition for <em>MRSA</em>, 54 % for <em>K. pneumonia</em>e, and 37 % for <em>P. aeruginosa</em> (multiresistant strains). Docking studies demonstrate that almost all of them docked satisfactorily into the catalytic domain of <em>S. aureus</em> FabI, maintaining a similar pose as other reported inhibitors. The results shown herein propose the <em>N</em>-acyl-4-arylaminopiperidines as the basis for the development of more active candidates.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129936"},"PeriodicalIF":2.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960894X2400338X/pdfft?md5=778bd83ad1427372bcd40855f44150a3&pid=1-s2.0-S0960894X2400338X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142102760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1016/j.bmcl.2024.129934
Jiuyu Liu , Pradeep B. Lukka , Victoria A. Ektnitphong , Keyur R. Parmar , Santosh Wagh , Yan Lu , Robin B. Lee , Dimitri Scherbakov , Han Wang , Matthew D Zimmerman , Bernd Meibohm , Gregory T. Robertson , Vêronique Dartois , Erik C. Böttger , Anne J. Lenaerts , Richard E. Lee
Spectinamides are a novel class of narrow-spectrum antitubercular agents with the potential to treat drug-resistant tuberculosis infections. Spectinamide 1810 has shown a good safety record following subcutaneous injection in mice or infusion in rats but exhibits transient acute toxicity following bolus administration in either species. To improve the therapeutic index of 1810, an injectable prodrug strategy was explored. The injectable phosphate prodrug 3408 has a superior maximum tolerated dose compared to 1810 or Gentamicin. Following intravenous administration in rodents, prodrug 3408 was quickly converted to 1810. The resulting 1810 exposure and pharmacokinetic profile after 3408 administration was identical to equivalent molar amounts of 1810 given directly by intravenous administration. 3408 and the parent 1810 exhibited similar overall efficacy in a BALB/c acute tuberculosis efficacy model. Delivery of 1810 in phosphate prodrug form, therefore, holds the potential to improve further the therapeutic index of an already promising tuberculosis antibiotic.
{"title":"Enhancing the therapeutic window for Spectinamide anti-tuberculosis Agents: Synthesis, Evaluation, and activation of phosphate prodrug 3408","authors":"Jiuyu Liu , Pradeep B. Lukka , Victoria A. Ektnitphong , Keyur R. Parmar , Santosh Wagh , Yan Lu , Robin B. Lee , Dimitri Scherbakov , Han Wang , Matthew D Zimmerman , Bernd Meibohm , Gregory T. Robertson , Vêronique Dartois , Erik C. Böttger , Anne J. Lenaerts , Richard E. Lee","doi":"10.1016/j.bmcl.2024.129934","DOIUrl":"10.1016/j.bmcl.2024.129934","url":null,"abstract":"<div><p>Spectinamides are a novel class of narrow-spectrum antitubercular agents with the potential to treat drug-resistant tuberculosis infections. Spectinamide <strong>1810</strong> has shown a good safety record following subcutaneous injection in mice or infusion in rats but exhibits transient acute toxicity following bolus administration in either species. To improve the therapeutic index of <strong>1810</strong>, an injectable prodrug strategy was explored. The injectable phosphate prodrug <strong>3408</strong> has a superior maximum tolerated dose compared to <strong>1810</strong> or Gentamicin. Following intravenous administration in rodents, prodrug <strong>3408</strong> was quickly converted to <strong>1810</strong>. The resulting <strong>1810</strong> exposure and pharmacokinetic profile after <strong>3408</strong> administration was identical to equivalent molar amounts of <strong>1810</strong> given directly by intravenous administration. <strong>3408</strong> and the parent <strong>1810</strong> exhibited similar overall efficacy in a BALB/c acute tuberculosis efficacy model. Delivery of <strong>1810</strong> in phosphate prodrug form, therefore, holds the potential to improve further the therapeutic index of an already promising tuberculosis antibiotic.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129934"},"PeriodicalIF":2.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960894X24003366/pdfft?md5=f502c19cc97d16b2cebd89ff9b00618b&pid=1-s2.0-S0960894X24003366-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142102759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1016/j.bmcl.2024.129932
Ning Yan , Hong-Yan Liu , Ting-Ting Kong , Zi-Hao Kong , Ling-Yun Li , Xin Ma , Yan-Li Zeng , Mei-Jun Wang , Long-Qian Tang , Cheng-Mei Zhang , Zhao-Peng Liu , Chao Liu
Glycogen synthase kinase 3β (GSK-3β) is a potential therapeutic target for the treatment of a variety of human diseases. Here, we report the design and synthesis of a series of thieno[3,2-c]pyrazol-urea derivatives and evaluation of their GSK-3β inhibitory activity. Among these analogues, the compound without substitution on terminal phenyl ring (3a) was found to be the most potent GSK-3β inhibitor with an IC50 of 74.4 nM, while substitution on the terminal phenyl (3b–3p) led to decreased potency, independent of the position, size, or electronic properties of the substituents. Kinase selectivity assay revealed that 3a showed good selectivity over a panel of kinases, but was less selective over CDK1, CDK2 and CDK5. Additionally, the pharmacological properties of the synthesized compounds were investigated computationally by the SwissADME and the results showed that most of the compounds have good ADME profiles.
