首页 > 最新文献

HetRec '10最新文献

英文 中文
Cross-lingual keyword recommendation using latent topics 使用潜在主题的跨语言关键词推荐
Pub Date : 2010-09-26 DOI: 10.1145/1869446.1869454
A. Takasu
Multi-lingual text processing is important for content-based and hybrid recommender systems. It helps recommender systems extract content information from broader sources. It also enables systems to recommend items in a user's native language. We propose a cross-lingual keyword recommendation method, which is built on an extended latent Dirichlet allocation model, for extracting latent features from parallel corpora. With this model, the proposed method can recommend keywords from text written in different languages. We evaluate the proposed method using a cross-lingual bibliographic database that contains both English and Japanese abstracts and keywords and show that the proposed method can recommend keywords from abstracts in a cross-lingual environment with almost the same accuracy as in a monolingual environment.
多语言文本处理对于基于内容和混合推荐系统非常重要。它帮助推荐系统从更广泛的来源提取内容信息。它还使系统能够用用户的母语推荐商品。本文提出了一种基于扩展潜在Dirichlet分配模型的跨语言关键词推荐方法,用于从并行语料库中提取潜在特征。利用该模型,该方法可以从不同语言的文本中推荐关键词。我们使用包含英语和日语摘要和关键词的跨语言书目数据库对所提出的方法进行了评估,并表明所提出的方法可以在跨语言环境中从摘要中推荐关键词,并且准确度与单语言环境几乎相同。
{"title":"Cross-lingual keyword recommendation using latent topics","authors":"A. Takasu","doi":"10.1145/1869446.1869454","DOIUrl":"https://doi.org/10.1145/1869446.1869454","url":null,"abstract":"Multi-lingual text processing is important for content-based and hybrid recommender systems. It helps recommender systems extract content information from broader sources. It also enables systems to recommend items in a user's native language. We propose a cross-lingual keyword recommendation method, which is built on an extended latent Dirichlet allocation model, for extracting latent features from parallel corpora. With this model, the proposed method can recommend keywords from text written in different languages. We evaluate the proposed method using a cross-lingual bibliographic database that contains both English and Japanese abstracts and keywords and show that the proposed method can recommend keywords from abstracts in a cross-lingual environment with almost the same accuracy as in a monolingual environment.","PeriodicalId":258506,"journal":{"name":"HetRec '10","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127121600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Targeting more relevant, contextual recommendations by exploiting domain knowledge 通过利用领域知识来提供更相关的上下文推荐
Pub Date : 2010-09-26 DOI: 10.1145/1869446.1869455
A. Uzun, C. Räck, Fabian Steinert
In today's mobile applications, it becomes more and more important to have a broader view on knowledge about a certain domain when generating contextual and semantic recommendations. Data that provides additional and useful information to the traditional User x Item representation, such as taxonomies, implicit and indirect knowledge about a user's preferences or location information can immensely enhance the quality of recommendations. For this purpose, the generic recommender system of Fraunhofer Institute FOKUS, the SMART Recommendations Engine, has been extended by the SMART Ontology Extension and the Proximity Filter, which enable the recommender to use domain knowledge included in semantic ontologies and contextual information in the recommendation process in order to generate much more precise recommendations. The functionality of the extensions are demonstrated in the scope of a food purchase scenario.
在今天的移动应用程序中,在生成上下文和语义推荐时,对特定领域的知识有更广泛的了解变得越来越重要。为传统的User x Item表示提供额外有用信息的数据,如分类法、关于用户偏好或位置信息的隐式和间接知识,可以极大地提高推荐的质量。为此,Fraunhofer Institute FOKUS的通用推荐系统SMART推荐引擎被SMART本体扩展(SMART Ontology Extension)和邻近过滤器(Proximity Filter)扩展,使推荐器能够在推荐过程中使用包含在语义本体和上下文信息中的领域知识,以生成更精确的推荐。扩展的功能在食品购买场景的范围内进行了演示。
{"title":"Targeting more relevant, contextual recommendations by exploiting domain knowledge","authors":"A. Uzun, C. Räck, Fabian Steinert","doi":"10.1145/1869446.1869455","DOIUrl":"https://doi.org/10.1145/1869446.1869455","url":null,"abstract":"In today's mobile applications, it becomes more and more important to have a broader view on knowledge about a certain domain when generating contextual and semantic recommendations. Data that provides additional and useful information to the traditional User x Item representation, such as taxonomies, implicit and indirect knowledge about a user's preferences or location information can immensely enhance the quality of recommendations. For this purpose, the generic recommender system of Fraunhofer Institute FOKUS, the SMART Recommendations Engine, has been extended by the SMART Ontology Extension and the Proximity Filter, which enable the recommender to use domain knowledge included in semantic ontologies and contextual information in the recommendation process in order to generate much more precise recommendations. The functionality of the extensions are demonstrated in the scope of a food purchase scenario.","PeriodicalId":258506,"journal":{"name":"HetRec '10","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129166091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
HetRec '10
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1