{"title":"Design, synthesis and biological evaluation of thieno[3,2-c]pyrazol-urea derivatives as potent glycogen synthase kinase 3β inhibitors based on the DFG-out conformation","authors":"Ning Yan , Hong-Yan Liu , Ting-Ting Kong , Zi-Hao Kong , Ling-Yun Li , Xin Ma , Yan-Li Zeng , Mei-Jun Wang , Long-Qian Tang , Cheng-Mei Zhang , Zhao-Peng Liu , Chao Liu","doi":"10.1016/j.bmcl.2024.129932","DOIUrl":"10.1016/j.bmcl.2024.129932","url":null,"abstract":"<div><p>Glycogen synthase kinase 3β (GSK-3β) is a potential therapeutic target for the treatment of a variety of human diseases. Here, we report the design and synthesis of a series of thieno[3,2-<em>c</em>]pyrazol-urea derivatives and evaluation of their GSK-3β inhibitory activity. Among these analogues, the compound without substitution on terminal phenyl ring (<strong>3a</strong>) was found to be the most potent GSK-3β inhibitor with an IC<sub>50</sub> of 74.4 nM, while substitution on the terminal phenyl (<strong>3b</strong>–<strong>3p</strong>) led to decreased potency, independent of the position, size, or electronic properties of the substituents. Kinase selectivity assay revealed that <strong>3a</strong> showed good selectivity over a panel of kinases, but was less selective over CDK1, CDK2 and CDK5. Additionally, the pharmacological properties of the synthesized compounds were investigated computationally by the SwissADME and the results showed that most of the compounds have good ADME profiles.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129932"},"PeriodicalIF":2.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142054409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1016/j.bmcl.2024.129933
Violette Richin , Caroline Bouillot , Sandrine Bouvard , Pierre Courault , Sophie Lancelot , Luc Zimmer , Wael Zeinyeh
Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter involved in many physiological and pathological mechanisms through its numerous receptors. Among these, the 5-HT2B receptor is known to play a key role in multiple brain disorders but remains poorly understood. Positron emission tomography (PET) can contribute to a better understanding of pathophysiological mechanisms regulated by the 5-HT2B receptor. To develop the first PET radiotracer for the 5-HT2B receptor, RS-127445, a well-known 5-HT2B receptor antagonist, was labeled with fluorine-18. [18F]RS-127445 was synthesized in a high radiochemical purity and with a good molar activity and radiochemical yield. Preliminary PET scans in rats showed good brain penetration of [18F]RS-127445. However, competition experiments and in vitro autoradiography showed high non-specific binding, especially to brain white matter.
羟色胺(5-羟色胺,5-HT)是一种神经递质,通过其众多受体参与许多生理和病理机制。其中,5-HT2B 受体在多种脑部疾病中起着关键作用,但人们对它的了解仍然很少。正电子发射断层扫描(PET)有助于更好地了解 5-HT2B 受体调节的病理生理机制。为了开发第一种用于 5-HT2B 受体的 PET 放射性示踪剂,我们用氟-18 标记了一种著名的 5-HT2B 受体拮抗剂 RS-127445。[18F]RS-127445的合成具有很高的放射化学纯度、良好的摩尔活性和放射化学收率。初步的大鼠 PET 扫描显示,[18F]RS-127445 的脑穿透性良好。然而,竞争实验和体外自显影显示了较高的非特异性结合,尤其是与脑白质的结合。
{"title":"[18F]RS-127445 radiosynthesis and evaluation as a 5-HT2B receptor PET radiotracer in rat brain","authors":"Violette Richin , Caroline Bouillot , Sandrine Bouvard , Pierre Courault , Sophie Lancelot , Luc Zimmer , Wael Zeinyeh","doi":"10.1016/j.bmcl.2024.129933","DOIUrl":"10.1016/j.bmcl.2024.129933","url":null,"abstract":"<div><p>Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter involved in many physiological and pathological mechanisms through its numerous receptors. Among these, the 5-HT<sub>2B</sub> receptor is known to play a key role in multiple brain disorders but remains poorly understood. Positron emission tomography (PET) can contribute to a better understanding of pathophysiological mechanisms regulated by the 5-HT<sub>2B</sub> receptor. To develop the first PET radiotracer for the 5-HT<sub>2B</sub> receptor, RS-127445, a well-known 5-HT<sub>2B</sub> receptor antagonist, was labeled with fluorine-18. [<sup>18</sup>F]RS-127445 was synthesized in a high radiochemical purity and with a good molar activity and radiochemical yield. Preliminary PET scans in rats showed good brain penetration of [<sup>18</sup>F]RS-127445. However, competition experiments and <em>in vitro</em> autoradiography showed high non-specific binding, especially to brain white matter.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129933"},"PeriodicalIF":2.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142091259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.bmcl.2024.129930
Niklas Heine , Alexander Weber , Alexander Pautsch , Dirk Gottschling , Ingo Uphues , Margit Bauer , Rebecca Ebenhoch , Aniket Magarkar , Bernd Nosse , Jörg Thomas Kley
Fructose metabolism by ketohexokinase (KHK) is implicated in a variety of metabolic disorders. KHK inhibition is a potential therapeutic strategy for the treatment of diseases including diabetes, non-alcoholic fatty liver disease, and non-alcoholic steatohepatitis. The first small-molecule KHK-inhibitors have entered clinical trials, but it remains unclear if systemic inhibition of KHK by small-molecules will eventually benefit patients. Here we report the discovery of BI-9787, a potent, zwitterionic KHK inhibitor characterized by high permeability and favorable oral rat pharmacokinetics. BI-9787 was identified by optimizing chemical starting points generated via a ligand-based virtual screening of Boehringer’s virtual library of synthetically accessible compounds (BICLAIM). It serves as a high-quality in vitro and in vivo tool compound for investigating the role of fructose metabolism in disease.
{"title":"Discovery of BI-9787, a potent zwitterionic ketohexokinase inhibitor with oral bioavailability","authors":"Niklas Heine , Alexander Weber , Alexander Pautsch , Dirk Gottschling , Ingo Uphues , Margit Bauer , Rebecca Ebenhoch , Aniket Magarkar , Bernd Nosse , Jörg Thomas Kley","doi":"10.1016/j.bmcl.2024.129930","DOIUrl":"10.1016/j.bmcl.2024.129930","url":null,"abstract":"<div><p>Fructose metabolism by ketohexokinase (KHK) is implicated in a variety of metabolic disorders. KHK inhibition is a potential therapeutic strategy for the treatment of diseases including diabetes, non-alcoholic fatty liver disease, and non-alcoholic steatohepatitis. The first small-molecule KHK-inhibitors have entered clinical trials, but it remains unclear if systemic inhibition of KHK by small-molecules will eventually benefit patients. Here we report the discovery of BI-9787, a potent, zwitterionic KHK inhibitor characterized by high permeability and favorable oral rat pharmacokinetics. BI-9787 was identified by optimizing chemical starting points generated via a ligand-based virtual screening of Boehringer’s virtual library of synthetically accessible compounds (BICLAIM). It serves as a high-quality <em>in vitro</em> and <em>in vivo</em> tool compound for investigating the role of fructose metabolism in disease.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129930"},"PeriodicalIF":2.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960894X24003329/pdfft?md5=7fba8a65eb189e57448872d90b684634&pid=1-s2.0-S0960894X24003329-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142045991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-16DOI: 10.1016/j.bmcl.2024.129931
Ishpriya Sharma, Drashti Daraji, James R. Horn, Timothy J. Hagen
Methionine aminopeptidase (MetAp) enzymes catalyze the post-translational removal of the initiator methionine residue in newly synthesized proteins, a process that is often essential in the maturation of proteins. Consequently, these enzymes serve as important targets for drug development. Rickettsia prowazekii (Rp) is an obligate coccobacillus and the causative agent of the louse-borne epidemic typhus and despite adequate treatment causes a latent infection. This research aimed to identify potential anti-rickettsial agents by screening 400 compounds from the MMV Pandemic Response Box against RpMetAp1. Overall, 19 compounds were identified that possessed IC50 values from 10 µM to 340 nM. The most potent inhibitor was MMV 1580488 (17), which was observed to have an IC50 of 340 nM. The selected hits serve as chemical leads that can be used for the development of potent inhibitors of the RpMetAp1 enzyme.
{"title":"Inhibitors of Rickettsia prowazekii methionine aminopeptidase 1 identified from the Pandemic Response Box","authors":"Ishpriya Sharma, Drashti Daraji, James R. Horn, Timothy J. Hagen","doi":"10.1016/j.bmcl.2024.129931","DOIUrl":"10.1016/j.bmcl.2024.129931","url":null,"abstract":"<div><p>Methionine aminopeptidase (MetAp) enzymes catalyze the post-translational removal of the initiator methionine residue in newly synthesized proteins, a process that is often essential in the maturation of proteins. Consequently, these enzymes serve as important targets for drug development. <em>Rickettsia prowazekii (Rp)</em> is an obligate coccobacillus and the causative agent of the louse-borne epidemic typhus and despite adequate treatment causes a latent infection. This research aimed to identify potential anti-rickettsial agents by screening 400 compounds from the MMV Pandemic Response Box against <em>Rp</em>MetAp1. Overall, 19 compounds were identified that possessed IC<sub>50</sub> values from 10 µM to 340 nM. The most potent inhibitor was MMV 1580488 (<strong>17</strong>), which was observed to have an IC<sub>50</sub> of 340 nM. The selected hits serve as chemical leads that can be used for the development of potent inhibitors of the <em>Rp</em>MetAp1 enzyme.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129931"},"PeriodicalIF":2.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-15DOI: 10.1016/j.bmcl.2024.129927
Riya Khandelwal, Mahesh Vasava, R.B. Abhirami, Manaswini Karsharma
Click chemistry is a flexible method featuring only the most feasible and efficient chemical reactions. The synthesis of 1,2,3-triazole from azides and terminal acetylenes using copper(I) as a catalyst is an extremely powerful reaction due to the extreme dependability, good selectivity, and biocompatibility of the starting materials. Triazole molecules are more than simple passive linkers; through hydrogen bonding and dipole interactions, they rapidly bind with biological targets. Its applications in drug development are expanding, ranging from target-oriented in situ chemistry and combinatorial mechanisms for lead generation to bioconjugation methods to study proteins and DNA. The click chemistry has frequently been used to speed up drug discovery and optimization processes in the past few years. The click chemistry reaction based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) is a biochemical process with applications in medicinal chemistry and chemical biology. Thus, click reactions are an essential component of the toolkit for medicinal chemistry and help medicinal chemists overcome the barriers in chemical reactions, increase throughput, and improve the standards of compound libraries. The review highlights the recent advancements in the copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry approach for synthesizing biologically important triazole moieties with a greater emphasis on synthesis methodologies and pharmacological applications. Additionally, the triazole-based FDA-approved drugs are also discussed with their mode of action to highlight the importance of the click chemistry approach in synthesizing the bioactive triazole compounds.
点击化学是一种灵活的方法,只进行最可行、最有效的化学反应。以铜(I)为催化剂,从叠氮化物和末端乙炔基合成 1,2,3-三氮唑是一种极其有效的反应,因为起始材料极其可靠,具有良好的选择性和生物相容性。三唑分子不仅仅是简单的被动连接剂,通过氢键和偶极相互作用,它们还能迅速与生物靶标结合。它在药物开发中的应用正在不断扩大,从以靶点为导向的原位化学和用于先导物生成的组合机制,到用于蛋白质和 DNA 研究的生物结合方法,不一而足。在过去几年中,点击化学被频繁用于加速药物发现和优化过程。基于铜催化叠氮-炔环加成(CuAAC)的点击化学反应是一种生物化学过程,可应用于药物化学和化学生物学。因此,点击反应是药物化学工具包的重要组成部分,有助于药物化学家克服化学反应中的障碍,提高通量,并改善化合物库的标准。这篇综述重点介绍了铜催化叠氮-炔环加成(CuAAC)点击化学方法在合成具有重要生物意义的三唑分子方面的最新进展,并更加强调了合成方法和药理应用。此外,还讨论了美国 FDA 批准的基于三唑的药物及其作用模式,以突出点击化学方法在合成具有生物活性的三唑化合物方面的重要性。
{"title":"Recent advances in triazole synthesis via click chemistry and their pharmacological applications: A review","authors":"Riya Khandelwal, Mahesh Vasava, R.B. Abhirami, Manaswini Karsharma","doi":"10.1016/j.bmcl.2024.129927","DOIUrl":"10.1016/j.bmcl.2024.129927","url":null,"abstract":"<div><p>Click chemistry is a flexible method featuring only the most feasible and efficient chemical reactions. The synthesis of 1,2,3-triazole from azides and terminal acetylenes using copper(I) as a catalyst is an extremely powerful reaction due to the extreme dependability, good selectivity, and biocompatibility of the starting materials. Triazole molecules are more than simple passive linkers; through hydrogen bonding and dipole interactions, they rapidly bind with biological targets. Its applications in drug development are expanding, ranging from target-oriented in situ chemistry and combinatorial mechanisms for lead generation to bioconjugation methods to study proteins and DNA. The click chemistry has frequently been used to speed up drug discovery and optimization processes in the past few years. The click chemistry reaction based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) is a biochemical process with applications in medicinal chemistry and chemical biology. Thus, click reactions are an essential component of the toolkit for medicinal chemistry and help medicinal chemists overcome the barriers in chemical reactions, increase throughput, and improve the standards of compound libraries. The review highlights the recent advancements in the copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry approach for synthesizing biologically important triazole moieties with a greater emphasis on synthesis methodologies and pharmacological applications. Additionally, the triazole-based FDA-approved drugs are also discussed with their mode of action to highlight the importance of the click chemistry approach in synthesizing the bioactive triazole compounds.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129927"},"PeriodicalIF":2.5,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amyloid plaque formation in the brain is mainly responsible for the onset of Alzheimer’s disease (AD). Structure-based peptides have gained importance in recent years, and rational design of the peptide sequences for the prevention of Aβ-aggregation and related toxicity is imperative. In this study, we investigate the structural modification of tetrapeptides derived from the hydrophobic C-terminal region of Aβ42 “VVIA-NH2” and its retro-sequence “AIVV-NH2.” A preliminary screening of synthesized peptides through an MTT cell viability assay followed by a ThT fluorescence assay revealed a peptide 13 (Ala-Ile-Aib-Val-NH2) that showed protection against Aβ-aggregation and associated neurotoxicity. The presence of the α-helix inducer “Aib” in peptide 13 manifested the conformational transition from cross-β-sheets to α-helical content in Aβ42. The absence of fibrils in electron microscopic analysis suggested the inhibitory potential of peptide 13. The HRMS, DLS, and ANS studies further confirmed the inhibitory activity of 13, and no cytotoxicity was observed. The structure-based peptide described herein is a promising amyloid-β inhibitor and provides a new lead for the development of AD therapeutics.
{"title":"Synthesis and mechanistic study of Aβ42 C-terminus domain derived tetrapeptides that inhibit Alzheimer’s Aβ-aggregation-induced neurotoxicity","authors":"Naina Sehra , Rajesh Parmar , Indresh K. Maurya , Vinod Kumar , Kulbhushan Tikoo , Rahul Jain","doi":"10.1016/j.bmcl.2024.129929","DOIUrl":"10.1016/j.bmcl.2024.129929","url":null,"abstract":"<div><p>Amyloid plaque formation in the brain is mainly responsible for the onset of Alzheimer’s disease (AD). Structure-based peptides have gained importance in recent years, and rational design of the peptide sequences for the prevention of Aβ-aggregation and related toxicity is imperative. In this study, we investigate the structural modification of tetrapeptides derived from the hydrophobic C-terminal region of Aβ<sub>42</sub> “VVIA-NH<sub>2</sub>” and its <em>retro</em>-sequence “AIVV-NH<sub>2</sub>.” A preliminary screening of synthesized peptides through an MTT cell viability assay followed by a ThT fluorescence assay revealed a peptide <strong>13</strong> (Ala-Ile-Aib-Val-NH<sub>2</sub>) that showed protection against Aβ-aggregation and associated neurotoxicity. The presence of the α-helix inducer “Aib” in peptide <strong>13</strong> manifested the conformational transition from cross-β-sheets to α-helical content in Aβ<sub>42</sub>. The absence of fibrils in electron microscopic analysis suggested the inhibitory potential of peptide <strong>13</strong>. The HRMS, DLS, and ANS studies further confirmed the inhibitory activity of <strong>13</strong>, and no cytotoxicity was observed. The structure-based peptide described herein is a promising amyloid-β inhibitor and provides a new lead for the development of AD therapeutics.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129929"},"PeriodicalIF":2.5,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}